Class X : MATH Chapter-6:Triangles Questions \& Answers - Exercise : 6.2-NCERT Book

Q1. In figure, (i) and (ii), $\mathrm{DE} \| \mathrm{BC}$. Find EC in (i) and AD in (ii).

(i)

Sol. (i) In figure, (i) $\mathrm{DE} \| \mathrm{BC}$ (Given)
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ (By Basic Proportionality Theorem)
$\Rightarrow \frac{1.5}{3}=\frac{1}{\mathrm{EC}}$
$\{\because \mathrm{AD}=1.5 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}$ and $\mathrm{AE}=1 \mathrm{~cm}\}$
$\Rightarrow \mathrm{EC}=\frac{3}{1.5}=2 \mathrm{~cm}$
(ii) In fig. (ii) $\mathrm{DE} \| \mathrm{BC}$ (given)

So, $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}} \Rightarrow \frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4}$
$\{\because \mathrm{BD}=7.2, \mathrm{AE}=1.8 \mathrm{~cm}$ and $\mathrm{CE}=5.4 \mathrm{~cm}\}$
$\mathrm{AD}=2.4 \mathrm{~cm}$
Q2. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, State whether EF \| QR :
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$.

Sol. (i) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3, \\
& \frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=\frac{3}{2}=1.5 \\
\Rightarrow & \frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}} \\
\Rightarrow & \mathrm{EF} \text { is not } \| \mathrm{QR}
\end{aligned}
$$

(ii) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{4}{4.5}=\frac{8}{9} \text { and } \frac{\mathrm{PF}}{\mathrm{FR}}=\frac{8}{9} \\
\Rightarrow & \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}} \Rightarrow \mathrm{EF} \| \mathrm{QR}
\end{aligned}
$$

(iii) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{QE}}=\frac{0.18}{\mathrm{PQ}-\mathrm{PE}}=\frac{0.18}{1.28-0.18}=\frac{0.18}{1.10} \\
& =\frac{18}{110}=\frac{9}{55}=\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{0.36}{\mathrm{PR}-\mathrm{PF}} \\
& =\frac{0.36}{2.56-0.36}=\frac{0.36}{2.20}=\frac{9}{55}=\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{\mathrm{PF}}{\mathrm{FR}}
\end{aligned}
$$

$\therefore \mathrm{EF} \| \mathrm{QR} \quad$ (By converse of Basic Proportionality Theorem)

Q3. In figure, if $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$, prove that $\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}$.

Sol. In $\triangle \mathrm{ACB}$ (see figure), $\mathrm{LM} \| \mathrm{CB}$ (Given)
$\Rightarrow \frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AL}}{\mathrm{LC}}$
(Basic Proportionality Theorem)
In $\triangle \mathrm{ACD}$ (see figure), $\mathrm{LN} \| \mathrm{CD} \quad$ (Given)
$\Rightarrow \frac{\mathrm{AN}}{\mathrm{ND}}=\frac{\mathrm{AL}}{\mathrm{LC}}$
(Basic Proportionality Theorem)
From (1) and (2), we get

$$
\begin{aligned}
& \frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{ND}} \\
\Rightarrow & \frac{\mathrm{AM}}{\mathrm{AM}+\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{AN}+\mathrm{ND}} \Rightarrow \frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}
\end{aligned}
$$

Q4. In figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DF} \| \mathrm{AE}$. Prove that $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$.

Sol. In $\triangle \mathrm{ABE}$,
DF \|AE (Given)
$\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}} \ldots$ (i) (Basic Proportionality Theorem)
In $\triangle \mathrm{ABC}$,
$\mathrm{DE} \| \mathrm{AC} \quad$ (Given)
$\frac{B D}{D A}=\frac{B E}{E C}$
......(ii) (Basic Proportionality Theorem)
From (i) and (ii), we get
$\frac{B F}{F E}=\frac{B E}{E C} \quad$ Hence proved.

Q5. In figure, $\mathrm{DE} \| \mathrm{OQ}$ and $\mathrm{DF} \| \mathrm{OR}$. Show that $\mathrm{EF} \| \mathrm{QR}$.

Sol. In figure, DE || OQ and DF || OR, then by Basic Proportionality Theorem,
We have $\quad \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PD}}{\mathrm{DO}}$
and $\quad \frac{P F}{F R}=\frac{P D}{D O}$
From (1) and (2), $\quad \frac{P E}{E Q}=\frac{P F}{F R}$
Now, in $\triangle \mathrm{PQR}$, we have proved that
$\Rightarrow \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}$
EF \| QR
(By converse of Basic Proportionality Theorem)

Q6. In figure, A, B and C are points on OP, OQ and OR respectively such that $\mathrm{AB} \| \mathrm{PQ}$ and AC $\|$ PR. Show that BC \| QR.

Sol. In $\triangle P O Q$,
$\mathrm{AB} \| \mathrm{PQ}$ (given)
$\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OA}}{\mathrm{AP}} \ldots$ (i) (Basic Proportionality Theorem)
In $\triangle \mathrm{POR}$,
$\mathrm{AC} \| \mathrm{PR}$ (given)
$\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}} \ldots$ (ii) (Basic Proportionality Theorem)
From (i) and (ii), we get
$\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OC}}{\mathrm{CR}}$
\therefore By converse of Basic Proportionality Theorem,
$B C \| Q R$

Q7. Using Theorem 6.1, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.

Sol. In $\triangle \mathrm{ABC}, \mathrm{D}$ is mid point of AB (see figure)

i.e., $\frac{\mathrm{AD}}{\mathrm{DB}}=1$

Straight line $\ell \| B C$.
Line ℓ is drawn through D and it meets AC at E .
By Basic Proportionality Theorem

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \frac{\mathrm{AE}}{\mathrm{EC}}=1[\text { From (1)] }
$$

$\Rightarrow \mathrm{AE}=\mathrm{EC} \Rightarrow \mathrm{E}$ is mid point of AC .

Q8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

Sol. In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are mid points of the sides AB and AC respectively.
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=1$
and $\frac{\mathrm{AE}}{\mathrm{EC}}=1$ (see figure)

$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \mathrm{DE} \| \mathrm{BC}$
(By Converse of Basic Proportionality Theorem)

Q9. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O . Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

Sol. We draw EOF || AB (also || CD) (see figure)
In $\triangle \mathrm{ACD}, \quad \mathrm{OE} \| \mathrm{CD}$
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$.
In $\triangle \mathrm{ABD}, \mathrm{OE} \| \mathrm{BA}$
$\Rightarrow \frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{DO}}{\mathrm{OB}}$

$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{OB}}{\mathrm{OD}}$.

From (1) and (2)

$$
\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}},
$$

i.e., $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$.

Q10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$. Show that ABCD is a trapezium.

Sol. In figure $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$

$$
\Rightarrow \quad \frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}} \quad \ldots(1) \text { (given) }
$$

Through O, we draw
OE || BA
OE meets AD at E .
From $\triangle \mathrm{DAB}$,

EO || AB
$\Rightarrow \frac{D E}{E A}=\frac{D O}{O B}$ (by Basic Proportionality Theorem)
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
From (1) and (2),

$$
\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{AE}}{\mathrm{ED}} \Rightarrow \mathrm{OE} \| \mathrm{CD}
$$

(by converse of basic proportionality theorem)
Now, we have BA \| OE
and $\quad O E \| C D$
$\Rightarrow \quad \mathrm{AB} \| \mathrm{CD}$
\Rightarrow Quadrilateral ABCD is a trapezium.

