Class X : MATH
Chapter-6:Triangles
Questions \& Answers - Exercise : 6.3-NCERT Book

Q1. State which pairs of triangles in figure, are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

(i)
(ii)

(iii)

(iv)

(v)

(vi)

Sol. (i) Yes. $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}, \angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ}$,
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
By AAA similarity criterion
(ii) Yes.
$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{RP}}=\frac{2.5}{5}=\frac{1}{2}, \frac{\mathrm{CA}}{\mathrm{PQ}}=\frac{3}{6}=\frac{1}{2}$
Therefore, $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$.
By SSS similarity criterion.
(iii) No.
$\frac{\mathrm{MP}}{\mathrm{DE}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{LP}}{\mathrm{DF}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{LM}}{\mathrm{EF}}=\frac{2.7}{5} \neq \frac{1}{2}$
i.e., $\frac{\mathrm{MP}}{\mathrm{DE}}=\frac{\mathrm{LP}}{\mathrm{DF}} \neq \frac{\mathrm{LM}}{\mathrm{EF}}$

Thus, the two triangles are not similar.
(iv) Yes,
$\frac{\mathrm{MN}}{\mathrm{QP}}=\frac{\mathrm{ML}}{\mathrm{QR}}=\frac{1}{2}$
and $\angle \mathrm{NML}=\angle \mathrm{PQR}=70^{\circ}$
By SAS similarity criterion
$\Delta \mathrm{NML} \sim \Delta \mathrm{PQR}$
(v) No ,
$\frac{\mathrm{AB}}{\mathrm{FD}} \neq \frac{\mathrm{AC}}{\mathrm{FE}}$
Thus, the two triangles are not similar
(vi) In triangle $\mathrm{DEF} \angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$

$$
70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ}
$$

$\angle \mathrm{F}=30^{\circ}$
In triangle PQR
$\angle \mathrm{P}+80^{\circ}+30^{\circ}=180^{\circ}$
$\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{E}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{D}=\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{R}=30^{\circ}$
By AAA similarity criterion,
$\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$.

Q2. In figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$.

Sol. From figure,

$$
\Rightarrow \quad \begin{array}{ll}
\angle \mathrm{DOC}+125^{\circ}=180^{\circ} \\
\Rightarrow \mathrm{DOC}=180^{\circ}-125^{\circ}=55^{\circ} \\
& \angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}
\end{array}
$$

(Sum of three angles of $\triangle \mathrm{ODC}$)
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}+125^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}=180^{\circ}-125^{\circ}=55^{\circ}$
Now, we are given that $\triangle \mathrm{ODC} \sim \Delta \mathrm{OBA}$
$\Rightarrow \angle \mathrm{OCD}=\angle \mathrm{OAB}$
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OCD}=\angle \mathrm{DCO}=55^{\circ}$
i.e., $\angle \mathrm{OAB}=55^{\circ}$

Hence, we have
$\angle \mathrm{DOC}=55^{\circ}, \angle \mathrm{DCO}=55^{\circ}, \angle \mathrm{OAB}=55^{\circ}$

Q3. Diagonals AC and BD of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$ intersect each other at the point
O. Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

Sol. In figure, $\mathrm{AB} \| \mathrm{DC}$
$\Rightarrow \angle 1=\angle 3, \angle 2=\angle 4$
(Alternate interior angles)
Also $\angle \mathrm{DOC}=\angle \mathrm{BOA}$
(Vertically opposite angles)

$\Rightarrow \Delta \mathrm{OCD} \sim \Delta \mathrm{OAB} \Rightarrow \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{OD}}{\mathrm{OB}}$
(Ratios of the corresponding sides of the similar triangle)
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$ (Taking reciprocals)

Q4. In figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ and $\angle 1=\angle 2$. Show that $\triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$.

Sol. In figure, $\angle 1=\angle 2$ (Given)
$\Rightarrow \mathrm{PQ}=\mathrm{PR}$
(Sides opposite to equal angles of $\triangle \mathrm{PQR}$)
We are given that
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$
$\Rightarrow \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PQ}} \quad(\because \mathrm{PQ}=\mathrm{PR}$ proved $)$
$\Rightarrow \quad \frac{\mathrm{QS}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{\mathrm{QT}} \quad$ (Taking reciprocals).
Now, in $\triangle P Q S$ and $\triangle T Q R$, we have
$\angle \mathrm{PQS}=\angle \mathrm{TQR} \quad($ Each $=\angle 1)$
and $\frac{\mathrm{QS}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{\mathrm{QT}}$
Therefore, by SAS similarity criterion, we have
$\Delta \mathrm{PQS} \sim \Delta T Q R$.
Q5. S and T are points on sides PR and QR of $\triangle \mathrm{PQR}$ such that $\angle \mathrm{P}=\angle \mathrm{RTS}$. Show that $\triangle \mathrm{RPQ} \sim$ Δ RTS.

Sol. In figure, We have $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$ in which

$$
\begin{aligned}
& \angle \mathrm{RPQ}=\angle \mathrm{RTS}(\text { Given }) \\
& \angle \mathrm{PRQ}=\angle \mathrm{SRT}(\text { Each }=\angle \mathrm{R})
\end{aligned}
$$

Then by AA similarity criterion, we have
$\Delta \mathrm{RPQ} \sim \Delta \mathrm{RTS}$

Q6. In figure, if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.

Sol. In figure,

$$
\Delta \mathrm{ABE} \cong \triangle \mathrm{ACD} \quad \text { (Given })
$$

$\Rightarrow \mathrm{AB}=\mathrm{AC}$ and $\mathrm{AE}=\mathrm{AD} \quad(\mathrm{CPCT})$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=1$ and $\frac{\mathrm{AD}}{\mathrm{AE}}=1$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AE}} \quad($ Each $=1)$
Now, in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$, we have

$$
\frac{\mathrm{AD}}{\mathrm{AE}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$ (proved)

i.e., $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
and also $\angle \mathrm{DAE}=\angle \mathrm{BAC} \quad($ Each $=\angle \mathrm{A})$
$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ (By SAS similarity criterion)

Q7. In figure, altitudes AD and CE of $\triangle \mathrm{ABC}$ intersect each other at the point P . Show that :
(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$
(iii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) $\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Sol. (i) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$,
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (vertically opposite angles)
$\angle \mathrm{AEP}=\angle \mathrm{CDP}=90^{\circ}$
$\therefore \quad$ By AA similarity
$\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$, $\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (common)
$\angle \mathrm{ADB}=\angle \mathrm{CEB}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$
(iii) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{ADB}$,
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (common)
$\angle \mathrm{AEP}=\angle \mathrm{ADB}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$,
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (common)
$\angle \mathrm{PDC}=\angle \mathrm{BEC}=90^{\circ}$
\therefore By AA similarity
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Q8. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$.

Sol.

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{EAB}=\angle \mathrm{BCF}$ (opp. angles of parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles, $\mathrm{As} \mathrm{AE} \| \mathrm{BC}$)
\therefore By AA similarity
$\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$

Q9. In figure, ABC and AMP are two right triangles, right angled at B and M respectively. Prove that:
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Sol.

(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$

$$
\begin{aligned}
& \angle \mathrm{CAB}=\angle \mathrm{PAM}(\text { common }) \\
& \angle \mathrm{ABC}=\angle \mathrm{AMP}=90^{\circ}
\end{aligned}
$$

\therefore By AA similarity

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}
$$

(ii) As $\triangle \mathrm{ABC} \sim \Delta \mathrm{AMP}$ (Proved above)

$$
\therefore \quad \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}
$$

Q10. CD and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$, show that :

Saral
(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
(ii) $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$
(iii) $\Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}$

Sol. $\triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{EGF}$
$\Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{EGF}$

$\Rightarrow \angle \mathrm{DCB}=\angle \mathrm{HGE}$
Also, $\angle \mathrm{B}=\angle \mathrm{E}$
$\Rightarrow \angle \mathrm{DBC}=\angle \mathrm{HEG}$
From (1) and (2), we have
$\Rightarrow \Delta \mathrm{DCB} \sim \Delta \mathrm{HGE}$
Similarly, we have $\Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}$
Now, $\triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$

$\Rightarrow \frac{\mathrm{DC}}{\mathrm{HG}}=\frac{\mathrm{CA}}{\mathrm{GF}} \Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$

Q11. In figure, E is a point on side CB produced of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$. If AD $\perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\Delta \mathrm{ABD} \sim \Delta \mathrm{ECF}$.

Sol. In figure,
We are given that $\triangle \mathrm{ABC}$ is isosceles.
and $\quad \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \quad \angle \mathrm{B}=\angle \mathrm{C}$
For triangles ABD and ECF ,

$$
\left.\left.\begin{array}{rll}
& & \angle \mathrm{ABD}=\angle \mathrm{ECF} \\
\text { and } & & \angle \mathrm{ADB}=\angle \mathrm{from}(1)\} \\
\Rightarrow & & \Delta \mathrm{ABD}
\end{array}\right) \quad \triangle \mathrm{ECF}(\mathrm{AA} \text { similarity })\right\}
$$

Q12. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Sol. Given. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$. AD and PM are their medians respectively.

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \tag{1}
\end{equation*}
$$

To prove. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
Construction : Produce AD to E such that $\mathrm{AD}=\mathrm{DE}$ and produce PM to N such that $\mathrm{PM}=\mathrm{MN}$.
Join BE, CE, QN, RN.

Proof : Quadrilaterals ABEC and PQNR are parallelograms because their diagonals bisect each other at D and M respectively.
$\Rightarrow \mathrm{BE}=\mathrm{AC}$ and $\mathrm{QN}=\mathrm{PR}$.
$\Rightarrow \frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AC}}{\mathrm{PR}} \Rightarrow \frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AB}}{\mathrm{PQ}} \quad(\mathrm{By} 1)$
i.e., $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QN}}$

From (1), $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}=\frac{\mathrm{AE}}{\mathrm{PN}}$
i.e., $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AE}}{\mathrm{PN}}$

From (2) and (3), we have

$$
\begin{align*}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AE}}{\mathrm{PN}} \\
\Rightarrow & \Delta \mathrm{ABE} \sim \triangle \mathrm{PQN} \Rightarrow \angle 1=\angle 2 \tag{4}
\end{align*}
$$

Similarly, we can prove
$\Rightarrow \triangle \mathrm{ACE} \sim \triangle \mathrm{PRN} \Rightarrow \angle 3=\angle 4$
Adding (4) and (5), we have
$\Rightarrow \angle 1+\angle 3=\angle 2+\angle 4 \Rightarrow \angle \mathrm{~A}=\angle \mathrm{P}$
$\Rightarrow \Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (SAS similarity criterion)
Q13. D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA}^{2}=\mathrm{CB}$. CD.

Sol. For $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$, We have

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{ADC} \\
\text { and } \angle \mathrm{ACB}=\angle \mathrm{DCA} & \text { (Given) } \\
\Rightarrow & \triangle \mathrm{ABC} \sim \triangle \mathrm{DAC} \\
\Rightarrow & \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
\Rightarrow & \frac{\mathrm{CA}}{\mathrm{CD}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
\Rightarrow & \mathrm{CA} \times \mathrm{CA}=\mathrm{CA}=\mathrm{CB} \times \mathrm{CD}^{\mathrm{B}}
\end{aligned}
$$

$\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}$

Q14. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of $\triangle \mathrm{PQR}$ (see figure). Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Sol.

As, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$ (Given)
So, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$$
\left\{\because \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{BD}}{\mathrm{QM}}\right\}
$$

\therefore By SSS similarity,

$$
\Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}
$$

As, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$.
$\therefore \quad \angle \mathrm{ABD}=\angle \mathrm{PQM}$
Now, In $\triangle A B C$ and $\triangle P Q R$

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \text { (Given) } \\
& \angle \mathrm{ABC}=\angle \mathrm{PQR} \text { (Proved above) }
\end{aligned}
$$

\therefore By SAS similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Q15. A vertical stick of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Sol.

$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\frac{6}{x}=\frac{4}{28}$
$\Rightarrow \mathrm{x}=42 \mathrm{~m}$

Q16. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$.

Sol. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
[from the side-ratio property of similar $\Delta \mathrm{s}$]
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R} \ldots \ldots \ldots(\mathrm{A})$
$\mathrm{BC}=2 \mathrm{BD} ; \mathrm{QR}=2 \mathrm{QM} \quad[\mathrm{P}, \mathrm{M}$ being the mid points of $\mathrm{BC} \mathrm{q} \mathrm{QR} \mathrm{respectively]}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{2 \mathrm{BD}}{2 \mathrm{QM}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{2 \mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
Now in $\triangle \mathrm{ABDq} \triangle \mathrm{PQM}$
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BP}}{\mathrm{QM}} \ldots \ldots .[$ from $(1)]$
$\angle \mathrm{B}=\angle \mathrm{Q} . \ldots . .[$ from $(\mathrm{A})]$
$\Rightarrow \Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}[\operatorname{By} \operatorname{SAS}$ property $\Delta \mathrm{s}]$ from the side property of similar $\Delta \mathrm{s}$ Hence Pr oved
$\frac{A B}{P Q}=\frac{A D}{P M}$

