Saral

Class X : MATH
Chapter 7 : Coordinate geometry
Questions \& Answers - Exercise : 7.2-NCERT Book

Q1. Find the co-ordinates of the point which divides the line joining of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$.
Sol. Let the required point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
Here the end points are $(-1,7)$ and $(4,-3)$
$\because \quad$ Ratio $=2: 3=m_{1}: m_{2}$

$$
\begin{aligned}
\therefore & x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{(2 \times 4)+3(-1)}{2+3} \\
& =\frac{8-3}{5}=\frac{5}{5}=1
\end{aligned}
$$

And $y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$

$$
=\frac{2 \times(-3)+(3 \times 7)}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3
$$

Thus, the required point is $(1,3)$.
Q2. Find the coordinates of the points of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.

Sol.

Points P and Q trisect the line segment joining the points $A(4,-1)$ and $B(-2,-3)$,
i.e., $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$.

Here, P divides AB in the ratio $1: 2$ and Q divides AB in the ratio $2: 1$.
x -coordinate of $\mathrm{P}=\frac{1 \times(-2)+2 \times(4)}{1+2}=\frac{6}{3}=2$;
y -coordinate of $\mathrm{P}=\frac{1 \times(-3)+2 \times(-1)}{1+2}=\frac{-5}{3}$
Thus, the coordinates of P are $\left(2, \frac{-5}{3}\right)$.
Now, x coordinate of $\mathrm{Q}=\frac{2 \times(-2)+1(4)}{2+1}=0$;
y-coordinate of $\mathrm{Q}=\frac{2 \times(-3)+1 \times(-1)}{2+1}=-\frac{7}{3}$
Thus, the coordinates of Q are $\left(0,-\frac{7}{3}\right)$.
Hence, the points of trisection are $\mathrm{P}\left(2, \frac{-5}{3}\right)$ and $\mathrm{Q}\left(0,-\frac{7}{3}\right)$.

Q3. To conduct Sports Day activities, in your rectangular shaped school ground $A B C D$, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along AD , as shown in fig. Niharika runs $\frac{1}{4}$ th the distance AD on the 2 nd line and posts a green flag. Preet runs $\frac{1}{5}$ th the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her
flag?

Sol. Let us consider 'A' as origin, then

$A B$ is the x-axis.
$A D$ is the y-axis.
Now, the position of green flag-post is
$\left(2, \frac{100}{4}\right)$ or $(2,25)$
And, the position of red flag-post is
$\left(8, \frac{100}{5}\right)$ or $(8,20)$
\Rightarrow Distance between both the flags
$=\sqrt{(8-2)^{2}+(20-25)^{2}}$

$$
=\sqrt{6^{2}+(-5)^{2}}=\sqrt{36+25}=\sqrt{61}
$$

Let the mid-point of the line segment joining the two flags be $\mathrm{M}(\mathrm{x}, \mathrm{y})$.

$$
\begin{aligned}
& (2,25) \quad(\mathrm{x}, \mathrm{y}) \\
& \therefore \quad \mathrm{x}=\frac{2+8}{2} \text { and } \mathrm{y}=\frac{25+20}{2} \\
& \text { or } \quad \mathrm{x}=5 \text { and } \mathrm{y}=22.5
\end{aligned}
$$

Thus, the blue flag is on the 5th line at a distance 22.5 m above AB .
Q4. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1$,
6).

Sol. Let the required ratio be K : 1

$$
\begin{array}{c|c}
\text { Comparing x-coordinate } & \begin{array}{c}
\text { Comparing y-coordinate } \\
\frac{\mathrm{k} \times(6)+1 \times(-3)}{\mathrm{k}+1}=-1
\end{array} \\
\begin{array}{c}
\frac{\mathrm{k} \times(-8)+1 \times(10)}{\mathrm{k}+1}=6 \\
\Rightarrow 7 \mathrm{k}-3=-\mathrm{k}-1
\end{array} & \Rightarrow-8 \mathrm{k}+10=6 \mathrm{k}+6 \\
\Rightarrow \mathrm{k}=\frac{2}{7} & \Rightarrow-8 \mathrm{~K}-6 \mathrm{~K}=6-10 \\
\Rightarrow & -14 \mathrm{~K}=-4 \\
\Rightarrow \mathrm{k}=\frac{2}{7}
\end{array}
$$

Q5. Find the ratio in which the line segment joining
$\mathrm{A}(1,-5)$ and $\mathrm{B}(-4,5)$ is divided by the x -axis. Also find the coordinates of the point of division.
Sol. The given points are : $\mathrm{A}(1,-5)$ and $\mathrm{B}(-4,5)$. Let the required ratio $=\mathrm{k}: 1$ and the required point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$
Part-I : To find the ratio
Since, the point P lies on x -axis,
\therefore Its y-coordinate is 0 .
$\mathrm{x}=\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$ and $0=\frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$\Rightarrow \mathrm{x}=\frac{-4 \mathrm{k}+1}{\mathrm{k}+1}$ and $0=\frac{5 \mathrm{k}-5}{\mathrm{k}+1}$
$\Rightarrow \mathrm{x}(\mathrm{k}+1)=-4 \mathrm{k}+1$
and $5 \mathrm{k}-5=0 \Rightarrow \mathrm{k}=1$
$\Rightarrow \mathrm{x}(\mathrm{k}+1)=-4 \mathrm{k}+1$
$\Rightarrow \mathrm{x}(1+1)=-4+1 \quad[\because \mathrm{k}=1]$
$\Rightarrow 2 \mathrm{x}=-3$
$\Rightarrow \mathrm{x}=-\frac{3}{2}$
\therefore The required ratio $\mathrm{k}: 1=1: 1$
Coordinates of P are $(\mathrm{x}, 0)=\left(\frac{-3}{2}, 0\right)$
Q6. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.
Sol. Mid-point of the diagonal AC has x-coordinate
$=\frac{x+1}{2}$ and y-coordinate $=\frac{6+2}{2}=4$
i.e., $\left(\frac{x+1}{2}, 4\right)$ is the mid-point of AC.

Similarly, mid-point of the diagonal BD is
$\left(\frac{4+3}{2}, \frac{\mathrm{y}+5}{2}\right)$, i.e., $\left(\frac{7}{2}, \frac{\mathrm{y}+5}{2}\right)$
We know that the two diagonals AC and BD bisect each other at M . Therefore,

$$
\begin{aligned}
& \left(\frac{x+1}{2}, 4\right) \text { and }\left(\frac{7}{2}, \frac{y+5}{2}\right) . \text { Coincide } \\
& \Rightarrow \frac{x+1}{2}=\frac{7}{2} \text { and } \frac{y+5}{2}=4 \\
& \Rightarrow x=6 \text { and } y=3
\end{aligned}
$$

Q7. Find the coordinates of a point A , where AB is the diameter of a circle whose centre is $(2,-$ $3)$ and B is $(1,4)$.
Sol. Here, centre of the circle is $\mathrm{O}(2,-3)$
Let the end points of the diameter be $\mathrm{A}(\mathrm{x}, \mathrm{y})$ and $\mathrm{B}(1,4)$

The centre of a circle bisects the diameter.
$\therefore 2=\frac{\mathrm{x}+1}{2} \Rightarrow \mathrm{x}+1=4$ or $\mathrm{x}=3$
And $-3=\frac{y+4}{2} \Rightarrow y+4=-6$ or $y=-10$
Here, the coordinates of A are $(3,-10)$

Q8. If A and B are $(-2,-2)$ and $(2,-4)$, respectively, find the coordinates of P such that $\mathrm{AP}=\frac{3}{7}$ AB and P lies on the line segment AB .

Sol.

$\mathrm{AP}=\frac{3}{7} \mathrm{AB}$,
$\mathrm{BP}=\mathrm{AB}-\mathrm{AP}=\mathrm{AB}-\frac{3}{7} \mathrm{AB}=\frac{4}{7} \mathrm{AB}$
$\frac{\mathrm{AP}}{\mathrm{BP}}=\frac{\frac{3}{7} \mathrm{AB}}{\frac{4}{7} \mathrm{AB}}=\frac{3}{4}$
Thus, P divides AB in the ratio $3: 4$.
x -coordinate of $\mathrm{P}=\frac{3 \times(2)+4 \times(-2)}{3+4}=-\frac{2}{7}$
y-coordinate of $P=\frac{3 \times(-4)+4 \times(-2)}{3+4}=-\frac{20}{7}$
Hence, the coordiantes of P are $\left(-\frac{2}{7},-\frac{20}{7}\right)$.

Q9. Find the coordinates of the points which divide the line segment joining $\mathrm{A}(-2,2)$ and $\mathrm{B}(2$, 8) into four equal parts.

Sol. Here, the given points are $\mathrm{A}(-2,2)$ and $\mathrm{B}(2,8)$
Let P_{1}, P_{2} and P_{3} divide $A B$ in four equal parts.

$\because \quad \mathrm{AP}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}_{2} \mathrm{P}_{3}=\mathrm{P}_{3} \mathrm{~B}$
Obviously, P_{2} is the mid-point of AB
\therefore Coordinates of P_{2} are

$$
\left(\frac{-2+2}{2}, \frac{2+8}{2}\right) \text { or }(0,5)
$$

Again, P_{1} is the mid-point of AP_{2}.
\therefore Coordinates of P_{1} are

$$
\left(\frac{-2+0}{2}, \frac{2+5}{2}\right) \text { or }\left(-1, \frac{7}{2}\right)
$$

Also P_{3} is the mid-point of $\mathrm{P}_{2} \mathrm{~B}$.
\therefore Coordinates of P_{3} are

$$
\left(\frac{0+2}{2}, \frac{5+8}{2}\right) \text { or }\left(1, \frac{13}{2}\right)
$$

Thus, the coordinates of $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} are $\left(-1, \frac{7}{2}\right),(0,5)$ and $\left(1, \frac{13}{2}\right)$ respectively.
Q10. Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order.
Sol. Diagonals AC and BD bisect each other at right angle to each other at O.

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{(-1-3)^{2}+(4-0)^{2}} \\
= & \sqrt{16+16}=\sqrt{32}=4 \sqrt{2} \\
\mathrm{BD} & =\sqrt{(4+2)^{2}+(5+1)^{2}}=\sqrt{36+36}=6 \sqrt{2}
\end{aligned}
$$

Then $\mathrm{OA}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 4 \sqrt{2}=2 \sqrt{2}$

$$
\mathrm{OB}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 6 \sqrt{2}=3 \sqrt{2}
$$

Area of $\triangle \mathrm{AOB}=\frac{1}{2}(\mathrm{OA}) \times(\mathrm{OB})=\frac{1}{2} \times 2 \sqrt{2} \times 3 \sqrt{2}=6$ sq. units
Hence, the area of the rhombus ABCD
$=4 \times$ area of $\triangle A O B=4 \times 6=24$ sq. units.

