Class X : MATH

Chapter - 8 : Introduction To Trigonometry Questions and Answers | Exercise - 8.1-NCERT Book

Q1. In $\triangle \mathrm{ABC}$, right angled at $\mathrm{B}, \mathrm{AB}=24 \mathrm{~cm}$, $\mathrm{BC}=7 \mathrm{~cm}$. Determine : (i) $\sin \mathrm{A}, \cos \mathrm{A}$ (ii) $\sin \mathrm{C}, \cos \mathrm{C}$.
Sol. By Pythagoras Theorem,

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=(24)^{2}+(7)^{2}=625 \\
\Rightarrow & \mathrm{AC}=\sqrt{625}=25 \mathrm{~cm} . \\
\text { (i) } & \sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}\left\{\text { i.e., } \frac{\text { side opposite to angle } \mathrm{A}}{\mathrm{Hyp} .}\right\} \\
& =\frac{7}{25}(\because \mathrm{BC}=7 \mathrm{~cm} \text { and } \mathrm{AC}=25 \mathrm{~cm})
\end{aligned}
$$

$\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}\left\{\right.$ i.e., $\left.\frac{\text { side adjacent to angle } \mathrm{A}}{\text { Hyp. }}\right\}$
$=\frac{24}{25}(\because \mathrm{AB}=24 \mathrm{~cm}$ and $\mathrm{AC}=25 \mathrm{~cm})$
(ii) $\sin \mathrm{C}=\frac{\mathrm{AB}}{\mathrm{AC}}\left\{\right.$ i.e., $\left.\frac{\text { side opposite to angle } \mathrm{C}}{\mathrm{Hyp}}\right\}$

$$
=\frac{24}{25}
$$

$$
\cos \mathrm{C}=\frac{\mathrm{BC}}{\mathrm{AC}}\left\{\text { i.e., } \frac{\text { side adjacent to angle } \mathrm{C}}{\text { Hyp. }}\right\}
$$

$$
=\frac{7}{25}
$$

Q2. In fig, find $\tan P-\cot R$.

Sol. In figure, by the Pythagoras Theorem,

$$
\mathrm{QR}^{2}=\mathrm{PR}^{2}-\mathrm{PQ}^{2}=(13)^{2}-(12)^{2}=25
$$

$\Rightarrow \mathrm{QR}=\sqrt{25}=5 \mathrm{~cm}$
In $\triangle \mathrm{PQR}$ right angled at $\mathrm{Q}, \mathrm{QR}=5 \mathrm{~cm}$ is side opposite to the angle P and $\mathrm{PQ}=12 \mathrm{~cm}$ is side adjacent to the angle P .
Therefore, $\tan \mathrm{P}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{5}{12}$.

Now, $\mathrm{QR}=5 \mathrm{~cm}$ is side adjacent to the angle R and $\mathrm{PQ}=12 \mathrm{~cm}$ is side opposite to the angle R.

Therefore, $\cot \mathrm{R}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{5}{12}$
Hence, $\tan \mathrm{P}-\cot \mathrm{R}=\frac{5}{12}-\frac{5}{12}=0$

Q3. If $\sin \mathrm{A}=\frac{3}{4}$, calculate $\cos \mathrm{A}$ and $\tan \mathrm{A}$.
Sol. In figure,
$\sin \mathrm{A}=\frac{3}{4}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}$
$\Rightarrow \mathrm{BC}=3 \mathrm{k}$
and $\mathrm{AC}=4 \mathrm{k}$
where k is the constant of proportionality.
By Pythagoras Theorem,

$\mathrm{AB}^{2}=\mathrm{AC}^{2}-\mathrm{BC}^{2}=(4 \mathrm{k})^{2}-(3 \mathrm{k})^{2}=7 \mathrm{k}^{2}$
$\Rightarrow \mathrm{AB}=\sqrt{7} \mathrm{k}$
So, $\cos A=\frac{A B}{A C}=\frac{\sqrt{7} k}{4 k}=\frac{\sqrt{7}}{4}$
and $\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 \mathrm{k}}{\sqrt{7} \mathrm{k}}=\frac{3}{\sqrt{7}}$

Q4. Given $15 \cot \mathrm{~A}=8$, find $\sin \mathrm{A}$ and $\sec \mathrm{A}$.
Sol. $\cot \mathrm{A}=\frac{8}{15}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{8}{15}$
$\Rightarrow \mathrm{AB}=8 \mathrm{k}$
and $\mathrm{BC}=15 \mathrm{k}$

Now, $\mathrm{AC}=\sqrt{(8 \mathrm{k})^{2}+(15 \mathrm{k})^{2}}=17 \mathrm{k}$
$\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{15 \mathrm{k}}{17 \mathrm{k}}=\frac{15}{17}, \quad \sec \mathrm{~A}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{17 \mathrm{k}}{8 \mathrm{k}}=\frac{17}{8}$

Q5. Given $\sec \theta=\frac{13}{12}$, calculate all other trigonometric ratios.
Sol. $\sec \theta=\frac{13}{12}$

$$
\Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13}{12}
$$

By Pythagoras Theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$(13 \mathrm{k})^{2}=\mathrm{AB}^{2}+(12 \mathrm{k})^{2}$
$\mathrm{AB}^{2}=169 \mathrm{k}^{2}-144 \mathrm{k}^{2}$

$\mathrm{AB}=\sqrt{25 \mathrm{k}^{2}}=5 \mathrm{k}$
$\sin \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$
$\cos \theta=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{12 \mathrm{k}}{13 \mathrm{k}}=\frac{12}{13}$
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{5 \mathrm{k}}{12 \mathrm{k}}=\frac{5}{12}$
$\cot \theta=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{12 \mathrm{k}}{5 \mathrm{k}}=\frac{12}{5}$
$\operatorname{cosec} \theta=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{13 \mathrm{k}}{5 \mathrm{k}}=\frac{13}{5}$

Q6. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are acute angles such that $\cos \mathrm{A}=\cos \mathrm{B}$, then show that $\angle \mathrm{A}=\angle \mathrm{B}$.
Sol. In figure $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are acute angles of $\triangle \mathrm{ABC}$.
Draw CD $\perp \mathrm{AB}$.
We are given that $\cos \mathrm{A}=\cos \mathrm{B}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{BC}}$

$\Rightarrow \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}\left(\mathrm{Each}=\frac{\mathrm{CD}}{\mathrm{CD}}\right)$
$\Rightarrow \quad \triangle \mathrm{ADC} \sim \triangle \mathrm{BDC} \quad(\mathrm{SSS}$ similarity criterion $) \Rightarrow \angle \mathrm{A}=\angle \mathrm{B}$
(\because all the corresponding angles of two similar triangles are equal)

Q7. If $\cot \theta=\frac{7}{8}$, evaluate :
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
(ii) $\cot ^{2} \theta$

Sol. In figure,

$$
\begin{aligned}
& \cot \theta=\frac{7}{8} \\
& \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{7}{8} \\
& \Rightarrow \quad \mathrm{AB}=7 \mathrm{k} \\
& \text { and } \mathrm{BC}=8 \mathrm{k} \\
& \text { Now, } \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=(7 \mathrm{k})^{2}+(8 \mathrm{k})^{2} \\
& =113 \mathrm{k}^{2} \\
& \Rightarrow \quad \mathrm{AC}=\sqrt{113} \mathrm{k}
\end{aligned}
$$

Then $\sin \theta=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{8 \mathrm{k}}{\sqrt{113} \mathrm{k}}=\frac{8}{\sqrt{113}}$
and $\cos \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{7 \mathrm{k}}{\sqrt{113} \mathrm{k}}=\frac{7}{\sqrt{113}}$.
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1+\frac{8}{\sqrt{113}}\right)\left(1-\frac{8}{\sqrt{113}}\right)}{\left(1+\frac{7}{\sqrt{113}}\right)\left(1-\frac{7}{\sqrt{113}}\right)}$

$$
\begin{aligned}
& \frac{(\sqrt{113}+8)(\sqrt{113}-8)}{(\sqrt{113}+7)(\sqrt{113}-7)}=\frac{(\sqrt{113})^{2}-(8)^{2}}{(\sqrt{113})^{2}-(7)^{2}} \\
& \left\{\because(a+b)(a-b)=a^{2}-b^{2}\right\} \\
& =\frac{113-64}{113-49}=\frac{49}{64}
\end{aligned}
$$

(ii) $\cot \theta=\frac{7}{8} \quad \Rightarrow \cot ^{2} \theta=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$

Saral

Q8. If $3 \cot A=4$, check whether
$\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$ or not.
Sol. In figure,
$3 \cot \mathrm{~A}=4$
$\Rightarrow \cot \mathrm{A}=\frac{4}{3}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{3}$

$\Rightarrow \mathrm{AB}=4 \mathrm{k}$ and $\mathrm{BC}=3 \mathrm{k}$
Now, $\mathrm{AC}=\sqrt{(4 \mathrm{k})^{2}+(3 \mathrm{k})^{2}}=5 \mathrm{k}$

Then $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$,

$$
\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{4 \mathrm{k}}{5 \mathrm{k}}=\frac{4}{5}
$$

and $\quad \tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$

$$
\mathrm{LHS}=\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}
$$

$$
=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}=\frac{16-9}{16+9}=\frac{7}{25}
$$

$$
\text { RHS }=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}
$$

$$
=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}
$$

Therefore, LHS = RHS,
i.e., $\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
$\left(\because\right.$ Each side $\left.=\frac{7}{25}\right)$

Q9. In triangle ABC right angled at B , if $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$, find the value of :
(i) $\sin A \cos C+\cos A \sin C$
(ii) $\cos \mathrm{A} \cos \mathrm{C}-\sin \mathrm{A} \sin \mathrm{C}$.

Sol. $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$
$\frac{\mathrm{BC}}{\mathrm{BA}}=\frac{1}{\sqrt{3}}$
$\mathrm{BC}=\mathrm{k}$ and $\mathrm{BA}=\sqrt{3} \mathrm{k}$

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{BC}^{2}+\mathrm{BA}^{2} \\
& =\mathrm{k}^{2}+(\sqrt{3} \mathrm{k})^{2}=\mathrm{k}^{2}+3 \mathrm{k}^{2}=4 \mathrm{k}^{2}
\end{aligned}
$$

$\mathrm{AC}=\sqrt{4 \mathrm{k}^{2}}=2 \mathrm{k}$
(i) $\sin \mathrm{A} \cdot \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}$

$$
=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}=1
$$

(ii) $\cos \mathrm{A} \cdot \cos \mathrm{C}-\sin \mathrm{A} \cdot \sin \mathrm{C}$

$$
=\frac{\sqrt{3}}{2} \times \frac{1}{2}-\frac{1}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0
$$

Q10. In $\triangle P Q R$, right angled at $\mathrm{Q}, \mathrm{PR}+\mathrm{QR}=25 \mathrm{~cm}$ and $\mathrm{PQ}=5 \mathrm{~cm}$. Determine the values of $\sin \mathrm{P}, \cos \mathrm{P}$ and $\tan \mathrm{P}$.

Sol. In figure,

$$
\begin{array}{ll}
& \mathrm{PQ}=5 \mathrm{~cm} \\
& \mathrm{PR}+\mathrm{QR}=25 \mathrm{~cm} \\
\text { i.e., } & \mathrm{PR}=25 \mathrm{~cm}-\mathrm{QR} \\
\text { Now, } \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
\Rightarrow \quad & (25-\mathrm{QR})^{2}=(5)^{2}+\mathrm{QR}^{2} \\
\Rightarrow \quad & 625-50 \times \mathrm{QR}+\mathrm{QR}^{2}=25+\mathrm{QR}^{2} \\
\Rightarrow \quad & 50 \times \mathrm{QR}=600 \Rightarrow \mathrm{QR}=12 \mathrm{~cm} \\
\text { and } & \mathrm{PR}=25 \mathrm{~cm}-12 \mathrm{~cm}=13 \mathrm{~cm}
\end{array}
$$

We find $\sin \mathrm{P}=\frac{\mathrm{QR}}{\mathrm{PR}}=\frac{12}{13}, \cos \mathrm{P}=\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{5}{13}$
and $\tan \mathrm{P}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{12}{5}$

Q11. State whether the following are true or false. Justify your answer.
(i) The value of $\tan \mathrm{A}$ is always less than 1 .
(ii) $\sec \mathrm{A}=\frac{12}{5}$ for some value of angle A .
(iii) $\cos \mathrm{A}$ is the abbreviation used for the cosecant of angle A.
(iv) $\cot \mathrm{A}$ is the product of \cot and A .
(v) $\sin \theta=\frac{4}{3}$ for some angle θ.

Sol. (i) False.
We know that $60^{\circ}=\sqrt{3}>1$.
(ii) True.

We know that value of $\sec \mathrm{A}$ is always ≥ 1.
(iii) False.

Because $\cos \mathrm{A}$ is abbreviation used for cosine A .
(iv) False, because $\cot \mathrm{A}$ is not the product of \cot and A.
(v) False, because value of sin cannot be more than 1.

