





Class X Maths



**Q2.** In fig, find tan  $P - \cot R$ .

**∛**Saral





$$\Rightarrow$$
 QR =  $\sqrt{25}$  = 5 cm

In  $\triangle PQR$  right angled at Q, QR = 5 cm is side opposite to the angle P and PQ = 12 cm is side adjacent to the angle P.

Therefore,  $\tan P = \frac{QR}{PQ} = \frac{5}{12}$ .

Now, QR = 5 cm is side adjacent to the angle R and PQ = 12 cm is side opposite to the angle R.

Therefore,  $\cot R = \frac{QR}{PQ} = \frac{5}{12}$ 

Hence,  $\tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0$ 

**Q3.** If  $\sin A = \frac{3}{4}$ , calculate  $\cos A$  and  $\tan A$ .

Sol. In figure,

$$\sin A = \frac{3}{4}$$
$$\Rightarrow \frac{BC}{AC} = \frac{3}{4}$$
$$\Rightarrow BC = 3k$$
and AC = 4k  
where k is the set of the

where k is the constant of proportionality.

By Pythagoras Theorem,

Class X Maths





$$AB^{2} = AC^{2} - BC^{2} = (4k)^{2} - (3k)^{2} = 7k^{2}$$

$$\Rightarrow AB = \sqrt{7} k$$
So,  $\cos A = \frac{AB}{AC} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4}$ 
and  $\tan A = \frac{BC}{AB} = \frac{3k}{\sqrt{7k}} = \frac{3}{\sqrt{7}}$ 
Q4. Given 15 cot A = 8, find sin A and sec A.  
Sol.  $\cot A = \frac{8}{15}$ 

$$\Rightarrow \frac{AB}{BC} = \frac{8}{15}$$

$$\Rightarrow AB = 8k$$
and BC = 15 k
Now, AC =  $\sqrt{(8k)^{2} + (15k)^{2}} = 17 k$ 
sin A =  $\frac{BC}{AC} = \frac{15k}{17k} = \frac{15}{17}$ , sec A =  $\frac{AC}{AB} = \frac{17k}{8k} = \frac{17}{8}$ 
Q5. Given sec  $\theta = \frac{13}{12}$ , calculate all other trigonometric ratios.

**Sol.** sec  $\theta = \frac{13}{12}$ 

 $\Rightarrow \frac{AC}{BC} = \frac{13}{12}$ 

Class X Maths





By Pythagoras Theorem,  $AC^2 = AB^2 + BC^2$  $(13k)^2 = AB^2 + (12k)^2$  $AB^2 = 169k^2 - 144 k^2$  $AB = \sqrt{25 k^2} = 5 k$  $\sin \theta = \frac{AB}{AC} = \frac{5k}{13k} = \frac{5}{13}$  $\cos \theta = \frac{BC}{AC} = \frac{12k}{13k} = \frac{12}{13}$  $\tan \theta = \frac{AB}{BC} = \frac{5k}{12k} = \frac{5}{12}$  $\cot \theta = \frac{BC}{AB} = \frac{12k}{5k} = \frac{12}{5}$  $\operatorname{cosec} \theta = \frac{AC}{AB} = \frac{13k}{5k} = \frac{13}{5}$ 

**Q6.** If  $\angle A$  and  $\angle B$  are acute angles such that  $\cos A = \cos B$ , then show that  $\angle A = \angle B$ .

13

12

B

**Sol.** In figure  $\angle A$  and  $\angle B$  are acute angles of  $\triangle ABC$ .



We are given that  $\cos A = \cos B$ 



**Class X Maths** 

## **∛**Saral



 $\Rightarrow \Delta ADC \sim \Delta BDC$ (SSS similarity criterion)  $\Rightarrow \angle A = \angle B$ 

(: all the corresponding angles of two similar triangles are equal)

**Q7.** If  $\cot \theta = \frac{7}{8}$ , evaluate : (i)  $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ (ii)  $\cot^2\theta$ Sol. In figure,  $\cot \theta = \frac{7}{8}$ 8k  $\Rightarrow \frac{AB}{BC} = \frac{7}{8}$ AΔθ  $\Box_{\mathrm{B}}$ AB = 7 k $\Rightarrow$ and BC = 8 kNow,  $AC^2 = AB^2 + BC^2 = (7k)^2 + (8k)^2$  $= 113 k^2$  $AC = \sqrt{113} k$  $\Rightarrow$ Then sin  $\theta = \frac{BC}{AC} = \frac{8k}{\sqrt{113}k} = \frac{8}{\sqrt{113}}$ and  $\cos \theta = \frac{AB}{AC} = \frac{7k}{\sqrt{113}k} = \frac{7}{\sqrt{113}}$ . (i)  $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{\left(1+\frac{8}{\sqrt{113}}\right)\left(1-\frac{8}{\sqrt{113}}\right)}{\left(1+\frac{7}{\sqrt{113}}\right)\left(1-\frac{7}{\sqrt{113}}\right)}$  $\frac{(\sqrt{113}+8)(\sqrt{113}-8)}{(\sqrt{113}+7)(\sqrt{113}-7)} = \frac{(\sqrt{113})^2 - (8)^2}{(\sqrt{113})^2 - (7)^2}$  $\{:: (a + b) (a - b) = a^2 - b^2\}$  $=\frac{113-64}{113-49}=\frac{49}{64}$ (ii)  $\cot\theta = \frac{7}{8} \implies \cot^2 \theta = \left(\frac{7}{8}\right)^2 = \frac{49}{64}$ 

**Class X Maths** 

## **∛S**aral

JEE | NEET | CLASS 8 - 10 Download eSaral APP ≽ 🛴



Class X Maths





Therefore, LHS = RHS,

i.e., 
$$\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A$$
$$\left(\because \text{ Each side} = \frac{7}{25}\right)$$

**Q9.** In triangle ABC right angled at B, if  $\tan A = \frac{1}{\sqrt{3}}$ , find the value of :

- (i)  $\sin A \cos C + \cos A \sin C$
- (ii)  $\cos A \cos C \sin A \sin C$ .

**Sol.**  $\tan A = \frac{1}{\sqrt{3}}$  $\frac{BC}{BA} = \frac{1}{\sqrt{3}}$ BC = k and BA =  $\sqrt{3}k^{B}$  $AC^2 = BC^2 + BA^2$  $= k^{2} + (\sqrt{3}k)^{2} = k^{2} + 3k^{2} = 4k^{2}$  $AC = \sqrt{4k^2} = 2k$ 

(i)  $\sin A.\cos C + \cos A \sin C$ 

$$= \frac{1}{2} \times \frac{1}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} = \frac{1}{4} + \frac{3}{4} = 1$$

(ii) cos A . cos C - sin A . sin C

$$= \frac{\sqrt{3}}{2} \times \frac{1}{2} - \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$$

Class X Maths

www.esaral.com

7

## **∛Sara**l

**Q10.** In  $\triangle PQR$ , right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Sol. In figure,



Q11. State whether the following are true or false. Justify your answer.

- (i) The value of tan A is always less than 1.
- (ii) sec A =  $\frac{12}{5}$  for some value of angle A.
- (iii) cos A is the abbreviation used for the cosecant of angle A.
- (iv) cot A is the product of cot and A.
- (v)  $\sin \theta = \frac{4}{3}$  for some angle  $\theta$ .

Class X Maths

## **\***Saral



Sol. (i) False.

We know that  $60^\circ = \sqrt{3} > 1$ .

(ii) True.

We know that value of sec A is always  $\geq 1$ .

(iii) False.

Because cos A is abbreviation used for cosine A.

- (iv) False, because cot A is not the product of cot and A.
- (v) False, because value of sin cannot be more than 1.