
JEE | NEET | CLASS 8 - 10 Download eSaral APP ≽ 💢

Q1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is -

(A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm Sol. From figure, $r^2 = (25)^2 - (24)^2$ = 625 - 576 = 49 $\Rightarrow r = 7$ cm Hence, the correct option is (A)

- Q2. In fig., if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to -
 - (A) 60°

VSaral

- (B) 70°
- (C) 80°
- (D) 90°
- **Sol.** TQ and TP are tangents to a circle with centre O and $\angle POQ = 110^{\circ}$

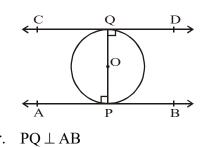
110°

Q

 \therefore OP \perp PT and OQ \perp QT

 $\Rightarrow \angle OPT = 90^{\circ} \text{ and } \angle OQT = 90^{\circ}$

Now, in the quadrilateral TPOQ, we get


Class X Maths

*****Saral JEE | NEET | CLASS 8 - 10 Download eSaral APP > 🛴 \therefore PTQ + 90° + 110° + 90° = 360° [Angle sum property of a quadrilateral] $\Rightarrow \angle PTQ + 290^\circ = 360^\circ$ $\Rightarrow \angle PTQ = 360^\circ - 290^\circ = 70^\circ$ Hence, the correct option is (B) Q3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then \angle POA is equal to (A) 50° (B) 60° (C) 70° (D) 80° Sol. In figure, $\triangle OAP \cong \triangle OBP$ (SSS congruence) $\Rightarrow \angle POA = \angle POB$ $=\frac{1}{2}$ $\angle AOB$...(1) Also $\angle AOB + \angle APB = 180$ $\Rightarrow \angle AOB + 80^\circ = 180^\circ$ $\Rightarrow \angle AOB = 100^{\circ} \dots (2)$ В Then from (1) and (2) $\angle POA = \frac{1}{2} \times .100 = 50^{\circ}$ Hence, the correction option is (A)

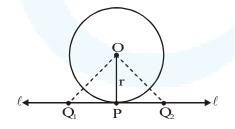
- Q4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
- Sol. In the figure, PQ is diameter of the given circle and O is its centre. Let tangents AB and CD be drawn at the end points of the diameter PQ. Since, the tangents at a point to a circle is perpendicular to the radius through the point.

∛Saral

 \Rightarrow APQ = 90° and PQ \perp CD

$$\Rightarrow \angle PQD = 90^{\circ}$$

$$\Rightarrow \angle APQ = \angle PQD$$


But they form a pair of alternate angles.

Hence, the two tangents are parallel.

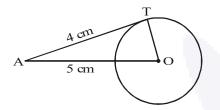
Q5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Sol. In figure, line ℓ is tangent to the circle at P. O is the centre of the circle. OP = radius of the circle.

If we have some points Q_1 , Q_2 , etc. on ℓ , then we find that OP is the shortest distance from O in comparison to the distances OQ_1 , OQ_2 , etc. Therefore, $OP \perp \ell$. Hence, the perpendicular OP drawn to the tangent line at P passes through the centre O of the circle.

Q6. The length of a tangent from a point A at a distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Class X Maths


VSaral

Sol. The tangent to a circle is perpendicular to the radius through the point of contact. $\therefore \angle OTA = 90^{\circ}$

Now, in the right $\triangle OTA$, we have :

 $OA^2 = OT^2 + AT^2$ [Pythagoras theorem]

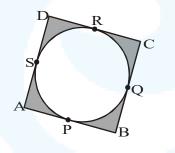
 $\Rightarrow 5^2 = OT^2 + 4^2$ \Rightarrow OT² = 5² - 4² \Rightarrow OT² = (5 - 4) (5 + 4) \Rightarrow OT² = 1 × 9 = 9 = 3² \Rightarrow OT = 3

Thus, the radius of the circle is 3 cm.

- Q7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
- Sol. In fig. the two concentric circles have their centre at O. The radius of the larger circle is 5 cm and that of the smaller circle is 3 cm.

AB is a chord of the larger circle and it touches the smaller circle at P.

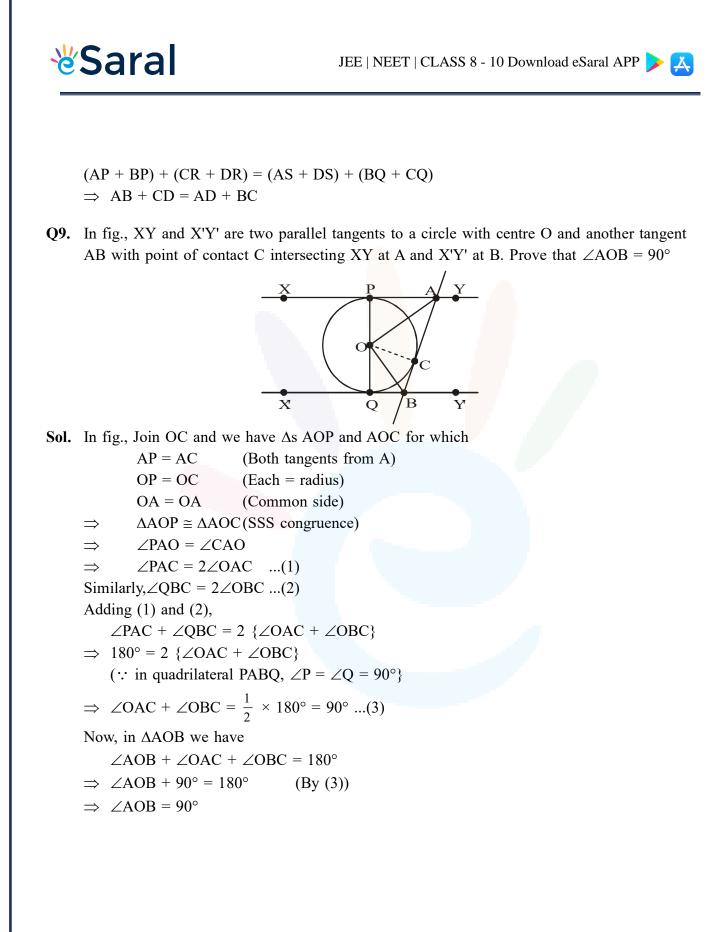
Join OA, OB and OP. Now, OA = OB = 5 cm,


OP = 3 cmand $OP \perp AB$,

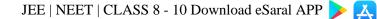
i.e., ∠OPA =

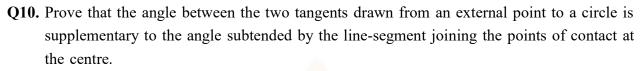
 $\angle OPB = 90^{\circ}$ $\Rightarrow \quad \Delta OAP \cong \Delta OBP \quad (RHS \text{ congruence})$ $\Rightarrow \quad AP = BP = \frac{1}{2} AB \text{ or } AB = 2 AP$ By Pythagoras theorem, $OA^{2} = AP^{2} + OP^{2}$ $\Rightarrow \quad (5)^{2} = AP^{2} + (3)^{2}$ $\Rightarrow \quad AP^{2} = 25 - 9 = 16$ $\Rightarrow \quad AP = 4 \text{ cm}$

- \Rightarrow AB = 2 × 4 cm = 8 cm
- **Q8.** A quadrilateral ABCD is drawn to circumscribe a circle (see fig.). Prove that AB + CD = AD + BC.

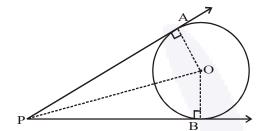

Sol. In fig., we observe that

 $AP = AS \dots(1)$


{:: AP and AS are tangents to the circle drawn from the point A} Similarly, BP = BQ ...(2) CR = CQ ...(3) DR = DS ...(4)


Adding (1), (2), (3), (4), we have

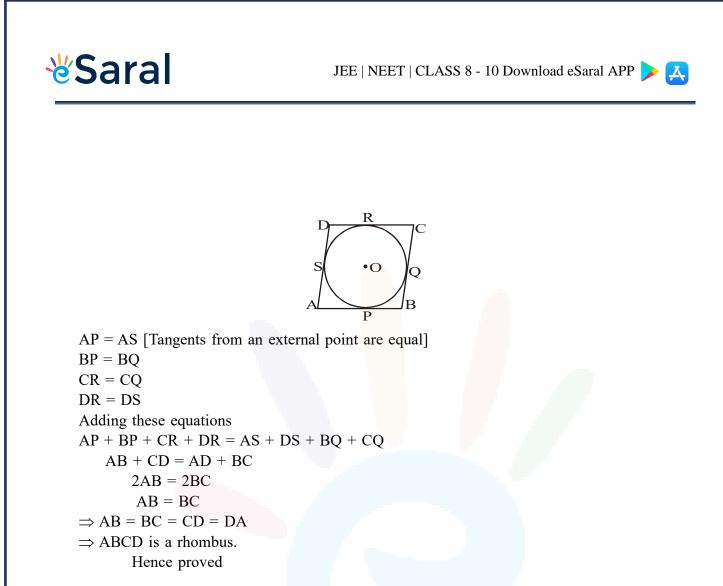
Class X Maths



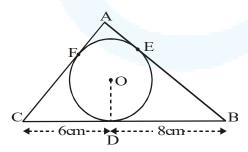
Class X Maths

Sol. Let PA and PB be two tangents drawn from an external point P to a circle with centre O.

*****Saral


Now, in right $\triangle OAP$ and right $\triangle OBP$, we have PA = PB [Tangents to circle from an external point] OA = OB [Radii of the same circle]

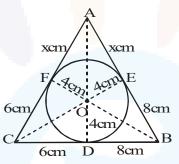
 $OP = OP \qquad [Common]$ $\Delta OAP \cong \Delta OBP \qquad [By SSS congruency]$ $\therefore \angle OPA = \angle OPB \qquad [By C.P.C.T.]$ and $\angle AOP = \angle BOP$ $\Rightarrow \angle APB = 2\angle OPA \text{ and } \angle AOB = 2\angle AOP$ $But \angle AOP = 90^{\circ} - \angle OPA$ $\Rightarrow 2\angle AOP = 180^{\circ} - 2\angle OPA$ $\Rightarrow \angle AOB = 180^{\circ} - \angle APB$ $\Rightarrow \angle AOB + \angle APB = 180^{\circ} (Proved)$


Q11. Prove that the parallelogram circumscribing a circle is a rhombus.

Sol. Let ABCD be a parallelogram such that its sides touch a circle with centre O.

Class X Maths

Q12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see fig.). Find the sides AB and AC.


Sol. In fig. BD = 8 cm and DC = 6 cm Then we have BE = 8 cm ($\because BE = BD$)

Class X Maths

and CF = 6 cm (:: CF = CD)

Suppose AE = AF = x cm In \triangle ABC, a = BC = 6 cm + 8 cm = 14 cm b = CA = (x + 6) cm, c = AB = (x + 8) cm s = $\frac{a+b+c}{2} = \frac{14 + (x+6) + (x+8)}{2}$ cm = $\frac{2x+28}{2}$ cm = (x + 14) cm

Area of $\triangle ABC$

 $=\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{(x+14) \times x \times 8 \times 6}$

 $= \sqrt{48 \, \mathrm{x} \times (\mathrm{x} + 14)} \, \mathrm{cm}^2 \qquad ...(1)$

Also, area of $\triangle ABC$ = area of $\triangle OBC$ + area of $\triangle OCA$ + area of $\triangle OAB$

Class X Maths