®

Class X : MATH
 Chapter 11 : Areas Related To Circles
 Questions \& Ansswers - Exercise : 11.1 - NCERT Book

Q1. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°.
Sol. Radius, $\mathrm{r}=6 \mathrm{~cm}$; sector angle, $\theta=60$ degrees
Area of the sector
$=\frac{\theta}{360} \times \pi \mathrm{r}^{2}=\frac{60}{360} \times \frac{22}{7} \times(6)^{2} \mathrm{~cm}^{2}$
$=\frac{1}{6} \times \frac{22}{7} \times(6)^{2} \mathrm{~cm}^{2}=\frac{132}{7} \mathrm{~cm}^{2}$

Q2. Find the area of a quadrant of a circle whose circumference is 22 cm .
Sol. Let radius of the circle $=r$
$\therefore 2 \pi r=22$
$\Rightarrow 2 \times \frac{22}{7} \times \mathrm{r}=22$
$\Rightarrow \mathrm{r}=22 \times \frac{7}{22} \times \frac{1}{2}=\frac{7}{2} \mathrm{~cm}$
Here, $\theta=90^{\circ}$
\therefore Area of the $\left(\frac{1}{4}\right)^{\text {th }}$ quadrant of the circle,
$=\frac{\theta}{360} \times \pi \mathrm{r}^{2}=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7}\left(\frac{7}{2}\right)^{2} \mathrm{~cm}^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \mathrm{~cm}^{2}=\frac{77}{8} \mathrm{~cm}^{2}$

Q3. The length of the minute hand of a clock is 14 cm . Find the area swept by the minute hand in 5 minutes.
Sol. We know that in 1 hour (i.e., 60 minutes), the minute hand rotates 360°.

In 5 minutes, minute hand will rotate
$=\frac{360^{\circ}}{60} \times 5=30^{\circ}$

Therefore, the area swept by the minute hand in 5 minutes will be the area of a sector of 30° in a circle of 14 cm radius.

Area of sector of angle $\theta=\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}$
Area of sector of $30^{\circ}=\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14$
$=\frac{22}{12} \times 2 \times 14=\frac{11 \times 14}{3}=\frac{154}{3} \mathrm{~cm}^{2}$
Therefore, the area swept by the minute hand in 5 minutes is $\frac{154}{3} \mathrm{~cm}^{2}$

Q4. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding: (i) minor segment (ii) major sector. (Use $\pi=3.14$)
Sol. Here, the radius of the circle is $\mathrm{r}=10 \mathrm{~cm}$.
Sector angle of the minor sector made corresponding to the chord AB is 90°

Now, the area of the minor sector $=\frac{90}{360} \times \pi \mathrm{r}^{2}$
$=\frac{1}{4} \times \pi \times(10)^{2} \mathrm{~cm}^{2}=\frac{1}{4} \times 3.14 \times 100 \mathrm{~cm}^{2}$
$=\frac{314}{4} \mathrm{~cm}^{2}=78.5 \mathrm{~cm}^{2}$
Then, the area of the minor segment
$=$ The area of the minor sector

- The area of the $\triangle \mathrm{OAB}$
$=78.5 \mathrm{~cm}^{2}-\frac{1}{2} \times \mathrm{OA} \times \mathrm{OB}\left(\because \angle \mathrm{AOB}=90^{\circ}\right)$
$=78.5 \mathrm{~cm}^{2}-\frac{1}{2} \times 10 \times 10 \mathrm{~cm}^{2}$
$=(78.5-50) \mathrm{cm}^{2}=28.5 \mathrm{~cm}^{2}$
The area of the major sector
$=\left(\frac{360-90}{360}\right) \times \pi \mathrm{r}^{2}=\frac{270}{360} \times 3.14 \times(10)^{2} \mathrm{~cm}^{2}$
$=\frac{3}{4} \times 314 \mathrm{~cm}^{2}=\frac{3 \times 157}{2} \mathrm{~cm}^{2}=235.5 \mathrm{~cm}^{2}$

Q5. In a circle of radius 21 cm , an arc subtends an angle of 60° at the centre. Find:
(i) the length of the arc
(ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord

Saral

Sol. Here, radius $=21 \mathrm{~cm}$ and $\theta=60^{\circ}$
(i) Circumference of the circle $=2 \pi \mathrm{r}$

$$
=2 \times \frac{22}{7} \times 21 \mathrm{~cm}=2 \times 22 \times 3 \mathrm{~cm}=132 \mathrm{~cm}
$$

\therefore Length of arc APB

$$
\begin{aligned}
& =\frac{\theta}{360^{\circ}} \times 2 \pi \mathrm{r}=\frac{60^{\circ}}{360^{\circ}} \times 132 \mathrm{~cm} \\
& =\frac{1}{6} \times 132 \mathrm{~cm}=22 \mathrm{~cm}
\end{aligned}
$$

(ii) Area of the sector with sector angle 60°
$=\frac{60^{\circ}}{360^{\circ}} \times \pi \mathrm{r}^{2}=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}$
$=11 \times 21 \mathrm{~cm}^{2}=231 \mathrm{~cm}^{2}$
(iii) Area of the segment $\mathrm{APB}=[$ Area of the sector AOB $]-[$ Area of $\triangle \mathrm{AOB}]$
.....(1)
In $\triangle A O B, O A=O B=21 \mathrm{~cm}$
$\therefore \quad \angle \mathrm{A}=\angle \mathrm{B}=60^{\circ} \quad\left[\because \angle \mathrm{O}=60^{\circ}\right]$
$\Rightarrow \mathrm{AOB}$ is an equilateral Δ.
$\therefore \mathrm{AB}=21 \mathrm{~cm}$
$\therefore \quad$ area of $\triangle \mathrm{AOB}=\frac{\sqrt{3}}{4}(\text { side })^{2}$

$$
\begin{equation*}
=\frac{\sqrt{3}}{4} \times 21 \times 21 \mathrm{~cm}^{2}=\frac{441 \sqrt{3}}{4} \mathrm{~cm}^{2} . \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\text { Area of segment }=\left[231 \mathrm{~cm}^{2}\right]-\left[\frac{441 \sqrt{3}}{4} \mathrm{~cm}^{2}\right]=\left(231-\frac{441 \sqrt{3}}{4}\right) \mathrm{cm}^{2}
$$

Q6. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use $\pi=3.14$ and $\sqrt{3}=1.73$)
Sol. Here, radius $(\mathrm{r})=15 \mathrm{~cm}$ and
Sector angle $(\theta)=60^{\circ}$
\therefore Area of the sector
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}=\frac{60^{\circ}}{360^{\circ}} \times \frac{314}{100} \times 15 \times 15 \mathrm{~cm}^{2}$

$$
=\frac{11775}{100} \mathrm{~cm}^{2}=117.75 \mathrm{~cm}^{2}
$$

Since $\angle O=60^{\circ}$ and $O A=O B=15 \mathrm{~cm}$
$\therefore \quad \mathrm{AOB}$ is an equilateral triangle.

$\Rightarrow \mathrm{AB}=15 \mathrm{~cm}$ and $\angle \mathrm{A}=60^{\circ}$
Draw $\mathrm{OM} \perp \mathrm{AB}$, in $\triangle \mathrm{AMO}$
$\therefore \quad \frac{\mathrm{OM}}{\mathrm{OA}}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \mathrm{OM}=\mathrm{OA} \times \frac{\sqrt{3}}{2}=\frac{15 \sqrt{3}}{2} \mathrm{~cm}$
Now, $\operatorname{ar}(\triangle \mathrm{AOB})=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OM}$
$=\frac{1}{2} \times 15 \times 15 \frac{\sqrt{3}}{2} \mathrm{~cm}^{2}=\frac{225 \sqrt{3}}{4} \mathrm{~cm}^{2}$
$=\frac{225 \times 1.73}{4} \mathrm{~cm}^{2}=97.3125$
Now area of the minor segment
$=($ Area of minor sector $)-($ ar $\triangle \mathrm{AOB})$
$=(117.75-97.3125) \mathrm{cm}^{2}=20.4375 \mathrm{~cm}^{2}$
Area of the major segment
$=[$ Area of the circle $]-$ Area of the minor segment $]$
$=\pi \mathrm{r}^{2}-20.4375 \mathrm{~cm}^{2}=\left[\frac{314}{100} \times 15^{2}\right]-20.4375 \mathrm{~cm}^{2}=706.5-20.4375 \mathrm{~cm}^{2}=686.0625 \mathrm{~cm}^{2}$

Q7. A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use $\pi=3.14$ and $\sqrt{3}=1.73$)
Sol. Here $\theta=120^{\circ}$ and $\mathrm{r}=12 \mathrm{~cm}$
$\therefore \quad$ Area of the sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
\begin{align*}
& =\frac{120}{360} \times \frac{314}{100} \times 12 \times 12 \mathrm{~cm}^{2} \\
& =\frac{314 \times 4 \times 12}{100} \mathrm{~cm}^{2}=\frac{15072}{100} \mathrm{~cm}^{2} \\
& =150.72 \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

Now, area of $\triangle \mathrm{AOB}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OM}$
.....(2) $[\because \mathrm{OM} \perp \mathrm{AB}]$
In $\triangle \mathrm{OAB}, \angle \mathrm{O}=120^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}-120^{\circ}=60^{\circ}$
$\because \quad \mathrm{OB}=\mathrm{OA}=12 \mathrm{~cm}$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=30^{\circ}$
So, $\frac{\mathrm{OM}}{\mathrm{OA}}=\sin 30^{\circ}=\frac{1}{2} \quad \Rightarrow \mathrm{OM}=\mathrm{OA} \times \frac{1}{2}$
$\Rightarrow \mathrm{OM}=12 \times \frac{1}{2}=6 \mathrm{~cm}$
and $\frac{\mathrm{AM}}{\mathrm{OA}}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \mathrm{AM}=\frac{\sqrt{3}}{2} \mathrm{OA}=\frac{\sqrt{3}}{2} \times 12=6 \sqrt{3} \mathrm{~cm}$
$\therefore \quad \mathrm{AB}=2(\mathrm{AM})=12 \sqrt{3} \mathrm{~cm}$.
Now, from (2),
Area of $\triangle \mathrm{AOB}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OM}$
$=\frac{1}{2} \times 12 \sqrt{3} \times 6 \mathrm{~cm}^{2}=36 \sqrt{3} \mathrm{~cm}^{2}$
$=36 \times 1.73 \mathrm{~cm}^{2}=62.28 \mathrm{~cm}^{2}$
From (1) and (3)
Area of the minor segment
$=[$ Area of sector $]-[$ Area of $\triangle \mathrm{AOB}]$
$=\left[150.72 \mathrm{~cm}^{2}\right]-\left[62.28 \mathrm{~cm}^{2}\right]=88.44 \mathrm{~cm}^{2}$

Saral

Q8. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope. Find

(i) the area of that part of the field in which the horse can graze.
(ii) the increase in the grazing area if the rope were

10 m long instead of 5 m . (Use $\pi=3.14$)
Sol. (i) $\mathrm{r}=5 \mathrm{~m}, \theta=90^{\circ}$
The required area (Grazing area for horse)
$=$ The sector area of the sector OAB
$=\frac{90}{360} \times \pi \mathrm{r}^{2}=\frac{1}{4} \times 3.14 \times(5)^{2} \mathrm{~m}^{2}$
$=\frac{1}{4} \times 78.50 \mathrm{~m}^{2}=19.625 \mathrm{~m}^{2}$

(ii) Now, the radius for the sector $\mathrm{OCD}=10 \mathrm{~m}$
and sector angle $=90^{\circ}$
The area of the sector OCD

$$
=\frac{90}{360} \times \pi \times(10)^{2} \mathrm{~m}^{2}=\frac{1}{4} \times 3.14 \times 100 \mathrm{~m}^{2}=78.5 \mathrm{~m}^{2}
$$

Therefore, the increase of grazing area

$$
\begin{aligned}
& =\text { The area of sector OCD } \\
& - \text { The area of sector OAB } \\
& =78.5 \mathrm{~m}^{2}-19.625 \mathrm{~m}^{2} \\
& =58.875 \mathrm{~m}^{2}
\end{aligned}
$$

Q9. A brooch is made with silver wire in the form of a circle with diameter 35 mm . The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in fig. Find:
(i) the total length of the silver wire required.
(ii) the area of each sector of the brooch.

Sol. Diameter of the circle $=35 \mathrm{~mm}$
\therefore Radius $(\mathrm{r})=\frac{35}{2} \mathrm{~mm}$
(i) Circumference $=2 \pi \mathrm{r}$
$=2 \times \frac{22}{7} \times \frac{35}{2} \mathrm{~mm}=22 \times 5=110 \mathrm{~mm}$
Length of 1 piece of wire used to make diameter to divide the circle into
10 equal sectors $=35 \mathrm{~mm}$
$\therefore \quad$ Length 5 pieces $=5 \times 35=175 \mathrm{~mm}$
\therefore Total length of the silver wire

$$
=110+175 \mathrm{~mm}=285 \mathrm{~mm}
$$

(ii) Since the circle is divided into 10 equal sectors,
\therefore Sector angle $\theta=\frac{360^{\circ}}{10}=36^{\circ}$
\Rightarrow Area of each sector
$=\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}=\frac{36^{\circ}}{360^{\circ}} \times \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \mathrm{~mm}^{2}$
$=\frac{11 \times 35}{4} \mathrm{~mm}^{2}=\frac{385}{4} \mathrm{~mm}^{2}$
Q10. An umbrella has 8 ribs which are equally spaced. Assuming umbrella to be a flat circle of radius 45 cm , find the area between the two consecutive ribs of the umbrella.

Sol. Here, radius $(r)=45 \mathrm{~cm}$
Since circle is divided in 8 equal parts,
\therefore Sector angle corresponding to each part

$$
\theta=\frac{360^{\circ}}{8}=45^{\circ}
$$

\Rightarrow Area of a sector (part)
$=\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}=\frac{45^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 45 \times 45 \mathrm{~cm}^{2}$
$=\frac{11 \times 45 \times 45}{4 \times 7} \mathrm{~cm}^{2}=\frac{22275}{28} \mathrm{~cm}^{2}$
\therefore The required area between the two ribs
$=\frac{22275}{28} \mathrm{~cm}^{2}$

Q11. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of 115°. Find the total area cleaned at each sweep of the blades.
Sol. Here, one blade of a wipe sweeps a sector area of a circle of radius 25 cm .
The sector angle $=115^{\circ}$
i.e., $r=25 \mathrm{~cm}$
and $\theta=115^{\circ}$
The area covered by one blade

$$
=\frac{115}{360} \times \pi \times(25)^{2} \mathrm{~cm}^{2}
$$

Then, the area covered by two blades

$$
\begin{aligned}
& =2 \times \frac{115}{360} \times \frac{22}{7} \times 625 \mathrm{~cm}^{2} \\
& =\frac{23}{18} \times \frac{11}{7} \times 625 \mathrm{~cm}^{2} \\
& =\frac{158125}{126} \mathrm{~cm}^{2}
\end{aligned}
$$

Q12. To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80° to a distance of 16.5 km . Find the area of the sea over which the ships are warned. (Use $\pi=3.14$)
Sol. Here, Radius $(\mathrm{r})=16.5 \mathrm{~km}$ and
Sector angle $(\theta)=80^{\circ}$
\therefore Area of the sea surface over which the ships are warned

$$
\begin{aligned}
& =\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}=\frac{80^{\circ}}{360^{\circ}} \times \frac{314}{100} \times \frac{165}{10} \times \frac{165}{10} \mathrm{~km}^{2} \\
& =\frac{157 \times 11 \times 11}{100} \mathrm{~km}^{2}=\frac{18997}{100} \mathrm{~km}^{2} \\
& =189.97 \mathrm{~km}^{2}
\end{aligned}
$$

Q13. A round table cover has six equal designs as shown in fig. If the radius of the cover is 28 cm , find the cost of making the designs at the rate of Rs 0.35 per cm2. (Use $\sqrt{3}=1.7$)

Sol. Here, $\mathrm{r}=28 \mathrm{~cm} . \theta=\frac{360^{\circ}}{6}=60^{\circ}$

In the figure $\triangle \mathrm{OAB}$ is equilateral having side 28 cm .
The area of one shaded designed portion
$=$ The area of the sector OAB

- The area of the $\triangle \mathrm{OAB}$
$=\left\{\frac{60}{360} \times \pi \times(28)^{2}-\frac{\sqrt{3}}{4} \times(28)^{2}\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1}{6} \times \frac{22}{7} \times 28 \times 28-\frac{1.7}{4} \times 28 \times 28\right\} \mathrm{cm}^{2}$
$=\left\{\frac{11}{3} \times 112-1.7 \times 196\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1232}{3}-333.2\right\} \mathrm{cm}^{2}$

The total area of six designed portions
$=6 \times\left\{\frac{1232}{3}-333.2\right\} \mathrm{cm}^{2}$
$=2464-1999.2 \mathrm{~cm}^{2}=464.8 \mathrm{~cm}^{2}$
The total cost of making the designs at the rate of Rs. 0.35 per cm ${ }^{2}$
$=$ Rs. $0.35 \times 464.8=$ Rs. 162.68 .

Q14. Tick the correct answer in the following :
Area of a sector of angle p (in degree) of a circle with radius R is.
(A) $\frac{\mathrm{p}}{180} \times 2 \pi \mathrm{R}$
(B) $\frac{\mathrm{p}}{180} \times \pi \mathrm{R}^{2}$
(C) $\frac{\mathrm{p}}{360} \times 2 \pi R$
(D) $\frac{\mathrm{p}}{720} \times 2 \pi \mathrm{R}^{2}$

Sol. (D) Here, radius (r) $=\mathrm{R}$
Angle of sector $(\theta)=\mathrm{p}^{\circ}$
\therefore Area of the sector

$$
\begin{aligned}
& =\frac{\theta}{360} \times \pi r^{2}=\frac{\mathrm{p}}{360^{\circ}} \times \pi \mathrm{R}^{2} \\
& =\frac{2}{2} \times\left(\frac{\mathrm{p}}{360^{\circ}} \times \pi r^{2}\right)=\frac{\mathrm{p}}{720^{\circ}} \times 2 \pi \mathrm{R}^{2}
\end{aligned}
$$

