Class X : Math Chapter 12 : Surface Area and Volumes Questions \& Answers - Ex : 12.1-NCERT Book

NOTE: Unless stated otherwise, take $\pi=\frac{22}{7}$
Q1. 2 cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.
Sol. Let $\ell \mathrm{cm}$ be the length of an edge of the cube having volume $=64 \mathrm{~cm}^{3}$.
Then, $\ell^{3}=64=(4)^{3} \Rightarrow \ell=4 \mathrm{~cm}$
Now, the dimensions of the resulting cuboid made by joining two cubes (see figure) are
$8 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ (i.e., length $=8 \mathrm{~cm}$,
breadth $=4 \mathrm{~cm}$ and height $=4 \mathrm{~cm}$)

Surface area of cuboid $=2(\ell b+b h+h \ell)$

$$
\begin{aligned}
& =2(8 \times 4+4 \times 4+4 \times 8) \\
& =2(32+16+32)=2 \times 80=160 \mathrm{~cm}^{2}
\end{aligned}
$$

Q2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm . Find the inner surface area of the vessel.

Sol. For hemispherical part, radius $(\mathrm{r})=\frac{14}{2}=7 \mathrm{~cm}$
$\therefore \quad$ Curved surface area $=2 \pi r^{2}$

$=2 \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=308 \mathrm{~cm}^{2}$
Total height of vessel $=13 \mathrm{~cm}$
\therefore Height of cylinder $=(13-7) \mathrm{cm}=6 \mathrm{~cm}$ and radius $(\mathrm{r})=7 \mathrm{~cm}$
$\therefore \quad$ Curved surface area of cylinder $=2 \pi \mathrm{rh}$

$$
=2 \times \frac{22}{7} \times 7 \times 6 \mathrm{~cm}^{2}=264 \mathrm{~cm}^{2}
$$

\therefore Inner surface area of vessel $=$ Curved surface area of hemispherical part + Curved surface area of cylinder
$=(308+264) \mathrm{cm}^{2}=572 \mathrm{~cm}^{2}$
Q3. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . find the total surface area of the toy.
Sol. Let r and h be the radius of cone, hemisphere and height of cone
$\therefore \mathrm{h}=(15.5-3.5) \mathrm{cm}$
$=12.0 \mathrm{~cm}$
Also $\ell^{2}=h^{2}+\mathrm{r}^{2}$
$=12^{2}+(3.5)^{\frac{12.0 ~}{2}} \mathrm{~cm}$
$=156.25$
$\therefore \ell=12.5 \mathrm{~cm}$
Curved surface area of the conical part $=\pi r \ell$

Curved surface area of
the hemispherical part $=2 \pi \mathrm{r}^{2}$
Total surface area of the toy $=\pi r \ell+2 \pi r^{2}$

$$
\begin{aligned}
& =\pi \mathrm{r}(\ell+2 \mathrm{r}) \\
& =\frac{22}{7} \times \frac{35}{10}(12.5+2 \times 3.5) \mathrm{cm}^{2} \\
& =11 \times(12.5+7) \mathrm{cm}^{2}=11 \times 19.5 \mathrm{~cm}^{2} \\
& =214.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Q4. A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid.
Sol. On $7 \mathrm{~cm} \times 7 \mathrm{~cm}$ base of the cubical block, we can mount hemisphere having greatest diameter equal to 7 cm .
Here, the radius of the hemisphere $=3.5 \mathrm{~cm}$.
Now, the surface area of the solid made in figure.
$=$ The surface area of the cube + The curved surface area of the hemisphere - The area of the base of the hemisphere.
$=\left\{6 \times(7)^{2}+2 \pi \times(3.5)^{2}-\pi \times(3.5)^{2}\right\} \mathrm{cm}^{2}$
(\because the part of the top of the cubical part which is covered by the hemisphere is not visible outside)
$=\left\{6 \times 49+\frac{22}{7} \times \frac{35}{10} \times \frac{35}{10}\right\} \mathrm{cm}^{2}$

Q5. A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter ℓ of the hemisphere is equal to the edge of the cube. Determine the surface area of
the remaining solid.
Sol. Let ℓ be the side of the cube.
\therefore The greatest diameter of the hemisphere $=\ell$
\Rightarrow Radius of the hemisphere $=\frac{\ell}{2}$
\therefore Surface area of hemisphere $=2 \pi \mathrm{r}^{2}$
$=2 \times \pi \times \frac{\ell}{2} \times \frac{\ell}{2}=\frac{\pi \ell^{2}}{2}$

Base area of the hemisphere $=\pi\left(\frac{\ell}{2}\right)^{2}=\frac{\pi \ell^{2}}{4}$
Surface area of the cube $=6 \times \ell^{2}=6 \ell^{2}$
\therefore Surface area of the remaining solid
$=6 \ell^{2}+\frac{\pi \ell^{2}}{2}-\frac{\pi \ell^{2}}{4}=\frac{24 \ell^{2}+2 \pi \ell^{2}-\pi \ell^{2}}{4}=\frac{24 \ell^{2}+\pi \ell^{2}}{4}$
$=\frac{\ell^{2}}{4}(24+\pi)$ sq. units.
Q6. A medicine capsule is in the shape of a cylinder with two hemispheres struck to each of its ends (see figure). The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm . Find its surface area.

Sol. Surface area of the cylindrical part $=2 \pi \times r \times h$

$=2 \pi \times\left(\frac{5}{2}\right) \times 9 \mathrm{~mm}^{2}=45 \pi \mathrm{~mm}^{2}$
Sum of the curved surface areas of two hemispherical parts.

$$
=2\left\{2 \pi \times\left(\frac{5}{2}\right)^{2}\right\} \mathrm{mm}^{2}=25 \pi \mathrm{~mm}^{2}
$$

Total surface area of the capsule

$$
\begin{aligned}
& =45 \pi+25 \pi \mathrm{~mm}^{2}=70 \pi \mathrm{~mm}^{2} \\
& =70 \times \frac{22}{7} \mathrm{~mm}^{2}=220 \mathrm{~mm}^{2}
\end{aligned}
$$

7. A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m , find the area of the canvas used for making the tent. Also find the cost of the canvas of the tent at the rate of Rs. 500 per m^{2} (Note that the base of the tent will not be covered with canvas).
Sol. Radius of the cylindrical base $=2 \mathrm{~m}$ and
height $=2.1 \mathrm{~m}$. The curved surface area of the cylindrical part

$$
\begin{aligned}
& =2 \pi \times(2) \times(2.1) \mathrm{m}^{2}(\text { i.e., } 2 \pi \mathrm{rh}) \\
& =4 \times \frac{22}{7} \times 2.1 \mathrm{~m}^{2} \\
& =26.4 \mathrm{~m}^{2}
\end{aligned}
$$

Now, for the conical part, we have $\mathrm{r}=2 \mathrm{~m}$ and
$\ell($ slant height $)=2.8 \mathrm{~m}$

The curved surface area of the conical part $=\pi r \ell$

$$
\begin{aligned}
& =\frac{22}{7} \times 2 \times 2.8 \mathrm{~m}^{2} \\
& =17.6 \mathrm{~m}^{2}
\end{aligned}
$$

Then the area of the canvas

$$
=26.4 \mathrm{~m}^{2}+17.6 \mathrm{~m}^{2}=44 \mathrm{~m}^{2}
$$

Total cost of the canvas at the rate of Rs. 500 per m ${ }^{2}$

$$
=\text { Rs. } 500 \times 44=\text { Rs. } 22000
$$

8. From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm^{2}.
Sol. For cylinder part :
Height $=2.4 \mathrm{~cm}$ and diameter $=1.4 \mathrm{~cm}$
\Rightarrow Radius (r) $=0.7 \mathrm{~cm}$
\therefore Total surface area of the cylindrical part

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{7}{10}[2.4+0.7] \mathrm{cm}^{2} \\
& =\frac{44}{10} \times 3.1 \mathrm{~cm}^{2}=\frac{44 \times 31}{100}=\frac{1364}{100} \mathrm{~cm}^{2}
\end{aligned}
$$

For conical part :
Base radius $(\mathrm{r})=0.7 \mathrm{~cm}$ and height $(\mathrm{h})=2.4 \mathrm{~cm}$
\therefore Slant height $(\ell)=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}=\sqrt{(0.7)^{2}+(2.4)^{2}}$

$$
=\sqrt{0.49+5.76}=\sqrt{6.25}=2.5 \mathrm{~cm}
$$

\therefore Curved surface area of the conical part
$=\pi \mathrm{r} \ell=\frac{22}{7} \times 0.7 \times 2.5 \mathrm{~cm}^{2}=\frac{550}{100} \mathrm{~cm}^{2}$
Base area of the conical part
$\pi \mathrm{r}^{2}=\frac{22}{7} \times\left(\frac{7}{10}\right)^{2} \mathrm{~cm}^{2}=\frac{22 \times 7}{100} \mathrm{~cm}^{2}=\frac{154}{100} \mathrm{~cm}^{2}$
Total surface area of the remaining solid
$=[($ Total surface area of cylinderical part $)+($ Curved surface area of conical part $)-($ Base area
of the conical part) $]=\left[\frac{1364}{100}+\frac{550}{100}-\frac{154}{100}\right] \mathrm{cm}^{2}$
$=\frac{1760}{100} \mathrm{~cm}^{2}=17.6 \mathrm{~cm}^{2}$.
Hence, total surface area to the nearest cm^{2} is $18 \mathrm{~cm}^{2}$.
9. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in fig. If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.

Sol. Radius of the cylinder (r) $=3.5 \mathrm{~cm}$
Height of the cylinder $(\mathrm{h})=10 \mathrm{~cm}$
\therefore Curved surface area of cylinder $=2 \pi \mathrm{rh}$
$=2 \times \frac{22}{7} \times \frac{35}{10} \times 10 \mathrm{~cm}^{2}=220 \mathrm{~cm}^{2}$
Curved surface area of a hemisphere $=2 \pi r^{2}$
\therefore Curved surface area of both hemispheres
$=2 \times 2 \pi \mathrm{r}^{2}=4 \pi \mathrm{r}^{2}=4 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Total surface area of the remaining solid $=(220+154) \mathrm{cm}^{2}=374 \mathrm{~cm}^{2}$.

