Class X : MATH

Chapter 13 : Statistics

Questions \& Answers - Exercise : 13.1-NCERT Book

Q1. A survery was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

Number of Plants	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Number of houses	1	2	1	5	6	2	3

Which method did you use for finding the mean, and why?
Sol. Let us find mean of the data by direct method because the figures are small.

(Number of plants) Class	Number of houses) Frequency (f)	Class marks (x_{i})	$\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}$
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	5	7	35
$8-10$	6	9	54
$10-12$	2	11	22
$12-14$	3	13	39
Total	$\mathrm{n}=20$		162

We have, $\mathrm{n}=\Sigma \mathrm{f}_{\mathrm{i}}=20$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=162$.
Then mean of the data is

$$
\overline{\mathrm{x}}=\frac{1}{\mathrm{n}} \times \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{20} \times 162=8.1
$$

Hence, the required mean of the data is 8.1 plants.

Q2. Consider the following distribution of daily wages of 50 workers of a factory.

Daily wages (in Rs.)	Number of workers
$100-120$	12
$120-140$	14
$140-160$	8
$160-180$	6
$180-200$	10

Find the mean daily wages of the workers of the factory by using an appropriate method.

Sol.

Daily wages (In Rs.)	No. of workers $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$100-120$	12	110	1320
$120-140$	14	130	1820
$140-160$	8	150	1200
$160-180$	6	170	1020
$180-200$	10	190	1900
Total	$\mathbf{n}=\mathbf{5 0}$		$\mathbf{7 2 6 0}$

We have $\Sigma \mathrm{f}_{\mathrm{i}}=50$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=7260$
Mean $=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{7260}{50}=145.2$

Q3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs. 18. Find the missing frequency f.

Daily pocket Allowance (in Rs.)	Number of children
$11-13$	7
$13-15$	6
$15-17$	9
$17-19$	13
$19-21$	f
$21-23$	5
$23-25$	4

Sol. We may prepare the table as given below :

Daily pocket allowance (in Rs.)	Number of children (f.)	Class mark (x.)	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-18$	$\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}$
$11-13$	7	12	-6	-42
$13-15$	6	14	-4	-24
$15-17$	9	16	-2	-18
$17-19$	13	20	2	2 a
$19-21$	5	22	4	20
$21-23$	4	24	6	24
$23-25$	$5 \mathrm{f}_{\mathrm{i}}=44+\mathrm{f}$			$2 \mathrm{f}-40$

It is given that mean $=18$.
From the table, we have

$$
\mathrm{a}=18, \mathrm{n}=44+\mathrm{f} \text { and } \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}=2 \mathrm{f}-40
$$

Now, \quad mean $=\mathrm{a}+\frac{1}{\mathrm{n}} \times \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$
Then substituting the values as given above, we have

$$
\begin{aligned}
& 18=18+\frac{1}{(44+\mathrm{f})} \times(2 \mathrm{f}-40) \\
& \Rightarrow \quad 0=\frac{2 \mathrm{f}-40}{44+\mathrm{f}} \Rightarrow \mathrm{f}=20
\end{aligned}
$$

Q4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarised as follows. Find the mean heart beats per minute for
these women, choosing a suitable method.

Number of heart beats per minute	Number of women
$65-68$	2
$68-71$	4
$71-74$	3
$74-77$	8
$77-80$	7
$80-83$	4
$83-86$	2

Sol.

No. of heart beats per min	No. of women $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$65-68$	2	66.5	133
$68-71$	4	69.5	278
$71-74$	3	72.5	217.5
$74-77$	8	75.5	604
$77-80$	7	78.5	549.5
$80-83$	4	81.5	326
$83-86$	2	84.5	169
Total	$\mathbf{n}=\mathbf{3 0}$		$\mathbf{2 2 7 7}$

Mean $=\frac{\sum f_{\mathrm{f}_{\mathrm{i}}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{2277}{30}=75.9$.

Q5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.

No. of mangoes	$50-52$	$53-55$	$56-58$	$59-61$	$62-64$
No. of boxes	15	110	135	115	25

Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?

Sol.

Number of mangoes	Number of boxes f_{i}	Class mark x_{i}	$\mathbf{u}_{i}=\frac{x_{i}-57}{3}$	$\mathrm{f}_{\mathrm{i}} \times \mathbf{u}_{i}$
$50-52$	15	51	-2	-30
$53-55$	110	54	-1	-110
$56-58$	135	57	0	0
$59-61$	115	60	1	115
$62-64$	25	63	2	50
Total	$\mathrm{n}=400$			25

$\mathrm{a}=57, \mathrm{~h}=2, \mathrm{n}=400$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=25$.
By step deviation method,
Mean $=\mathrm{a}+\mathrm{h} \times \frac{1}{\mathrm{n}} \times \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=57+2 \times \frac{1}{400} \times 25=57.19$

Q6. The table below shows the daily expenditure on food of 25 households in a locality.

Daily expenditure (in Rs.)	No. of households
$100-150$	4
$150-200$	5
$200-250$	12
$250-300$	2
$300-350$	2

Find the mean daily expenditure on food by a suitable method.

Sol.

Daily Exp. (in Rs.)	No. of house holds $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$100-150$	4	125	500
$150-200$	5	175	875
$200-250$	12	225	2700
$250-300$	2	275	550
$300-350$	2	325	650
Total	$\mathbf{2 5}$		$\mathbf{5 2 7 5}$

Mean $=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{5275}{25}=211$
Q7. To find out the concentration of SO_{2} in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below :

Concentration of $\mathrm{SO}_{2}($ in ppm$)$	Frequency
$0.00-0.04$	4
$0.04-0.08$	9
$0.08-0.12$	9
$0.12-0.16$	2
$0.16-0.20$	4
$0.20-0.24$	2

Find the mean concentration of SO_{2} in the air.

Sol.

Concentration of SO $\mathbf{2}$ (in $\mathbf{p p m})$	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$0-0.04$	4	0.02	0.08
$0.04-0.08$	9	0.06	0.54
$0.08-0.12$	9	0.10	0.90
$0.12-0.16$	2	0.14	0.28
$0.16-0.20$	4	0.18	0.72
$0.20-0.24$	2	0.22	0.44
Total	$\mathbf{3 0}$		$\mathbf{2 . 9 6}$

Mean $=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{2.96}{30}=0.098$.
Q8. A class teacher has the following absentee record of 40 students of a class for the whole term.
Find the mean number of days a student was absent.

No. of days	$0-6$	$6-10$	$10-14$	$14-20$	$20-28$	$28-38$	$38-40$
No. of students	11	10	7	4	4	3	1

Sol.

No. of days	No. of students $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathbf{i}}}$
$0-6$	11	3	33
$6-10$	10	8	80
$10-14$	7	12	84
$14-20$	4	17	68
$20-28$	4	24	96
$28-38$	3	33	99
$38-40$	1	39	39
Total	$\mathbf{4 0}$		$\mathbf{4 9 9}$

Mean $=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{499}{40}=12.475$

Q9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.

Literacy rate (in \%)	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
No. of cities	3	10	11	8	3

Sol.

Literacy rate (in \%)	No. of cities $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathbf{i}}}$
$45-55$	3	50	150
$55-65$	10	60	600
$65-75$	11	70	770
$75-85$	8	80	640
$85-95$	3	90	270
Total	$\mathbf{3 5}$		$\mathbf{2 4 3 0}$

$$
\text { Mean }=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{2430}{35}=69.43
$$

