Class X : MATH
Chapter 13 : Statistics
Questions \& Answers - Exercise : 13.3-NCERT Book

Q1. The following frequency distribution gives the monthly consumption of electricity of 68 con sumers of a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption (in units)	Number of consumers
$65-85$	4
$85-105$	5
$105-125$	13
$125-145$	20
$145-165$	14
$165-185$	8
$185-205$	4

Sol.(i)

Monthly consumption (in units)	Number of consumers f_{i}	Cumulative frequency
$65-85$	4	4
$85-105$	5	9
$105-125$	13	22
$125-145$	20	42
$145-165$	14	56
$165-185$	8	64
$185-205$	4	68
Total	$\mathrm{n}=68$	

$\mathrm{n}=68$ gives $\frac{\mathrm{n}}{2}=34$
So, we have the median class (125-145)
$\ell=125, \mathrm{n}=68, \mathrm{f}=20, \mathrm{cf}=22, \mathrm{~h}=20$

$$
\begin{aligned}
& \text { Median }=\ell+\left\{\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right\} \times \mathrm{h} \\
& \quad=125+\left\{\frac{34-22}{20}\right\} \times 20=137 \text { units. }
\end{aligned}
$$

(ii) Modal class is (125-145) having maximum frequency $\mathrm{f}_{\mathrm{m}}=20, \mathrm{f}_{1}=13, \mathrm{f}_{2}=14, \ell=$ 125 and $\mathrm{h}=20$

$$
\begin{aligned}
& \text { Mode }=\ell+\left\{\frac{\mathrm{f}_{\mathrm{m}}-\mathrm{f}_{\mathrm{i}}}{2 \mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}-\mathrm{f}_{2}}\right\} \times \mathrm{h} \\
& =125+\left\{\frac{20-13}{40-13-14}\right\} \times 20=125+\frac{7 \times 20}{13} \\
& =125+\frac{140}{13}=125+10.76=135.76 \text { units }
\end{aligned}
$$

(iii) $\mathrm{n}=68, \mathrm{a}=135, \mathrm{~h}=20$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=7$

Mbnthly consumption (in units)	Number of consumers f_{i}	Class mark x_{i}	$u_{1}=\frac{x_{i}-135}{20}$	$f_{i} \times u_{i}$
$65-85$	4	75	-3	-12
$85-105$	5	95	-2	-10
$105-125$	13	115	-1	-13
$125-145$	20	$135=\mathrm{a}$	0	0
$145-165$	14	155	1	14
$165-185$	8	175	2	16
$185-205$	4	195	3	12
Total	$\mathrm{n}=68$			7

$\mathrm{n}=68, \mathrm{a}=135, \mathrm{~h}=20$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=7$
By step-deviation method.
Mean $=\mathrm{a}+\mathrm{h} \times \frac{1}{\mathrm{n}} \times \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=135+20 \times \frac{1}{68} \times 7$
$=135+\frac{35}{17}=135+2.05=137.05$ units
Q2. If the median of the distribution given below is 28.5 , find the values of x and y .

C lass interval	Frequency	Cumulative frequency
$0-10$	5	5
$10-20$	x	$5+\mathrm{x}$
$20-30$	20	$25+\mathrm{x}$
$30-40$	15	$40+\mathrm{x}$
$40-50$	y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$45+\mathrm{x}+\mathrm{y}$
Total	60	

Sol. Median $=28.5$ lies in the class-interval (20-30).
Then median class is $(20-30)$.
So, we have $\ell=20, \mathrm{f}=20, \mathrm{cf}=5+\mathrm{x}, \mathrm{h}=10, \mathrm{n}=60$

$$
\begin{aligned}
& \text { Median }=\ell+\left\{\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right\} \times \mathrm{h}=28.528 .5=20+\left\{\frac{30-(5+\mathrm{x})}{20}\right\} \times 10 \\
& \Rightarrow 8.5=\frac{25-\mathrm{x}}{2} \Rightarrow 17=25-\mathrm{x} \Rightarrow \mathrm{x}=8
\end{aligned}
$$

Find the given table, we have

$$
\begin{aligned}
& \text { i.e., } x+y+45=60 \text { or } x+y=15 \\
& \Rightarrow y=15-x=15-8=7, \quad \text { i.e., } y=7
\end{aligned}
$$

Q3. A life insurance agent found the following data for distribution of ages of 100 policy
holders. Calculate the median age, if policies are only given to persons having age 18 years onwards but less than 60 year.

Age (in years)	No. of policy holders
Be low 20	2
Be low 25	6
Be low 30	24
Be low 35	45
Be low 40	78
Be low 45	89
Be low 50	92
Be low 55	98
Be low 60	100

Sol.

Age (in years)	Number of policy holders f_{i}	Cumulative frequency
Below 20 $20-25$	$2=2$	2
$25-30$	$(6-2)=4$	6
$(24-6)=18$	24	
$30-35$	$(45-24)=21$	45
$35-40$	$(78-45)=33$	78
$40-45$	$(89-78)=11$	89
$45-50$	$(92-89)=3$	92
$50-55$	$(98-92)=6$	98
$55-60$	$(100-98)=2$	100
Total	$\mathrm{n}=100$	

Here, $\ell=35, \mathrm{n}=100, \mathrm{f}=33, \mathrm{cf}=45, \mathrm{~h}=5$

$$
\begin{aligned}
\text { Median } & =\quad \ell+\left\{\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right\} \times \mathrm{h} \\
& =35+\left\{\frac{50-45}{33}\right\} \times 5 \\
& =35+\frac{25}{33} \\
& =35+0.76 \\
& =35.76 \text { years. }
\end{aligned}
$$

Q4.

Length (in mm)	No. of leaves
$118-126$	3
$127-135$	5
$136-144$	9
$145-153$	12
$154-162$	5
$163-171$	4
$172-180$	2

The length of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table. Find the median length of the leaves.
Sol. The given series is in inclusive form. We may prepare the table in exclusive form and prepare the cumulative frequency table as given below :

Length (in mm)	No. of leaves (f_{i}	Cumulative frequency
$117.5-126.5$	3	3
$126.5-135.5$	5	8
$135.5-144.5$	9	17
$144.5-153.5$	12	29
$153.5-162.5$	5	34
$162.5-171.5$	4	38
$171.5-180.5$	2	40
	$\mathrm{~N}=40$	

Here, $\mathrm{N}=40$
$\therefore \quad \frac{\mathrm{N}}{2}=20$
The cumulative frequency just greater than 20 is 29 and the corresponding class is 144.5153.5.

So, the median class is 144.5-153.5.
$\therefore \quad \ell=144.5, \mathrm{~N}=40, \mathrm{C}=17, \mathrm{f}=12$ and $\mathrm{h}=9$

Therefore, median $=\ell+\left\{\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{\mathrm{f}}\right\} \times \mathrm{h}$
$=144.5+\frac{(20-17)}{12} \times 9=144.5+\frac{3 \times 9}{12}$
$=144.5+2.25=146.75$
Hence, median length of leaves is 146.75 mm .

Q5. The following table gives the distribution of the life time of 400 neon lamps :

Life Time (in hours)	No. of lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	85
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

Find the median life time of a lamp.
Sol.

Life time (in hrs.)	No. of lamps $\left(\mathbf{f}_{\mathbf{i}}\right)$	Cf
$1500-2000$	14	14
$2000-2500$	56	70
$2500-3000$	60	130
$3000-3500$	85	215
$3500-4000$	74	289
$4000-4500$	62	351
$4500-5000$	48	399

$\frac{\mathrm{N}}{2}=\frac{399}{2}=199.5$
Median class $=3000-3500$
Median $=\ell+\left\{\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{\mathrm{f}}\right\} \times \mathrm{h}$

$$
=3000+\left\{\frac{199.5-130}{85}\right\} \times 500=3408.82
$$

Hence, median life time of a lamp 3408.82 hrs.

Q6. 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:

No. of letters	No. of Surnames
$1-4$	6
$4-7$	30
$7-10$	40
$10-13$	16
$13-16$	4
$16-19$	4

Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.

Sol.

Number of letters	Number of surnames f_{i}	Cumulative frequency
class $1-4$ $4-7$ $7-10$ $10-13$ $13-16$	30	$6=6$
$16-19$	40	$36+40=76=36$
4	4	$76+16=92$ $92+4=96$ $96+4=100$
Total	$\mathrm{n}=100$	

(i) Here,

$$
\begin{aligned}
& \ell=7, \mathrm{n}=100, \mathrm{f}=40, \mathrm{cf}=36, \mathrm{~h}=3 \\
& \text { Median }=\ell+\left\{\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right\} \times \mathrm{h} \\
& =7+\left\{\frac{50-36}{40}\right\} \times 3=7+\frac{21}{20}=8.05
\end{aligned}
$$

(ii) Modal class is $(7-10)$.

$$
\begin{aligned}
& \ell=7, \mathrm{f}_{\mathrm{m}}=40, \mathrm{f}_{1}=30, \mathrm{f}_{2}=16, \mathrm{~h}=3 \\
& \text { Mode }=\ell+\left\{\frac{\mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}}{2 \mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}-\mathrm{f}_{2}}\right\} \times \mathrm{h} \\
& =7+\left\{\frac{40-30}{80-30-16}\right\} \times 3=7+\frac{30}{34}=7.88
\end{aligned}
$$

(iii) Here, $\mathrm{a}=8.5, \mathrm{~h}=3, \mathrm{n}=100$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-6$.

Number of letters	f_{i}	Class mark x_{i}	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-8.5}{3}$	$\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}$
$1-4$	6	2.5	-2	-12
$4-7$	30	5.5	-1	-30
$7-10$	40	$8.5=\mathrm{a}$	0	0
$10-13$	16	11.5	1	16
$13-16$	4	14.5	2	8
$16-19$	4	17.5	3	12
Total	$\mathrm{n}=100$			-6

Mean $=\mathrm{a}+\mathrm{h} \times \frac{1}{\mathrm{n}} \times \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=8.5+3 \times \frac{1}{100} \times(-6)=8.5-\frac{18}{100}=8.5-0.18=8.32$

Q7. The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

Weight (in kg)	No. of students
$40-45$	2
$45-50$	3
$50-55$	8
$55-60$	6
$60-65$	6
$65-70$	3
$70-75$	2

Sol.

Weight (in kg)	No. of students	Cumulative frequency
$40-45$	2	2
$45-50$	3	5
$50-55$	8	13
$55-60$	6	19
$60-65$	6	25
$65-70$	3	28
$70-75$	2	30

$$
\frac{\mathrm{N}}{2}=\frac{30}{2}=15
$$

Median class $=55-60$

$$
\begin{aligned}
& \text { Median }=\ell+\left\{\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{\mathrm{f}}\right\} \times \mathrm{h} \\
& =55+\left\{\frac{15-13}{6}\right\} \times 5 \\
& =56.67
\end{aligned}
$$

Q1. The following frequency distribution gives the monthly consumption of electricity of 68 con sumers of a locality. Find the median, mean and mode of the data and compare them.

