CLASS VIII: Maths

Chapter 3: Understanding Quadrilaterals

Questions and Solutions | Exercise 3.2 - NCERT Books

Question 1.

Find x in the following figures.

Answer :
We know that the sum of all exterior angles of any polygon is 360°.
(a) $125^{\circ}+125^{\circ}+x=360^{\circ}$
$250^{\circ}+x=360^{\circ}$
$x=110^{\circ}$
(b)

$60^{\circ}+90^{\circ}+70^{\circ}+x+90^{\circ}=360^{\circ}$
$310^{\circ}+x=360^{\circ}$
$x=50^{\circ}$

Q2 :

Find the measure of each exterior angle of a regular polygon of
(i) 9 sides
(ii) $\mathbf{1 5}$ sides

Answer :
(i) Sum of all exterior angles of the given polygon $=360^{\circ}$

Each exterior angle of a regular polygon has the same measure.
Thus, measure of each exterior angle of a regular polygon of 9 sides
$=\frac{360^{\circ}}{9}=40^{\circ}$
(ii) Sum of all exterior angles of the given polygon $=360^{\circ}$

Each exterior angle of a regular polygon has the same measure.
Thus, measure of each exterior angle of a regular polygon of 15 sides
$=\frac{360^{\circ}}{15}=24^{\circ}$

Q3 :
How many sides does a regular polygon have if the measure of an exterior angle is $\mathbf{2 4}{ }^{\circ}$

Answer :
 Sum of all exterior angles of the given polygon $=360^{\circ}$

Measure of each exterior angle $=24^{\circ}$
Thus, number of sides of the regular polygon $=\frac{360^{\circ}}{24^{\circ}}=15$

Q4 :

How many sides does a regular polygon have if each of its interior angles is 165°

Answer :

Measure of each interior angle $=165^{\circ}$
Measure of each exterior angle $=180^{\circ}-165^{\circ}=15^{\circ}$
The sum of all exterior angles of any polygon is 360°.
Thus, number of sides of the polygon $=\frac{360^{\circ}}{15^{\circ}}=24$

Q5 :
(a) Is it possible to have a regular polygon with measure of each exterior angle as $\mathbf{2 2 ^ { \circ }}$
(b) Can it be an interior angle of a regular polygon Why

Answer :

The sum of all exterior angles of all polygons is 360°. Also, in a regular polygon, each exterior angle is of the same measure. Hence, if 360° is a perfect multiple of the given exterior angle, then the given polygon will be possible.
(a) Exterior angle $=22^{\circ}$
360° is not a perfect multiple of 22°. Hence, such polygon is not possible.
(b) Interior angle $=22^{\circ}$

Exterior angle $=180^{\circ}-22^{\circ}=158^{\circ}$

Such a polygon is not possible as 360° is not a perfect multiple of 158°.

Q6:
(a) What is the minimum interior angle possible for a regular polygon
(b) What is the maximum exterior angle possible for a regular polygon

Answer :

Consider a regular polygon having the lowest possible number of sides (i.e., an equilateral triangle). The exterior angle of this triangle will be the maximum exterior angle possible for any regular polygon.

Exterior angle of an equilateral triangle $=\frac{360^{\circ}}{3}=120^{\circ}$
Hence, maximum possible measure of exterior angle for any polygon is 120°. Also, we know that an exterior angle and an interior angle are always in a linear pair.

Hence, minimum interior angle $=180^{\circ}-120^{\circ}=60^{\circ}$

