CLASS VIII: Maths

Chapter 3: Understanding Quadrilaterals

Questions and Solutions | Exercise 3.3 - NCERT Books

Q1:

Given a parallelogram ABCD. Complete each statement along with the definition or property used.

(i) $\mathrm{AD}=\ldots$
(ii) $\angle \mathrm{DCB}=$
(iii) $\mathbf{O C}=\ldots$
(i) In a parallelogram, opposite sides are equal in length.
$\mathrm{AD}=\mathrm{BC}$
(ii) In a parallelogram, opposite angles are equal in measure.
$\angle \mathrm{DCB}=\angle \mathrm{DAB}$
(iii) In a parallelogram, diagonals bisect each other.

Hence, $\mathrm{OC}=\mathrm{OA}$
(iv) In a parallelogram, adjacent angles are supplementary to each other.

Hence, $m \angle \mathrm{DAB}+m \angle \mathrm{CDA}=180^{\circ}$

Q2 :

Consider the following parallelograms. Find the values of the unknowns x, y, z.

Answer :
(i) $x+100^{\circ}=180^{\circ}$ (Adjacent angles are supplementary)
$x=80^{\circ}$
$z=x=80^{\circ}($ Opposite angles are equal $)$
$y=100^{\circ}$ (Opposite angles are equal)
(ii) $50^{\circ}+y=180^{\circ}$ (Adjacent angles are supplementary)
$y=130^{\circ}$
$x=y=130^{\circ}($ Opposite angles are equal $)$
$z=x=130^{\circ}($ Corresponding angles $)$
(iii) $x=90^{\circ}$ (Vertically opposite angles)
$x+y+30^{\circ}=180^{\circ}$ (Angle sum property of triangles)
$120^{\circ}+y=180^{\circ}$
$y=60^{\circ}$
$z=y=60^{\circ}$ (Alternate interior angles)
(iv) $z=80^{\circ}$ (Corresponding angles)
$y=80^{\circ}($ Opposite angles are equal)
$x+y=180^{\circ}$ (Adjacent angles are supplementary)
$x=180^{\circ}-80^{\circ}=100^{\circ}$
(v) $y=112^{\circ}$ (Opposite angles are equal)
$x+y+40^{\circ}=180^{\circ}$ (Angle sum property of triangles)
$x+112^{\circ}+40^{\circ}=180^{\circ}$
$x+152^{\circ}=180^{\circ}$
$x=28^{\circ}$
$z=x=28^{\circ}$ (Alternate interior angles)

Q3 :

Can a quadrilateral ABCD be a parallelogram if

(i) $\angle \mathrm{D}+\angle \mathrm{B}=\mathbf{1 8 0}^{\circ}$
(ii) $\mathrm{AB}=\mathrm{DC}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$ and $\mathrm{BC}=4.4 \mathrm{~cm}$
(iii) $\angle A=70^{\circ}$ and $\angle C=65^{\circ}$

Answer :

(i) For $\angle \mathrm{D}+\angle \mathrm{B}=180^{\circ}$, quadrilateral ABCD may or may not be a parallelogram. Along with this condition, the following conditions should also be fulfilled.

The sum of the measures of adjacent angles should be 180°.
Opposite angles should also be of same measures.
(ii) No. Opposite sides AD and BC are of different lengths.
(iii) No. Opposite angles A and C have different measures.

Q4 :

Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Answer :

Here, quadrilateral ABCD (kite) has two of its interior angles, $\angle \mathrm{B}$ and $\angle \mathrm{D}$, of same measures. However, still the quadrilateral ABCD is not a parallelogram as the measures of the remaining pair of opposite angles, $\angle \mathrm{A}$ and $\angle \mathrm{C}$, are not equal.

Q5 :
The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

Answer :

Let the measures of two adjacent angles, $\angle \mathrm{A}$ and $\angle \mathrm{B}$, of parallelogram ABCD are in the ratio of 3:2. Let $\angle \mathrm{A}=3 x$ and $\angle \mathrm{B}=2 x$

We know that the sum of the measures of adjacent angles is 180° for a parallelogram.
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$3 x+2 x=180^{\circ}$
$5 x=180^{\circ}$
$x=\frac{180^{\circ}}{5}=36^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{C}=3 x=108^{\circ}($ Opposite angles $)$
$\angle \mathrm{B}=\angle \mathrm{D}=2 x=72^{\circ}$ (Opposite angles)
Thus, the measures of the angles of the parallelogram are $108^{\circ}, 72^{\circ}, 108^{\circ}$, and 72°.
Q6:
Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Answer :

Sum of adjacent angles $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$2 \angle \mathrm{~A}=180^{\circ}(\angle \mathrm{A}=\angle \mathrm{B})$
$\angle \mathrm{A}=90^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{A}=90^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{A}=90^{\circ}$ (Opposite angles)
$\angle \mathrm{D}=\angle \mathrm{B}=90^{\circ}$ (Opposite angles)
Thus, each angle of the parallelogram measures 90°.

Q7 :
The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.

$y=40^{\circ}$ (Alternate interior angles)
T0
$70^{\circ}=z+40^{\circ}$ (Corresponding angles)
$70^{\circ}-40^{\circ}=z$
$\mathrm{z}=30^{\circ}$
$x+\left(z+40^{\circ}\right)=180^{\circ}($ Adjacent pair of angles)
$x+70^{\circ}=180^{\circ}$
$x=110^{\circ}$

Q8:

The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm)

(i)

(ii)

Answer :
(i)We know that the lengths of opposite sides of a parallelogram are equal to each other.
$\mathrm{GU}=\mathrm{SN}$
$3 y-1=26$
$3 y=27$
$y=9$
$\mathrm{SG}=\mathrm{NU}$
$3 x=18$
$x=6$
Hence, the measures of x and y are 6 cm and 9 cm respectively.
(ii)We know that the diagonals of a parallelogram bisect each other.
$y+7=20$
$y=13$
$x+y=16$
$x+13=16$
$x=3$
Hence, the measures of x and y are 3 cm and 13 cm respectively.

Q9 :

In the above figure both RISK and CLUE are parallelograms. Find the value of x.

Answer :

Adjacent angles of a parallelogram are supplementary.
In parallelogram RISK, $\angle \mathrm{RKS}+\angle \mathrm{ISK}=180^{\circ}$
$120^{\circ}+\angle \mathrm{ISK}=180^{\circ}$
$\angle \mathrm{ISK}=60^{\circ}$

Also, opposite angles of a parallelogram are equal.
In parallelogram CLUE, $\angle \mathrm{ULC}=\angle \mathrm{CEU}=70^{\circ}$
The sum of the measures of all the interior angles of a triangle is 180°.
$x+60^{\circ}+70^{\circ}=180^{\circ}$
$x=50^{\circ}$

Q10 :

Explain how this figure is a trapezium. Which of its two sides are parallel

Answer :

If a transversal line is intersecting two given lines such that the sum of the measures of the angles on the same side of transversal is 180°, then the given two lines will be parallel to each other.

Here, $\angle \mathrm{NML}+\angle \mathrm{MLK}=180^{\circ}$
Hence, NM||LK
As quadrilateral KLMN has a pair of parallel lines, therefore, it is a trapezium.

Q11 : Find $m \angle \mathrm{C}$ in the following figure if $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$

Answer :

Given that, $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$
$\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Angles on the same side of transversal)
$120^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=60^{\circ}$

Q12 :

Find the measure of $\angle \mathbf{P}$ and $\angle \mathrm{S}$, if $\overline{\mathrm{SP}} \| \overline{\mathrm{RQ}}$ in the following figure. (If you find $m \angle R$, is there more than one method to find $m \angle P$)

Answer :

$\angle \mathrm{P}+\angle \mathrm{Q}=180^{\circ}$ (Angles on the same side of transversal)
$\angle \mathrm{P}+130^{\circ}=180^{\circ}$
$\angle \mathrm{P}=50^{\circ}$
$\angle \mathrm{R}+\angle \mathrm{S}=180^{\circ}$ (Angles on the same side of transversal)
$90^{\circ}+\angle \mathrm{R}=180^{\circ}$
$\angle \mathrm{S}=90^{\circ}$
Yes. There is one more method to find the measure of $m \angle \mathrm{P}$.
$m \angle \mathrm{R}$ and $m \angle \mathrm{Q}$ are given. After finding $m \angle \mathrm{~S}$, the angle sum property of a quadrilateral can be applied to find $m \angle \mathrm{P}$.

