Д

CLASS VIII: Maths Chapter 3: Understanding Quadrilaterals

Questions and Solutions | Exercise 3.3 - NCERT Books

Q1 :

Given a parallelogram ABCD. Complete each statement along with the definition or property used.

- (i) **AD** = ...
- (ii) ∠ DCB = ...
- (iii) OC = ...

(i) In a parallelogram, opposite sides are equal in length.

AD = BC

(ii) In a parallelogram, opposite angles are equal in measure.

 \angle DCB = \angle DAB

(iii) In a parallelogram, diagonals bisect each other.

Hence, OC = OA

(iv) In a parallelogram, adjacent angles are supplementary to each other.

Hence, $m \angle DAB + m \angle CDA = 180^{\circ}$

Å

Q2 :

Consider the following parallelograms. Find the values of the unknowns x, y, z.

(v)

Answer :

(i) $x + 100^\circ = 180^\circ$ (Adjacent angles are supplementary)

$x = 80^{\circ}$

- $z = x = 80^{\circ}$ (Opposite angles are equal)
- $y = 100^{\circ}$ (Opposite angles are equal)

Class VIII Maths

(ii) $50^{\circ} + y = 180^{\circ}$ (Adjacent angles are supplementary)

 $y = 130^{\circ}$

 $x = y = 130^{\circ}$ (Opposite angles are equal)

 $z = x = 130^{\circ}$ (Corresponding angles)

(iii) $x = 90^{\circ}$ (Vertically opposite angles)

 $x + y + 30^\circ = 180^\circ$ (Angle sum property of triangles)

 $120^{\circ} + y = 180^{\circ}$

 $y = 60^{\circ}$

 $z = y = 60^{\circ}$ (Alternate interior angles)

(iv) $z = 80^{\circ}$ (Corresponding angles)

 $y = 80^{\circ}$ (Opposite angles are equal)

 $x + y = 180^{\circ}$ (Adjacent angles are supplementary)

 $x = 180^{\circ} - 80^{\circ} = 100^{\circ}$

(v) $y = 112^{\circ}$ (Opposite angles are equal)

 $x + y + 40^\circ = 180^\circ$ (Angle sum property of triangles)

 $x + 112^{\circ} + 40^{\circ} = 180^{\circ}$

 $x + 152^\circ = 180^\circ$

 $x = 28^{\circ}$

 $z = x = 28^{\circ}$ (Alternate interior angles)

<mark>∛S</mark>aral

Q3 :

Can a quadrilateral ABCD be a parallelogram if

(i) $\angle \mathbf{D} + \angle \mathbf{B} = 180^{\circ}$

(ii) AB = DC = 8 cm, AD = 4 cm and BC = 4.4 cm

(iii) $\angle A = 70^{\circ}$ and $\angle C = 65^{\circ}$

Answer :

(i) For $\angle D + \angle B = 180^{\circ}$, quadrilateral ABCD may or may not be a parallelogram. Along with this condition, the following conditions should also be fulfilled.

The sum of the measures of adjacent angles should be 180°.

Opposite angles should also be of same measures.

(ii) No. Opposite sides AD and BC are of different lengths.

(iii) No. Opposite angles A and C have different measures.

Q4 :

Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Answer :

Here, quadrilateral ABCD (kite) has two of its interior angles, $\angle B$ and $\angle D$, of same measures. However, still the quadrilateral ABCD is not a parallelogram as the measures of the remaining pair of opposite angles, $\angle A$ and $\angle C$, are not equal.

B D

<mark>∛</mark>Saral

Q5 :

The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

Answer :

Let the measures of two adjacent angles, $\angle A$ and $\angle B$, of parallelogram ABCD are in the ratio of 3:2. Let $\angle A = 3x$ and $\angle B = 2x$

We know that the sum of the measures of adjacent angles is 180 ° for a parallelogram.

 $\angle A + \angle B = 180^{\circ}$

 $3x + 2x = 180^{\circ}$

 $5x = 180^{\circ}$

 $x = \frac{180^{\circ}}{5} = 36^{\circ}$

 $\angle A = \angle C = 3x = 108$ ° (Opposite angles)

 $\angle B = \angle D = 2x = 72^{\circ}$ (Opposite angles)

Thus, the measures of the angles of the parallelogram are 108°, 72°, 108°, and 72°.

Q6 :

Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Answer :

Sum of adjacent angles = 180°

 $\angle A + \angle B = 180^{\circ}$

 $2 \angle A = 180^{\circ} (\angle A = \angle B)$

 $\angle A = 90^{\circ}$

 $\angle B = \angle A = 90^{\circ}$

 $\angle C = \angle A = 90^{\circ}$ (Opposite angles)

 $\angle D = \angle B = 90^{\circ}$ (Opposite angles)

Thus, each angle of the parallelogram measures 90°.

Å

The adjacent figure HOPE is a parallelogram. Find the angle measures *x*, *y* and *z*. State the properties you use to find them.

 $y = 40^{\circ}$ (Alternate interior angles)

```
70^\circ = z + 40^\circ (Corresponding angles)
```

 $70^{\circ} - 40^{\circ} = z$

 $z = 30^{\circ}$

 $x + (z + 40^{\circ}) = 180^{\circ}$ (Adjacent pair of angles)

 $x + 70^{\circ} = 180^{\circ}$

```
x = 110^{\circ}
```

Å

Q8 :

The following figures GUNS and RUNS are parallelograms. Find *x* and *y*. (Lengths are in cm)

Answer :

(i)We know that the lengths of opposite sides of a parallelogram are equal to each other.

 $\mathbf{GU} = \mathbf{SN}$

3y - 1 = 26

3y = 27

$$SG = NU$$

$$3x = 18$$

x = 6

Hence, the measures of *x* and *y* are 6 cm and 9 cm respectively.

(ii)We know that the diagonals of a parallelogram bisect each other.

y + 7 = 20y = 13x + y = 16

x + 13 = 16

$$x = 3$$

Hence, the measures of *x* and *y* are 3 cm and 13 cm respectively.

Å

Q9 :

In the above figure both RISK and CLUE are parallelograms. Find the value of *x*.

Answer :

Adjacent angles of a parallelogram are supplementary.

In parallelogram RISK, \angle RKS + \angle ISK = 180°

 $120^{\circ} + \angle ISK = 180^{\circ}$

 \angle ISK = 60°

Also, opposite angles of a parallelogram are equal.

In parallelogram CLUE, \angle ULC = \angle CEU = 70°

The sum of the measures of all the interior angles of a triangle is 180°.

 $x + 60^{\circ} + 70^{\circ} = 180^{\circ}$

 $x = 50^{\circ}$

<mark>∛</mark>Saral

Å

Explain how this figure is a trapezium. Which of its two sides are parallel

Answer :

If a transversal line is intersecting two given lines such that the sum of the measures of the angles on the same side of transversal is 180°, then the given two lines will be parallel to each other.

Here, \angle NML + \angle MLK = 180°

Hence,NM||LK

As quadrilateral KLMN has a pair of parallel lines, therefore, it is a trapezium.

Q11: Find $m \angle C$ in the following figure if $\overline{AB} \parallel \overline{DC}$

Answer :

Given that, $\overline{AB} \parallel \overline{DC}$

 $\angle B + \angle C = 180^{\circ}$ (Angles on the same side of transversal)

 $120^{\circ} + \angle C = 180^{\circ}$ $\angle C = 60^{\circ}$

Class VIII Maths

Å

Q12 :

Find the measure of $\angle P$ and $\angle S$, if $\overline{SP \parallel RQ}$ in the following figure. (If you find $m \angle R$, is there more than one method to find $m \angle P$)

Answer :

 $\angle P + \angle Q = 180^{\circ}$ (Angles on the same side of transversal)

 $\angle P + 130^\circ = 180^\circ$

 $\angle P = 50^{\circ}$

 $\angle R + \angle S = 180^{\circ}$ (Angles on the same side of transversal)

 $90^{\circ} + \angle R = 180^{\circ}$

```
\angle S = 90^{\circ}
```

Yes. There is one more method to find the measure of $m \angle P$.

 $m \ge R$ and $m \ge Q$ are given. After finding $m \ge S$, the angle sum property of a quadrilateral can be applied to find $m \ge P$.