CLASS VIII: Maths
 Chapter 4: Data Handling

Questions and Solutions | Exercise 4.2 - NCERT Books

Q1. List the outcomes you can see in these experiments.
(a) Spinning a wheel

(b) Tossing two coins together

Answer:
(a) On spinning the given wheel, the possible outcomes are A, B, C, D.
(b) By tossing two coins together, the possible outcomes are $\mathrm{HT}, \mathrm{TH}, \mathrm{HH}, \mathrm{TT}$ where H and T represents Head and Tail of the coins respectively.

Q2:
When a die is thrown, list the outcomes of an event of getting
(i) (a) a prime number (b) not a prime number
(ii) (a) a number greater than 5 (b) a number not greater than 5

Answer :

When a dice is thrown, the possible outcomes are $1,2,3,4,5$, and 6 .
(i) (a) Out of these outcomes, 2, 3, 5 are prime numbers. Hence, these are the outcomes of an event of getting a prime number on the face of a dice.
(b) Out of these outcomes, 1, 4, 6 are not prime numbers. Hence, these are the outcomes of an event of not getting a prime number on the face of a dice.
(ii) (a) Out of these outcomes, a number greater than 5 is possible when 6 comes on the face of the dice.
(b) Out of these outcomes, a number not greater than 5 is possible when the number on the face of the dice is any one of the outcomes $1,2,3,4,5$.

Q3:

Find the.
(a) Probability of the pointer stopping on D in (Question 1 - (a))
(b) Probability of getting an ace from a well shuffled deck of 52 playing cards
(c) Probability of getting a red apple. (See figure below)

Answer:
(i) The pointer can stop at one of the following regions.
A, A, B, C, D
Out of these 5 cases, it is possible only in 1 case that the pointer will stop at region D .
Therefore, probability that the pointer will stop at region $D=\frac{1}{5}$
(ii) There are 52 cards in a deck of cards and there are 4 ace cards in 1 deck of cards.

Probability of getting an ace card $=\frac{4}{52}=\frac{1}{13}$
(iii) There are a total of 7 apples, out of which, 4 are red and 3 are green.

Probability of getting a red apple $=\frac{4}{7}$

Q4 :

Numbers 1 to 10 are written on ten separate slips (one number on one slip), kept in a box and mixed well. One slip is chosen from the box without looking into it. What is the probability of.
(i) getting a number 6
(ii) getting a number less than 6
(iii) getting a number greater than 6
(iv) getting a 1-digit number

Answer:
(i) There are 10 slips in the box. However, 6 is written only on 1 slip.

Probability of getting a number $6=\frac{1}{10}$
(ii) The numbers less than 6 are $1,2,3,4,5$.

Probability of getting a number less than $6=\frac{5}{10}=\frac{1}{2}$
(iii) The numbers greater than 6 are 7, 8, 9, 10.

Probability of getting a number greater than $6=\frac{4}{10}=\frac{2}{5}$
(iv) There are 9 numbers which are single digit numbers.
$1,2,3,4,5,6,7,8,9$
Probability of getting a single digit number $=\frac{9}{10}$

Q5:
If you have a spinning wheel with 3 green sectors, 1 blue sector and 1 red sector, what is the probability of getting a green sector What is the probability of getting a non blue sector

Answer:

Total sectors $=3+1+1=5$

There are 5 sectors and we can get a green sector in three cases.

Probability of getting a green sector $=\frac{3}{5}$

We will get a non blue sector when we will get either a green sector or a red sector. Hence, 4 cases of such type are possible in which we will get a non blue sector.

Probability of getting a non blue sector $=\frac{4}{5}$
Q6:

Find the probabilities of the events given in Question 2.

Answer:
(i) (a) Out of 6 possible outcomes, a prime number can be obtained in three cases. Therefore, probability of getting a prime number $=\frac{3}{6}=\frac{1}{2}$
(b) Out of 6 possible outcomes, a prime number may not be obtained in three cases.

Therefore, probability of getting not a prime number $=\frac{3}{6}=\frac{1}{2}$
(ii) (a) Out of 6 possible outcomes, a number greater than 5 can be obtained in only 1 case.

Therefore, probability of getting a number greater than $5=\frac{1}{6}$
(b) Out of 6 possible outcomes, a number not greater than 5 can be obtained in 5 cases.

Therefore, probability of getting a number not greater than $5=\frac{5}{6}$

