CLASS VIII: Maths

Chapter 5: Squares and Square roots

Questions and Solutions | Exercise 5.2 - NCERT Books

Q1:

Find the square of the following numbers
(i) 32 (ii) 35
(iii) 86 (iv) 93
(v) 71 (vi) 46

Answer :
(i) $32^{2}=(30+2)^{2}$
$=30(30+2)+2(30+2)$
$=30^{2}+30 \times 2+2 \times 30+2^{2}$
$=900+60+60+4$
$=1024$
(ii) The number 35 has 5 in its unit's place. Therefore,
$35^{2}=(3)(3+1)$ hundreds +25
$=(3 \times 4)$ hundreds +25
$=1200+25=1225$
(iii) $86^{2}=(80+6)^{2}$
$=80(80+6)+6(80+6)$
$=80^{2}+80 \times 6+6 \times 80+6^{2}$
$=6400+480+480+36$
$=7396$
(iii) $86^{2}=(80+6)^{2}$
$=80(80+6)+6(80+6)$
$=80^{2}+80 \times 6+6 \times 80+6^{2}$
$=6400+480+480+36$
$=7396$
(iv) $93^{2}=(90+3)^{2}$
$=90(90+3)+3(90+3)$
$=90^{2}+90 \times 3+3 \times 90+3^{2}$
$=8100+270+270+9$
$=8649$
(v) $71^{2}=(70+1)^{2}$
$=70(70+1)+1(70+1)$
$=70^{2}+70 \times 1+1 \times 70+1^{2}$
$=4900+70+70+1$
$=5041$
(vi) $46^{2}=(40+6)^{2}$
$=40(40+6)+6(40+6)$
$=40^{2}+40 \times 6+6 \times 40+6^{2}$
$=1600+240+240+36$
$=2116$

Q2 :

Write a Pythagorean triplet whose one member is
(i) 6 (ii) 14
(iii) 16 (iv) 18

Answer:

For any natural number $m>1,2 m, m^{2}-1, m^{2}+1$ forms a Pythagorean triplet.
(i) If we take $m^{2}+1=6$, then $m^{2}=5$

The value of m will not be an integer.
If we take $m^{2}-1=6$, then $m^{2}=7$
Again the value of m is not an integer.
Let $2 m=6$
$m=3$

Therefore, the Pythagorean triplets are $2 \times 3,3^{2}-1,3^{2}+1$ or 6,8 , and 10 .
(ii) If we take $m^{2}+1=14$, then $m^{2}=13$

The value of m will not be an integer.
If we take $m^{2}-1=14$, then $m^{2}=15$
Again the value of m is not an integer.
Let $2 m=14$
$m=7$

Thus, $m^{2}-1=49-1=48$ and $m^{2}+1=49+1=50$

Therefore, the required triplet is 14,48 , and 50 .
(iii) If we take $m^{2}+1=16$, then $m^{2}=15$

The value of m will not be an integer.
If we take $m^{2}-1=16$, then $m^{2}=17$
Again the value of m is not an integer.

Let $2 m=16$
$m=8$

Thus, $m^{2}-1=64-1=63$ and $m^{2}+1=64+1=65$
Therefore, the Pythagorean triplet is 16,63 , and 65 .
(iv) If we take $m^{2}+1=18$,
$m^{2}=17$
The value of m will not be an integer.
If we take $m^{2}-1=18$, then $m^{2}=19$
Again the value of m is not an integer.
Let $2 m=18$
$m=9$
Thus, $m^{2}-1=81-1=80$ and $m^{2}+1=81+1=82$

Therefore, the Pythagorean triplet is 18,80 , and 82 .

