CLASS VIII: Maths
 Chapter 6: Cubes and Cube Roots

Questions and Solutions | Exercise 6.1-NCERT Books

Q1. Which of the following numbers are notperfect cubes?

(i) 216
(ii) 128
(iii) 1000
(iv) 100
(v) 46656

Answer :

(i) The prime factorisation of 216 is as follows.

2	216
2	108
2	54
3	27
3	9
3	3
	1

$216=\underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}=2^{3} \times 3^{3}$

Here, as each prime factor is appearing as many times as a perfect multiple of 3, therefore, 216 is a perfect cube.
(ii)The prime factorisation of 128 is as follows.

2	64
2	32
2	16
2	8
2	4
2	2
	1

$128=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 2$
Here, each prime factor is not appearing as many times as a perfect multiple of 3 . One 2 is remaining after grouping the triplets of 2 . Therefore, 128 is not a perfect cube.
(iii) The prime factorisation of 1000 is as follows.

2	1000
2	500
2	250
5	125
5	25
5	5
	1

$1000=\underline{2 \times 2 \times 2 \times 5 \times 5 \times 5}$
Here, as each prime factor is appearing as many times as a perfect multiple of 3, therefore, 1000 is a perfect cube.
(iv)The prime factorisation of 100 is as follows.

2	100
2	50
5	25
5	5
	1

$100=2 \times 2 \times 5 \times 5$
Here, each prime factor is not appearing as many times as a perfect multiple of 3 . Two 2 s and two 5 s are remaining after grouping the triplets. Therefore, 100 is not a perfect cube.
(v)The prime factorisation of 46656 is as follows.

2	46656
2	23328
2	

Q2 :
Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.
(i) 243
(ii) 256
(iii) 72
(iv) 675
(v) 100

Answer:

(i) $243=\underline{3 \times 3 \times 3} \times 3 \times 3$

Here, two 3 s are left which are not in a triplet. To make 243 a cube, one more 3 is required.
In that case, $243 \times 3=\underline{3 \times 3 \times 3} \times \underline{3 \times 3 \times 3}=729$ is a perfect cube.
Hence, the smallest natural number by which 243 should be multiplied to make it a perfect cube is 3 .
(ii) $256=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 2 \times 2$

Here, two 2 s are left which are not in a triplet. To make 256 a cube, one more 2 is required.
Then, we obtain
$256 \times 2=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}=512$ is a perfect cube.
Hence, the smallest natural number by which 256 should be multiplied to make it a perfect cube is 2 .
(iii) $72=\underline{2 \times 2 \times 2} \times 3 \times 3$

Here, two 3 s are left which are not in a triplet. To make 72 a cube, one more 3 is required.
Then, we obtain
$72 \times 3=\underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}=216$ is a perfect cube.
Hence, the smallest natural number by which 72 should be multiplied to make it a perfect cube is 3.
(iv) $675=\underline{3 \times 3 \times 3} \times 5 \times 5$

Here, two 5 s are left which are not in a triplet. To make 675 a cube, one more 5 is required.
Then, we obtain
$675 \times 5=\underline{3 \times 3 \times 3} \times \underline{5 \times 5 \times 5}=3375$ is a perfect cube.
Hence, the smallest natural number by which 675 should be multiplied to make it a perfect cube is 5 .
(v) $100=2 \times 2 \times 5 \times 5$

Here, two 2 s and two 5 s are left which are not in a triplet. To make 100 a cube, we require one more 2 and one more 5.

Then, we obtain
$100 \times 2 \times 5=\underline{2 \times 2 \times 2} \times \underline{5 \times 5 \times 5}=1000$ is a perfect cube
Hence, the smallest natural number by which 100 should be multiplied to make it a perfect cube is $2 \times 5=10$.

Q3 :
Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.
(i) 81
(ii) 128
(iii) 135
(iv) 192
(v) 704

Answer :

(i) $81=\underline{3 \times 3 \times 3} \times 3$

Here, one 3 is left which is not in a triplet.
If we divide 81 by 3 , then it will become a perfect cube.
Thus, $81 \tilde{A} f \hat{A} \cdot 3=27=\underline{3 \times 3 \times 3}$ is a perfect cube.
Hence, the smallest number by which 81 should be divided to make it a perfect cube is 3 .
(ii) $128=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 2$

Here, one 2 is left which is not in a triplet.
If we divide 128 by 2 , then it will become a perfect cube.

Thus, 128 Ãf $\hat{A} \cdot 2=64=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$ is a perfect cube.
Hence, the smallest number by which 128 should be divided to make it a perfect cube is 2 .
(iii) $135=\underline{3 \times 3 \times 3} \times 5$

Here, one 5 is left which is not in a triplet.
If we divide 135 by 5 , then it will become a perfect cube.
Thus, $135 \tilde{A} f \hat{A} \cdot 5=27=\underline{3 \times 3 \times 3}$ is a perfect cube.
Hence, the smallest number by which 135 should be divided to make it a perfect cube is 5 .
(iv) $192=\underline{2 \times 2 \times 2} \times \underline{2} \times 2 \times 2 \times 3$

Here, one 3 is left which is not in a triplet.
If we divide 192 by 3 , then it will become a perfect cube.
Thus, 192 Ãf $\hat{A} \cdot 3=64=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$ is a perfect cube.
Hence, the smallest number by which 192 should be divided to make it a perfect cube is 3 .
(v) $704=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 11$

Here, one 11 is left which is not in a triplet.
If we divide 704 by 11 , then it will become a perfect cube.
Thus, 704 Ãf $\hat{A} \cdot 11=64=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$ is a perfect cube.
Hence, the smallest number by which 704 should be divided to make it a perfect cube is 11 .

Q4:
Parikshit makes a cuboid of plasticine of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$. How many such cuboids will he
need to form a cube?

Answer :

Here, some cuboids of size $5 \times 2 \times 5$ are given.

When these cuboids are arranged to form a cube, the side of this cube so formed will be a common multiple of the sides (i.e., 5,2 , and 5) of the given cuboid.

LCM of 5,2 , and $5=10$

Let us try to make a cube of 10 cm side.
For this arrangement, we have to put 2 cuboids along with its length, 5 along with its width, and 2 along with its height.

Total cuboids required according to this arrangement $=2 \times 5 \times 2=20$
With the help of 20 cuboids of such measures, a cube is formed as follows.

Alternatively

Volume of the cube of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$
$=5 \mathrm{~cm} \times 2 \mathrm{~cm} \times 5 \mathrm{~cm}=(5 \times 5 \times 2) \mathrm{cm}^{3}$
Here, two 5 s and one 2 are left which are not in a triplet.
If we multiply this expression by $2 \times 2 \times 5=20$, then it will become a perfect cube.

Thus, $(5 \times 5 \times 2 \times 2 \times 2 \times 5)=(\underline{5 \times 5 \times 5 \times 2 \times 2 \times 2})=1000$ is a perfect cube. Hence, 20 cuboids of 5 $\mathrm{cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$ are required to form a cube.

