CLASS VIII: Maths

Chapter 9: Mensuration

Questions and Solutions | Exercise 9.2 - NCERT Books

Q2 : There are two cuboidal boxes as shown in the adjoining figure. Which box requires the lesser amount of material to make

(a)

(b)

Answer :

We know that,
Total surface area of the cuboid $=2(l h+b h+l b)$
Total surface area of the cube $=6(/)^{2}$
Total surface area of cuboid $(\mathrm{a})=[2\{(60)(40)+(40)(50)+(50)(60)\}] \mathrm{cm}^{2}$
$=[2(2400+2000+3000)] \mathrm{cm}^{2}$
$=(2 \times 7400) \mathrm{cm}^{2}$
$=14800 \mathrm{~cm}^{2}$
Total surface area of cube $(b)=6(50 \mathrm{~cm})^{2}=15000 \mathrm{~cm}^{2}$

Thus, the cuboidal box (a) will require lesser amount of material.

Q2 : A suitcase with measures $80 \mathrm{~cm} \times 48 \mathrm{~cm} \times 24 \mathrm{~cm}$ is to be covered with a tarpaulin cloth. How many metres of tarpaulin of width 96 cm is required to cover 100 such suitcases

Answer :

Total surface area of suitcase $=2[(80)(48)+(48)(24)+(24)(80)]$
$=2[3840+1152+1920]$
$=13824 \mathrm{~cm}^{2}$

Total surface area of 100 suitcases $=(13824 \times 100) \mathrm{cm}^{2}=1382400 \mathrm{~cm}^{2}$
Required tarpaulin $=$ Length \times Breadth
$1382400 \mathrm{~cm}^{2}=$ Length $\times 96 \mathrm{~cm}$

Length $=\left(\frac{1382400}{96}\right) \mathrm{cm}=14400 \mathrm{~cm}=144 \mathrm{~m}$
Thus, 144 m of tarpaulin is required to cover 100 suitcases.

Q3 : Find the side of a cube whose surface area is $600 \mathrm{~cm}^{2}$.

Answer :
Given that, surface area of cube $=600 \mathrm{~cm}^{2}$

Let the length of each side of cube be I.
Surface area of cube $=6(\text { Side })^{2}$
$600 \mathrm{~cm}^{2}=6 /^{2}$
$r^{2}=100 \mathrm{~cm}^{2}$
$\mathrm{l}=10 \mathrm{~cm}$

Thus, the side of the cube is 10 cm .

Q4: Rukhsar painted the outside of the cabinet of measure $1 \mathrm{~m} \times 2 \mathrm{~m} \times 1.5 \mathrm{~m}$. How much surface area did she cover if she painted all except the bottom of the cabinet

Answer :

```
Length (I) of the cabinet = 2 m
Breadth (b) of the cabinet =1 m
Height (h) of the cabinet = 1.5 m
Area of the cabinet that was painted = 2h(l+b)+lb
=[2\times1.5 x(2+1)+(2)(1)] m}\mp@subsup{\textrm{m}}{}{2
= [3(3)+2] m
=(9+2) m
= 11 m
```

Q5: Daniel is painting the walls and ceiling of a cuboidal hall with length, breadth and height of $15 \mathrm{~m}, 10 \mathrm{~m}$ and 7 m respectively. From each can of paint $100 \mathrm{~m}^{2}$ of area is painted. How many cans of paint will she need to paint the room

Answer :

Given that,

Length $(/)=15 \mathrm{~m}$, breadth $(b)=10 \mathrm{~m}$, height $(h)=7 \mathrm{~m}$
Area of the hall to be painted = Area of the wall + Area of the ceiling
$=2 h(l+b)+1 b$
$=[2(7)(15+10)+15 \times 10] \mathrm{m}^{2}$
$=[14(25)+150] \mathrm{m}^{2}$
$=500 \mathrm{~m}^{2}$

It is given that $100 \mathrm{~m}^{2}$ area can be painted from each can.

Number of cans required to paint an area of $500 \mathrm{~m}^{2}$
$=\frac{500}{100}=5$
Hence, 5 cans are required to paint the walls and the ceiling of the cuboidal hall.

Q6:

Describe how the two figures at the right are alike and how they are different. Which box has larger lateral surface area

Answer:

Similarity between both the figures is that both have the same heights.

The difference between the two figures is that one is a cylinder and the other is a cube.
Lateral surface area of the cube $=4 R^{2}=4(7 \mathrm{~cm})^{2}=196 \mathrm{~cm}^{2}$

Lateral surface area of the cylinder $=2 \pi r h \quad=\left(2 \times \frac{22}{7} \times \frac{7}{2} \times 7\right) \mathrm{cm}^{2}=154 \mathrm{~cm}^{2}$
Hence, the cube has larger lateral surface area.

Q7:

A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How much sheet of metal is required

Answer:

Total surface area of cylinder $=2 \pi r(r+h)$
$=\left[2 \times \frac{22}{7} \times 7(7+3)\right]_{\mathrm{m}^{2}}$
$=440 \mathrm{~m}^{2}$

Thus, $440 \mathrm{~m}^{2}$ sheet of metal is required.

Q8: The lateral surface area of a hollow cylinder is $4224 \mathrm{~cm}^{2}$. It is cut along its height and formed a rectangular sheet of width 33 cm . Find the perimeter of rectangular sheet

Answer :
A hollow cylinder is cut along its height to form a rectangular sheet.
Area of cylinder $=$ Area of rectangular sheet
$4224 \mathrm{~cm}^{2}=33 \mathrm{~cm} \times$ Length
Length $=\frac{4224 \mathrm{~cm}^{2}}{33 \mathrm{~cm}}=128 \mathrm{~cm}$

Thus, the length of the rectangular sheet is 128 cm .
Perimeter of the rectangular sheet $=2($ Length + Width $)$
$=[2(128+33)] \mathrm{cm}$
$=(2 \times 161) \mathrm{cm}$
$=322 \mathrm{~cm}$

Q9 : A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length is 1 m .

Answer: In one revolution, the roller will cover an area equal to its lateral surface area.
Thus, in 1 revolution, area of the road covered $=2 \pi r h$
$=2 \times \frac{22}{7} \times 42 \mathrm{~cm} \times 1 \mathrm{~m}$
$=2 \times \frac{22}{7} \times \frac{42}{100} \mathrm{~m} \times 1 \mathrm{~m}$
$=\frac{264}{100} \mathrm{~m}^{2}$
In 750 revolutions, area of the road covered
$=\left(750 \times \frac{264}{100}\right) \mathrm{m}^{2}$
$=1980 \mathrm{~m}^{2}$

Q10 :

A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm . Company places a label around the surface of the container (as shown in the figure). If the label is placed 2 cm from top and bottom, what is the area of the label.

Answer:

Height of the label $=20 \mathrm{~cm}-2 \mathrm{~cm}-2 \mathrm{~cm}=16 \mathrm{~cm}$

Radius of the label $=\left(\frac{14}{2}\right) \mathrm{cm}=7 \mathrm{~cm}$

Label is in the form of a cylinder having its radius and height as 7 cm and 16 cm .

Area of the label $=2 \pi$ (Radius) (Height)
$=\left(2 \times \frac{22}{7} \times 7 \times 16\right) \mathrm{cm}^{2}=704 \mathrm{~cm}^{2}$

Q11:
A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm . Company places a label around the surface of the container (as shown in the figure). If the label is placed 2 cm from top and bottom, what is the area of the label.

Answer:

Height of the label $=20 \mathrm{~cm}-2 \mathrm{~cm}-2 \mathrm{~cm}=16 \mathrm{~cm}$

Radius of the label

$$
=\left(\frac{14}{2}\right) \mathrm{cm}=7 \mathrm{~cm}
$$

Label is in the form of a cylinder having its radius and height as 7 cm and 16 cm .

Area of the label $=2 \pi$ (Radius) $($ Height $)$
$=\left(2 \times \frac{22}{7} \times 7 \times 16\right) \mathrm{cm}^{2}=704 \mathrm{~cm}^{2}$

