∛Saral

Class XI : Maths Chapter 2 : Related And Functions

Ouestions and Solutions | Exercise 2.3 - NCERT Books

Ouestion 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

(iii) {(1, 3), (1, 5), (2, 5)}

Answer

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)} Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$ (ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)} Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$ (iii) {(1, 3), (1, 5), (2, 5)}

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$
 (ii) $f(x) = \sqrt{9-x}$
Answer
(i) $f(x) = -|x|, x \in \mathbb{R}$
We know that $|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$

$$\therefore f(x) = -|x| = \begin{cases} x, x < 0 \\ x, x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is **R**. It can be observed that the range of f(x) = -|x| is all real numbers except positive real

numbers. . The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x : -3 \le x \le 3\}$ or [-3, 3]. For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3. ∴The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].

Ouestion 3: A function f is defined by f(x) = 2x - 5. Write down the values of (i) *f*(0), (ii) *f*(7), (iii) *f*(-3)

∛Saral

Answer The given function is f(x) = 2x - 5. Therefore, (i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$ (ii) $f(7) = 2 \times 7 - 5 = 14 - 5 = 9$ (iii) $f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$

Question 4:

The function t' which maps temperature in degree Celsius into temperature in degree

 $t(C) = \frac{9C}{5} + 32$ Fahrenheit is defined by Find (i) t (0) (ii) t (28) (iii) t (-10) (iv) The value of C, when t(C) = 212 Answer The given function is $t(C) = \frac{9C}{5} + 32$ Therefore, $t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$ (i) $t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$ (ii) $t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$ (iii) (iv) It is given that t(C) = 212 $\therefore 212 = \frac{9C}{5} + 32$ $\Rightarrow \frac{9C}{5} = 212 - 32$ $\Rightarrow \frac{9C}{5} = 180$ $\Rightarrow 9C = 180 \times 5$ $\Rightarrow C = \frac{180 \times 5}{9} = 100$ Thus, the value of t, when t(C) = 212, is 100. **Ouestion 5:**

Find the range of each of the following functions. (i) f(x) = 2 - 3x, $x \in \mathbf{R}$, x > 0. (ii) $f(x) = x^2 + 2$, x, is a real number. (iii) f(x) = x, x is a real number Answer (i) f(x) = 2 - 3x, $x \in \mathbf{R}$, x > 0

Class XI Maths

www.esaral.com

∛Saral

Ă

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

x	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	

Thus, it can be clearly observed that the range of *f* is the set of all real numbers less than 2.

i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0 $\Rightarrow 3x > 0$

 $\Rightarrow 3x > 0$ $\Rightarrow 2 - 3x < 2$

 $\Rightarrow f(x) < 2$

 $\therefore \text{Range of } f = (-\infty, 2)$

(ii) $f(x) = x^2 + 2$, x, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

x	0	±0.3	±0.8	±1	±2	±3	
<i>f</i> (<i>x</i>)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of *f* is the set of all real numbers greater than 2.

i.e., range of $f = [2, \infty)$ **Alter:** Let x be any real number. Accordingly, $x^2 \ge 0$ $\Rightarrow x^2 + 2 \ge 0 + 2$ $\Rightarrow x^2 + 2 \ge 2$

 $\Rightarrow f(x) ≥ 2$ ∴ Range of $f = [2, \infty)$

(iii) f(x) = x, x is a real number

It is clear that the range of *f* is the set of all real numbers.

 \therefore Range of $f = \mathbf{R}$