Class XI : Maths
 Chapter 2 : Related And Functions

Questions and Solutions | Exercise 2.3-NCERT Books

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Answer
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:
(i) $f(x)=-|x|$
(ii) $f(x)=\sqrt{9-x^{2}}$

Answer
(i) $f(x)=-|x|, x \in \mathrm{R}$

We know that $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
$\therefore f(x)=-|x|=\left\{\begin{array}{l}-x, x \geq 0 \\ x, x<0\end{array}\right.$
Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of f is \mathbf{R}.
It can be observed that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.
\therefore The range of f is $(-\infty, 0]$.
(ii)
$f(x)=\sqrt{9-x^{2}}$
Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3 , the domain of $f(x)$ is $\{x:-3 \leq x \leq 3\}$ or $[-3,3]$.
For any value of x such that $-3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .
\therefore The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or [0, 3].

Question 3:

A function f is defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0),($ ii) $f(7),($ iii $) f(-3)$

Answer

The given function is $f(x)=2 x-5$.
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$

Question 4:

The function ' t ' which maps temperature in degree Celsius into temperature in degree

Fahrenheit is defined by

$$
t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32
$$

Find (i) t (0) (ii) $t(28)$ (iii) $t(-10)$ (iv) The value of C , when $t(\mathrm{C})=212$
Answer

The given function is

$$
t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32
$$

Therefore,
(i)

$$
t(0)=\frac{9 \times 0}{5}+32=0+32=32
$$

$t(28)=\frac{9 \times 28}{5}+32=\frac{252+160}{5}=\frac{412}{5}$
(ii)

$$
t(-10)=\frac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14
$$

(iii)
(iv) It is given that $t(C)=212$
$\therefore 212=\frac{9 \mathrm{C}}{5}+32$
$\Rightarrow \frac{9 C}{5}=212-32$
$\Rightarrow \frac{9 C}{5}=180$
$\Rightarrow 9 C=180 \times 5$
$\Rightarrow C=\frac{180 \times 5}{9}=100$
Thus, the value of t, when $t(C)=212$, is 100 .

Question 5:

Find the range of each of the following functions.
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$.
(ii) $f(x)=x^{2}+2, x$, is a real number.
(iii) $f(x)=x, x$ is a real number

Answer
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$

The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as

x	0.01	0.1	0.9	1	2	2.5	4	5	\ldots
$f(x)$	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	\ldots

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.
i.e., range of $f=(-\infty, 2)$

Alter:

Let $x>0$
$\Rightarrow 3 x>0$
$\Rightarrow 2-3 x<2$
$\Rightarrow f(x)<2$
\therefore Range of $f=(-\infty, 2)$
(ii) $f(x)=x^{2}+2, x$, is a real number

The values of $f(x)$ for various values of real numbers x can be written in the tabular form as

| x | 0 | ± 0.3 | ± 0.8 | ± 1 | ± 2 | ± 3 | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 2 | 2.09 | 2.64 | 3 | 6 | 11 | $\ldots .$. |

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.
i.e., range of $f=[2, \infty)$

Alter:

Let x be any real number.
Accordingly,
$x^{2} \geq 0$
$\Rightarrow x^{2}+2 \geq 0+2$
$\Rightarrow x^{2}+2 \geq 2$
$\Rightarrow f(x) \geq 2$
\therefore Range of $f=[2, \infty)$
(iii) $f(x)=x, x$ is a real number

It is clear that the range of f is the set of all real numbers.
\therefore Range of $f=\mathbf{R}$

