Class XI : Maths

Chapter 3 : Trignometric Functions

Questions and Solutions | Exercise 3.1 - NCERT Books

Question 1:

Find the radian measures corresponding to the following degree measures:
(i) 25°
(ii) $-47^{\circ} 30^{\prime}$
(iii) 240° (iv) 520°

Answer
(i) 25°

We know that $180^{\circ}=п$ radian
$\therefore 25^{\circ}=\frac{\pi}{180} \times 25$ radian $=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$
$-47^{\circ} 30^{\prime}=-47 \frac{1}{2}$ degree $\left[1^{\circ}=60^{\prime}\right]$
$=\frac{-95}{2}_{\text {degree }}$
Since $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
(iii) 240°

We know that $180^{\circ}=п$ radian
$\therefore 240^{\circ}=\frac{\pi}{180} \times 240$ radian $=\frac{4}{3} \pi$ radian
(iv) 520°

We know that $180^{\circ}=\pi$ radian
$\therefore 520^{\circ}=\frac{\pi}{180} \times 520$ radian $=\frac{26 \pi}{9}$ radian

Question 2:

Find the degree measures corresponding to the following radian measures
$\left(\mathrm{Use} \pi=\frac{22}{7}\right)$.
(i) $\frac{11}{16}$
(iii) ${ }^{\frac{5 \pi}{3}}$ (iv) $\frac{7 \pi}{6}$

Answer
(i) $\frac{11}{16}$

We know that n radian $=180^{\circ}$

$$
\begin{aligned}
\therefore \frac{11}{16} \text { radain } & =\frac{180}{\pi} \times \frac{11}{16} \text { deg ree }=\frac{45 \times 11}{\pi \times 4} \text { deg ree } \\
& =\frac{45 \times 11 \times 7}{22 \times 4} \text { deg ree }=\frac{315}{8} \text { deg ree } \\
& =39 \frac{3}{8} \text { deg ree } \\
& =39^{\circ}+\frac{3 \times 60}{8} \text { min utes } \quad\left[1^{\circ}=60^{\prime}\right] \\
& =39^{\circ}+22^{\prime}+\frac{1}{2} \text { min utes } \\
& =39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]
\end{aligned}
$$

(ii) - 4

We know that n radian $=180^{\circ}$

$$
\begin{array}{rlr}
-4 \text { radian } & =\frac{180}{\pi} \times(-4) \text { deg ree }=\frac{180 \times 7(-4)}{22} \text { deg ree } \\
& =\frac{-2520}{11} \text { deg ree }=-229 \frac{1}{11} \text { deg ree } \\
& =-229^{\circ}+\frac{1 \times 60}{11} \text { min utes } \quad\left[1^{\circ}=60^{\prime}\right] \\
& =-229^{\circ}+5^{\prime}+\frac{5}{11} \text { minutes } \\
& =-229^{\circ} 5^{\prime} 27^{\prime \prime} & {\left[1^{\prime}=60^{\prime \prime}\right]}
\end{array}
$$

(iii) $\frac{5 \pi}{3}$

We know that n radian $=180^{\circ}$
$\therefore \frac{5 \pi}{3}$ radian $=\frac{180}{\pi} \times \frac{5 \pi}{3}$ deg ree $=300^{\circ}$
(iv) $\frac{7 \pi}{6}$

We know that n radian $=180^{\circ}$
$\therefore \frac{7 \pi}{6}$ radian $=\frac{180}{\pi} \times \frac{7 \pi}{6}=210^{\circ}$

Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Answer

Number of revolutions made by the wheel in 1 minute $=360$
\therefore Number of revolutions made by the wheel in 1 second $=\frac{\frac{360}{60}=6}{}=6$
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian, i.e.,
12 п radian
Thus, in one second, the wheel turns an angle of 12π radian.

Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius 100
cm by an arc of length $22 \mathrm{~cm}\left(\right.$ Use $\left.\pi=\frac{22}{7}\right)$.
Answer
We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ radian at the centre, then

$$
\theta=\frac{1}{\mathrm{r}}
$$

Therefore, forr $=100 \mathrm{~cm}, \mathrm{I}=22 \mathrm{~cm}$, we have
$\theta=\frac{22}{100}$ radian $=\frac{180}{\pi} \times \frac{22}{100}$ deg ree $=\frac{180 \times 7 \times 22}{22 \times 100}$ deg ree

$$
=\frac{126}{10} \text { deg ree }=12 \frac{3}{5} \text { deg ree }=12^{\circ} 36^{\prime} \quad\left[1^{\circ}=60^{\prime}\right]
$$

Thus, the required angle is $12^{\circ} 36^{\prime}$.

Question 5:

In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.

Answer

Diameter of the circle $=40 \mathrm{~cm}$
\therefore Radius (r) of the circle $=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}$
Let $A B$ be a chord (length $=20 \mathrm{~cm}$) of the circle.

In $\triangle O A B, O A=O B=$ Radius of circle $=20 \mathrm{~cm}$
Also, $A B=20 \mathrm{~cm}$
Thus, $\triangle O A B$ is an equilateral triangle.
$\therefore \theta=60^{\circ}=\frac{\pi}{3}$ radian
We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ
radian at the centre, then $\theta=\frac{l}{r}$.

$$
\frac{\pi}{3}=\frac{\overparen{\mathrm{AB}}}{20} \Rightarrow \overparen{\mathrm{AB}}=\frac{20 \pi}{3} \mathrm{~cm}
$$

Thus, the length of the minor arc of the chord is $\frac{20 \pi}{3} \mathrm{~cm}$.

Question 6:

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Answer

Let the radii of the two circles be ${ }^{r_{1}}$ and ${ }^{r_{2}}$. Let an arc of length / subtend an angle of 60° at the centre of the circle of radius r_{1}, while let an arc of length / subtend an angle of 75° at the centre of the circle of radius r_{2}.

Now, $60^{\circ}=\frac{\frac{\pi}{3}}{3}$ radian and $75^{\circ}=\frac{5 \pi}{12}$ radian
We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ
radian at the centre, then $\theta=\frac{l}{r}$ or $l=r \theta$
$\therefore l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow \frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow r_{1}=\frac{r_{2} 5}{4}$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{5}{4}$
Thus, the ratio of the radii is $5: 4$.

Question 7:

Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm (ii) 15 cm (iii) 21 cm

Answer
We know that in a circle of radius r unit, if an arc of length / unit subtends an angle θ
radian at the centre, then $\theta=\frac{l}{r}$.
It is given that $r=75 \mathrm{~cm}$
(i) Here, $I=10 \mathrm{~cm}$
$\theta=\frac{10}{75}$ radian $=\frac{2}{15}$ radian
(ii) Here, $I=15 \mathrm{~cm}$
$\theta=\frac{15}{75}$ radian $=\frac{1}{5}$ radian
(iii) Here, $I=21 \mathrm{~cm}$
$\theta=\frac{21}{75}$ radian $=\frac{7}{25}$ radian

