Class XI : Maths
 Chapter 4 : Complex Numbers And Quadratic Equations

Questions and Solutions | Exercise 4.1-NCERT Books

Question 1:

Express the given complex number in the form $a+i b:(5 i)\left(-\frac{3}{5} i\right)$
Answer

$$
\begin{array}{rlr}
(5 i)\left(\frac{-3}{5} i\right) & =-5 \times \frac{3}{5} \times i \times i \\
& =-3 i^{2} \\
& =-3(-1) \quad\left[i^{2}=-1\right] \\
& =3
\end{array}
$$

Question 2:

Express the given complex number in the form $a+i b: i^{9}+i^{19}$
Answer

$$
\begin{aligned}
i^{9}+i^{19} & =i^{4 \times 2+1}+i^{4 \times 4+3} \\
& =\left(i^{4}\right)^{2} \cdot i+\left(i^{4}\right)^{4} \cdot i^{3} \\
& =1 \times i+1 \times(-i) \quad\left[i^{4}=1, i^{3}=-i\right] \\
& =i+(-i) \\
& =0
\end{aligned}
$$

Question 3:

Express the given complex number in the form $a+i b: i^{-39}$
Answer

$$
\begin{array}{rlr}
i^{-39} & =i^{-4 \times 9-3}=\left(i^{4}\right)^{-9} \cdot i^{-3} \\
& =(1)^{-9} \cdot i^{-3} \quad\left[i^{4}=1\right] \\
& =\frac{1}{i^{3}}=\frac{1}{-i} \quad\left[i^{3}=-i\right] \\
& =\frac{-1}{i} \times \frac{i}{i} \\
& =\frac{-i}{i^{2}}=\frac{-i}{-1}=i \quad\left[i^{2}=-1\right]
\end{array}
$$

Question 4:

Express the given complex number in the form $a+i b: 3(7+i 7)+i(7+i 7)$
Answer

$$
\begin{array}{rlr}
3(7+i 7)+i(7+i 7) & =21+21 i+7 i+7 i^{2} & \\
& =21+28 i+7 \times(-1) & {\left[\because i^{2}=-1\right]} \\
& =14+28 i &
\end{array}
$$

Question 5:

Express the given complex number in the form $a+i b:(1-i)-(-1+i 6)$
Answer

$$
\begin{aligned}
(1-i)-(-1+i 6) & =1-i+1-6 i \\
& =2-7 i
\end{aligned}
$$

Question 6:

Express the given complex number in the form $a+i b:\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
Answer

$$
\begin{aligned}
& \left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right) \\
& =\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i \\
& =\left(\frac{1}{5}-4\right)+i\left(\frac{2}{5}-\frac{5}{2}\right) \\
& =\frac{-19}{5}+i\left(\frac{-21}{10}\right) \\
& =\frac{-19}{5}-\frac{21}{10} i
\end{aligned}
$$

Question 7:

Express the given complex number in the form $a+i b:\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$ Answer
$\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)$
$=\frac{1}{3}+\frac{7}{3} i+4+\frac{1}{3} i+\frac{4}{3}-i$
$=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)$
$=\frac{17}{3}+i \frac{5}{3}$

Question 8:

Express the given complex number in the form $a+i b:(1-i)^{4}$
Answer

$$
\begin{aligned}
(1-i)^{4} & =\left[(1-i)^{2}\right]^{2} \\
& =\left[1^{2}+i^{2}-2 i\right]^{2} \\
& =[1-1-2 i]^{2} \\
& =(-2 i)^{2} \\
& =(-2 i) \times(-2 i) \\
& =4 i^{2}=-4
\end{aligned} \quad\left[i^{2}=-1\right]
$$

Question 9:

Express the given complex number in the form $a+i b:\left(\frac{1}{3}+3 i\right)^{3}$
Answer

$$
\begin{aligned}
\left(\frac{1}{3}+3 i\right)^{3} & =\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27(-i)+i+9 i^{2} \quad\left[i^{3}=-i\right] \\
& =\frac{1}{27}-27 i+i-9 \quad\left[i^{2}=-1\right] \\
& =\left(\frac{1}{27}-9\right)+i(-27+1) \\
& =\frac{-242}{27}-26 i
\end{aligned}
$$

Question 10:

Express the given complex number in the form $a+i b:\left(-2-\frac{1}{3} i\right)^{3}$
Answer

$$
\begin{aligned}
& \left(-2-\frac{1}{3} i\right)^{3}=(-1)^{3}\left(2+\frac{1}{3} i\right)^{3} \\
& =-\left[2^{3}+\left(\frac{i}{3}\right)^{3}+3(2)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8+\frac{i^{3}}{27}+2 i\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8-\frac{i}{27}+4 i+\frac{2 i^{2}}{3}\right] \quad\left[i^{3}=-i\right] \\
& =-\left[8-\frac{i}{27}+4 i-\frac{2}{3}\right] \quad\left[i^{2}=-1\right] \\
& =-\left[\frac{22}{3}+\frac{107 i}{27}\right] \\
& =-\frac{22}{3}-\frac{107}{27} i
\end{aligned}
$$

Question 11:

Find the multiplicative inverse of the complex number $4-3 i$

Answer

Let $z=4-3 i$
Then, $\bar{z}=4+3 i$ and $|z|^{2}=4^{2}+(-3)^{2}=16+9=25$
Therefore, the multiplicative inverse of $4-3 i$ is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{4+3 i}{25}=\frac{4}{25}+\frac{3}{25} i
$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5}+3 i$
Answer
Let $z=\sqrt{5}+3 i$
Then, $\bar{z}=\sqrt{5}-3 i$ and $|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$
Therefore, the multiplicative inverse of $\sqrt{5}+3 i$ is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3 i}{14}$

Question 13:

Find the multiplicative inverse of the complex number -i
Answer
Let $z=-i$
Then, $\bar{z}=i$ and $|z|^{2}=1^{2}=1$
Therefore, the multiplicative inverse of $-i$ is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{i}{1}=i$

Question 14:

Express the following expression in the form of $a+i b$.

$$
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}
$$

Answer

$$
\begin{aligned}
& \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})} \\
& =\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i} \quad\left[(a+b)(a-b)=a^{2}-b^{2}\right] \\
& =\frac{9-5 i^{2}}{2 \sqrt{2} i} \\
& =\frac{9-5(-1)}{2 \sqrt{2} i} \quad\left[i^{2}=-1\right] \\
& =\frac{9+5}{2 \sqrt{2} i} \times \frac{i}{i} \\
& =\frac{14 i}{2 \sqrt{2} i^{2}} \\
& =\frac{14 i}{2 \sqrt{2}(-1)} \\
& =\frac{-7 i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{-7 \sqrt{2} i}{2}
\end{aligned}
$$

