

Class XII : Maths Chapter 2 : Inverse Trignometric Functions

Questions and Solutions | Exercise 2.1 - NCERT Books

Question 1:

Find the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$

Let $\sin^{-1}\left(-\frac{1}{2}\right) = y$. Then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \sin^{-1} is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]_{\text{and sin}} \left(-\frac{\pi}{6}\right) = -\frac{1}{2}.$$

Therefore, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

Question 2:

Find the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
. Then, $\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cos^{-1} is

$$[0,\pi]$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

Therefore, the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

Question 3:

Find the principal value of cosec⁻¹ (2)

Answer

Let
$$\operatorname{cosec}^{-1}(2) = y$$
. Then, $\operatorname{cosec} y = 2 = \operatorname{cosec}\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \csc^{-1} is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$.

Therefore, the principal value of $\csc^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4:

Find the principal value of $tan^{-1} \left(-\sqrt{3}\right)$

Answer

Let
$$\tan^{-1}(-\sqrt{3}) = y$$
. Then, $\tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan(-\frac{\pi}{3})$.

We know that the range of the principal value branch of tan⁻¹ is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.

Therefore, the principal value of $\tan^{-1}\left(\sqrt{3}\right)$ is $-\frac{\pi}{3}$.

Question 5:

Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

We know that the range of the principal value branch of \cos^{-1} is

$$[0,\pi]$$
 and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Question 6:

Find the principal value of $tan^{-1}(-1)$

Answer

$$\tan y = -1 = -\tan \left(\frac{\pi}{4}\right) = \tan \left(-\frac{\pi}{4}\right).$$
 Let $\tan^{-1}(-1) = y$. Then,

We know that the range of the principal value branch of tan⁻¹ is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{4}\right) = -1$.

Therefore, the principal value of
$$\tan^{-1}(-1)$$
 is $-\frac{\pi}{4}$.

Question 7:

Find the principal value of
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 Answer

Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
. Then, $\sec y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of sec^{-1} is

$$\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$$
 and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.

$$sec^{-l}\!\left(\!\frac{2}{\sqrt{3}}\right)is\;\frac{\pi}{6}.$$
 Therefore, the principal value of

Question 8:

Find the principal value of $\cot^{-1}(\sqrt{3})$

Answer

Let
$$\cot^{-1}\left(\sqrt{3}\right) = y$$
. Then, $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cot^{-1} is $(0,\pi)$ and $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$.

Therefore, the principal value of $\cot^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.

Question 9:

Find the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
. Then, $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

We know that the range of the principal value branch of \cos^{-1} is $[0,\pi]$ and

$$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.

Question 10:

Find the principal value of $\csc^{-1}\left(-\sqrt{2}\right)$ Answer

Let
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = y$$
. Then, $\operatorname{cosec} y = -\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{4}\right) = \operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of cosec⁻¹ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 and $\operatorname{cosec}\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.

Therefore, the principal value of $\csc^{-1}\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$.

Question 11:

Find the value of $\tan^{-1}(1) + \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$

Let $\tan^{-1}(1) = x$. Then, $\tan x = 1 = \tan \frac{\pi}{4}$.

$$\therefore \tan^{-1}\left(1\right) = \frac{\pi}{4}$$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

$$\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = z$$
. Then, $\sin z = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \tan^{-1}\left(1\right) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

$$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$$

$$= \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$$

Question 12:

Find the value of $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$ Answer

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$.

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

Let
$$\sin^{-1}\left(\frac{1}{2}\right) = y$$
. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

Question 13:

Find the value of if $\sin^{-1} x = y$, then

(A)
$$0 \le y \le \pi$$
 (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

(C)
$$0 < y < \pi$$
 (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer

It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore,
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
.

Question 14:

Find the value of $tan^{-1}\sqrt{3}-sec^{-1}(-2)$ is equal to

(A)
$$\Pi$$
 (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$ Answer

Let $\tan^{-1}\sqrt{3} = x$. Then, $\tan x = \sqrt{3} = \tan\frac{\pi}{3}$.

We know that the range of the principal value branch of \tan^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

Let
$$\sec^{-1}(-2) = y$$
. Then, $\sec y = -2 = -\sec\left(\frac{\pi}{3}\right) = \sec\left(\pi - \frac{\pi}{3}\right) = \sec\frac{2\pi}{3}$.

We know that the range of the principal value branch of \sec^{-1} is $\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$.

$$\therefore \sec^{-1}\left(-2\right) = \frac{2\pi}{3}$$

Hence,
$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$

Class XII : Maths Chapter 2 : Inverse Trignometric Functions

Questions and Solutions | Exercise 2.2 - NCERT Books

Question 1:

Prove
$$3\sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2} \right]$$

Answer

To prove:
$$3\sin^{-1} x = \sin^{-1} \left(3x - 4x^3\right), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

Let $x = \sin \theta$. Then, $\sin^{-1} x = \theta$.

We have,

R.H.S. =
$$\sin^{-1}(3x - 4x^3) = \sin^{-1}(3\sin\theta - 4\sin^3\theta)$$

$$=\sin^{-1}(\sin 3\theta)$$

$$= 3\theta$$

$$= 3 \sin^{-1} x$$

Question 2:

Prove
$$3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

Answer

To prove:
$$3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

Let $x = \cos\theta$. Then, $\cos^{-1} x = \theta$.

We have,

R.H.S. =
$$\cos^{-1}(4x^3 - 3x)$$

= $\cos^{-1}(4\cos^3\theta - 3\cos\theta)$
= $\cos^{-1}(\cos 3\theta)$
= 3θ
= $3\cos^{-1}x$
= L.H.S.

Question 3:

Write the function in the simplest form:

$$\tan^{-1}\frac{\sqrt{1+x^2}-1}{x}, \ x \neq 0$$

Answer

$$\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$$

Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$

$$\therefore \tan^{-1} \frac{\sqrt{1+x^2} - 1}{x} = \tan^{-1} \left(\frac{\sqrt{1+\tan^2 \theta} - 1}{\tan \theta} \right)$$

$$= \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right)$$

$$= \tan^{-1} \left(\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} \right)$$

$$= \tan^{-1}\left(\tan\frac{\theta}{2}\right) = \frac{\theta}{2} = \frac{1}{2}\tan^{-1}x$$

Question 4:

&Saral

Write the function in the simplest form:

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$

Answer

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}}\right)$$

$$= \tan^{-1} \left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \right) = \tan^{-1} \left(\tan \frac{x}{2} \right)$$

$$=\frac{x}{2}$$

Question 5:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right), \frac{-\pi}{4} < x < \frac{3\pi}{4}$$

Answer

The given function is $\tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right)$

Now,

$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right) = \tan^{-1}\left(\frac{1 - \frac{\sin x}{\cos x}}{1 + \frac{\sin x}{\cos x}}\right) = \tan^{-1}\left(\frac{1 - \tan x}{1 + \tan x}\right)$$

$$= \tan^{-1} \left(\frac{1 - \tan x}{1 + 1 \cdot \tan x} \right) = \tan^{-1} \left(\frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \cdot \tan x} \right)$$

$$= \tan^{-1} \left[\tan \left(\frac{\pi}{4} - x \right) \right] = \frac{\pi}{4} - x$$

Question 6:

Write the function in the simplest form:

$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, |x| < a$$

Answer

$$\tan^{-1}\frac{x}{\sqrt{a^2-x^2}}$$

Put
$$x = a \sin \theta \Rightarrow \frac{x}{a} = \sin \theta \Rightarrow \theta = \sin^{-1} \left(\frac{x}{a}\right)$$

$$\therefore \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}} \right) = \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta} \right)$$

$$= \tan^{-1} \left(\tan \theta \right) = \theta = \sin^{-1} \frac{x}{a}$$

Question 7:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{3a^2x-x^3}{a^3-3ax^2}\right), \ a>0; \ \frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$$

Answer

12

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right)$$
Put $x = a \tan \theta \Rightarrow \frac{x}{a} = \tan \theta \Rightarrow \theta = \tan^{-1}\frac{x}{a}$

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) = \tan^{-1}\left(\frac{3a^2 \cdot a \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a \cdot a^2 \tan^2 \theta}\right)$$

$$= \tan^{-1}\left(\frac{3a^3 \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a^3 \tan^2 \theta}\right)$$

$$= \tan^{-1}\left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}\right)$$

$$= \tan^{-1}\left(\tan 3\theta\right)$$

$$= 3\theta$$

$$= 3 \tan^{-1}\frac{x}{a}$$

Question 8:

Find the value of
$$\tan^{-1} \left[2 \cos \left(2 \sin^{-1} \frac{1}{2} \right) \right]$$
 Answer

Let
$$\sin^{-1}\frac{1}{2} = x$$
. Then,
$$\sin x = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right).$$
$$\therefore \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$
$$\therefore \tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6}\right)\right]$$
$$= \tan^{-1}\left[2\cos\frac{\pi}{3}\right] = \tan^{-1}\left[2\times\frac{1}{2}\right]$$
$$= \tan^{-1}1 = \frac{\pi}{4}$$

Find the value of $\cot(\tan^{-1} a + \cot^{-1} a)$

Answer

$$\cot\left(\tan^{-1} a + \cot^{-1} a\right)$$

$$= \cot\left(\frac{\pi}{2}\right) \qquad \left[\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}\right]$$

$$= 0$$

Question 9:

Find the value of
$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right]$$
, $|x| < 1$, $y > 0$ and $xy < 1$

Let
$$x = \tan \theta$$
. Then, $\theta = \tan^{-1} x$.

Let
$$y = \tan \Phi$$
. Then, $\Phi = \tan^{-1} y$.

$$\therefore \cos^{-1} \frac{1 - y^2}{1 + y^2} = \cos^{-1} \left(\frac{1 - \tan^2 \phi}{1 + \tan^2 \phi} \right) = \cos^{-1} \left(\cos 2\phi \right) = 2\phi = 2 \tan^{-1} y$$

$$\therefore \tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right]$$

$$= \tan \frac{1}{2} \Big[2 \tan^{-1} x + 2 \tan^{-1} y \Big]$$

$$= \tan \left[\tan^{-1} x + \tan^{-1} y \right]$$

$$= \tan \left[\tan^{-1} \left(\frac{x+y}{1-xy} \right) \right]$$

$$=\frac{x+y}{1-xy}$$

Question 10:

Find the values of $\sin^{-1} \left(\sin \frac{2\pi}{3} \right)$

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

We know that $\sin^{-1}(\sin x) = x$ if $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin^{-1}x$.

$$\underset{\text{Here, }}{\frac{2\pi}{3}} \not\in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

Now,
$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$
 can be written as:

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin\frac{\pi}{3}\right) \text{ where } \frac{\pi}{3} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

$$\therefore \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$$

Question 11:

Find the values of $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$ Answer

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $tan^{-1}x$

$$\frac{3\pi}{4} \notin \left(\frac{-\pi}{2}, \frac{\pi}{2}\right).$$
 Here,

Now,
$$\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$$
 can be written as:

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left[-\tan\left(\frac{-3\pi}{4}\right)\right] = \tan^{-1}\left[-\tan\left(\pi - \frac{\pi}{4}\right)\right]$$
$$= \tan^{-1}\left[-\tan\frac{\pi}{4}\right] = \tan^{-1}\left[\tan\left(-\frac{\pi}{4}\right)\right] \text{ where } -\frac{\pi}{4} \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

$$\therefore \tan^{-1} \left(\tan \frac{3\pi}{4} \right) = \tan^{-1} \left[\tan \left(\frac{-\pi}{4} \right) \right] = \frac{-\pi}{4}$$

Question 12:

Find the values of $\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right)$

Answer

Let
$$\sin^{-1}\frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \sin^2 x} = \frac{4}{5} \Rightarrow \sec x = \frac{5}{4}$.

$$\therefore \tan x = \sqrt{\sec^2 x - 1} = \sqrt{\frac{25}{16} - 1} = \frac{3}{4}$$

$$\therefore x = \tan^{-1} \frac{3}{4}$$

$$\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}$$
 ...(i

Now,
$$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$$
 ...(ii) $\tan^{-1} \frac{1}{x} = \cot^{-1} x$

Hence,
$$\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right)$$

$$= \tan \left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} \right)$$

$$\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3}\right)$$
 [Using (i) and (ii)]

$$= \tan \left(\tan^{-1} \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \cdot \frac{2}{3}} \right)$$

$$= \tan\left(\tan^{-1}\frac{9+8}{12-6}\right)$$

$$=\tan\left(\tan^{-1}\frac{17}{6}\right)=\frac{17}{6}$$

$$\[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \]$$

Question 13:

Find the values of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to

(A)
$$\frac{7\pi}{6}$$
 (B) $\frac{5\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos^{-1}x$.

Here,
$$\frac{7\pi}{6} \notin x \in [0, \pi]$$
.

Now, $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ can be written as:

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{-7\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi - \frac{7\pi}{6}\right)\right] \quad \left[\cos\left(2\pi + x\right) = \cos x\right]$$
$$= \cos^{-1}\left[\cos\frac{5\pi}{6}\right] \text{ where } \frac{5\pi}{6} \in [0, \pi]$$

$$\therefore \cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

The correct answer is B.

Question 14:

Find the values of $\sin\left(\frac{\pi}{3}-\sin^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) 1

Answer

Let
$$\sin^{-1}\left(\frac{-1}{2}\right) = x$$
. Then, $\sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\frac{-\pi}{6}\right)$.

We know that the range of the principal value branch of \sin^{-1} is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

$$\sin^{-1}\left(\frac{-1}{2}\right) = \frac{-\pi}{6}$$

$$\therefore \sin\left(\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

The correct answer is D.

Question 15:

 $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ is equal to

(A)
$$\pi$$
 (B) $-\frac{\pi}{2}$ (C)0 (D) $2\sqrt{3}$

Answer

Given that $\tan^{-1}\sqrt{3}-\cot^{-1}(-\sqrt{3})$

We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and \cot^{-1} is $(0, \pi)$.

$$\begin{aligned} & \therefore \tan^{-1} \sqrt{3} - \cot^{-1}(-\sqrt{3}) \\ &= \tan^{-1} \left(\tan \frac{\pi}{3} \right) - \cot^{-1} \left(-\cot \frac{\pi}{6} \right) \\ &= \frac{\pi}{3} - \cot^{-1} \left[\cot \left(\pi - \frac{\pi}{6} \right) \right] \\ &= \frac{\pi}{3} - \cot^{-1} \left(\cot \frac{5\pi}{6} \right) \\ &= \frac{\pi}{3} - \frac{5\pi}{6} = \frac{2\pi - 5\pi}{6} = -\frac{3\pi}{6} = -\frac{\pi}{2} \end{aligned}$$

Hence, $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3}) = -\frac{\pi}{2}$

Class XII : Maths Chapter 2 : Inverse Trignometric Functions

Questions and Solutions | Miscellaneous Exercise 2 - NCERT Books

Question 1:

Find the value of $\cos^{-1} \left(\cos \frac{13\pi}{6} \right)$

Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos^{-1}x$.

Here,
$$\frac{13\pi}{6} \notin [0, \pi]$$
.

Now, $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ can be written as:

$$\cos^{-1}\!\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\!\left[\cos\!\left(2\pi + \frac{\pi}{6}\right)\right] = \cos^{-1}\!\left[\cos\!\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in \left[0, \pi\right].$$

$$\therefore \cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right] = \frac{\pi}{6}$$

Question 2:

Find the value of $\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$.

$$\frac{7\pi}{6} \not\in \left(-\frac{\pi}{2}, \ \frac{\pi}{2}\right).$$
 Here,

Now,
$$\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$$
 can be written as:

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left[\tan\left(2\pi - \frac{5\pi}{6}\right)\right] \qquad \left[\tan\left(2\pi - x\right) = -\tan x\right]$$

$$= \tan^{-1}\left[-\tan\left(\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(-\frac{5\pi}{6}\right)\right] = \tan^{-1}\left[\tan\left(\pi - \frac{5\pi}{6}\right)\right]$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\therefore \tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\frac{\pi}{6}\right) = \frac{\pi}{6}$$

Question 3:

Prove
$$2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$$

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5}$.

$$\Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$$

$$\therefore \tan x = \frac{3}{4}$$

$$\therefore x = \tan^{-1} \frac{3}{4} \Rightarrow \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$$

Now, we have:

L.H.S. =
$$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$$

= $\tan^{-1}\left(\frac{2\times\frac{3}{4}}{1-\left(\frac{3}{4}\right)^2}\right)$ $\left[2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}\right]$
= $\tan^{-1}\left(\frac{\frac{3}{2}}{\frac{16-9}{16}}\right) = \tan^{-1}\left(\frac{3}{2}\times\frac{16}{7}\right)$
= $\tan^{-1}\frac{24}{7} = \text{R.H.S.}$

Question 4:

Prove
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

Let
$$\sin^{-1}\frac{8}{17} = x$$
. Then, $\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{\frac{225}{289}} = \frac{15}{17}$.

$$\therefore \tan x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$$

$$\therefore \sin^{-1} \frac{8}{17} = \tan^{-1} \frac{8}{15} \qquad ...(1$$

Now, let
$$\sin^{-1} \frac{3}{5} = y$$
. Then, $\sin y = \frac{3}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

$$\therefore \tan y = \frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$$

$$\therefore \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4} \qquad ...(2)$$

Now, we have:

L.H.S. =
$$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}}$
= $\tan^{-1} \left(\frac{32 + 45}{60 - 24}\right)$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{77}{36} = \text{R.H.S.}$

Question 5:

Prove
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Answer

Let
$$\cos^{-1} \frac{4}{5} = x$$
. Then, $\cos x = \frac{4}{5} \Rightarrow \sin x = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$.

$$\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$$

$$\therefore \cos^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4} \qquad ...(1)$$

Now, let $\cos^{-1} \frac{12}{13} = y$. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$

$$\therefore \cos^{-1} \frac{12}{13} = \tan^{-1} \frac{5}{12} \qquad ...(2)$$

Let
$$\cos^{-1} \frac{33}{65} = z$$
. Then, $\cos z = \frac{33}{65} \Rightarrow \sin z = \frac{56}{65}$.

$$\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$$

$$\therefore \cos^{-1} \frac{33}{65} = \tan^{-1} \frac{56}{33} \qquad ...(3)$$

Now, we will prove that:

L.H.S. =
$$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$$

= $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{5}{12}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{36 + 20}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\tan^{-1} \frac{56}{33}$ [by (3)]
= R.H.S.

Question 6:

Prove
$$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$$

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

$$\therefore \tan x = \frac{3}{4} \Longrightarrow x = \tan^{-1} \frac{3}{4}$$

$$\therefore \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4} \qquad ...(1$$

Now, let
$$\cos^{-1} \frac{12}{13} = y$$
. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$

$$\therefore \cos^{-1} \frac{12}{13} = \tan^{-1} \frac{5}{12} \qquad \dots (2)$$

Let
$$\sin^{-1} \frac{56}{65} = z$$
. Then, $\sin z = \frac{56}{65} \Rightarrow \cos z = \frac{33}{65}$.

$$\therefore \tan z = \frac{56}{33} \Longrightarrow z = \tan^{-1} \frac{56}{33}$$

$$\therefore \sin^{-1} \frac{56}{65} = \tan^{-1} \frac{56}{33} \qquad \dots (3)$$

Now, we have:

L.H.S. =
$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{12} \cdot \frac{3}{4}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{20 + 36}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\sin^{-1} \frac{56}{65}$ = R.H.S. [Using (3)]

Question 7:

Prove
$$\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

Answer

Let
$$\sin^{-1} \frac{5}{13} = x$$
. Then, $\sin x = \frac{5}{13} \Rightarrow \cos x = \frac{12}{13}$.

$$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$$

$$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12} \qquad ...(1)$$

Let
$$\cos^{-1} \frac{3}{5} = y$$
. Then, $\cos y = \frac{3}{5} \Rightarrow \sin y = \frac{4}{5}$.

$$\therefore \tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$$

$$\therefore \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{4}{3} \qquad ...(2)$$

Using (1) and (2), we have

R.H.S. =
$$\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
= $\tan^{-1} \left(\frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right)$
= $\tan^{-1} \left(\frac{15 + 48}{36 - 20} \right)$
= $\tan^{-1} \frac{63}{16}$
= L.H.S.

$$\[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \]$$

Question 8:

Prove
$$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left(\frac{1-x}{1+x} \right), x \in [0, 1]$$

Let
$$x = \tan^2 \theta$$
. Then, $\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$.

$$\therefore \frac{1-x}{1+x} = \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \cos 2\theta$$

Now, we have:

R.H.S. =
$$\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\cos^{-1}\left(\cos 2\theta\right) = \frac{1}{2} \times 2\theta = \theta = \tan^{-1}\sqrt{x} = \text{L.H.S.}$$

Question 9:

Prove
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in \left(0, \frac{\pi}{4}\right)$$

Answe.

Consider $\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$

$$= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2 - \left(\sqrt{1-\sin x}\right)^2} \qquad \text{(by rationalizing)}$$

$$= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x - 1+\sin x}$$

$$= \frac{2\left(1+\sqrt{1-\sin^2 x}\right)}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$= \cot\frac{x}{2}$$

$$\therefore \text{L.H.S.} = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \cot^{-1}\left(\cot\frac{x}{2}\right) = \frac{x}{2} = \text{R.H.S.}$$

Question 10:

Prove
$$\tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x, -\frac{1}{\sqrt{2}} \le x \le 1 \text{ [Hint: put} x = \cos 2\theta \text{]}$$
 Answel

Class XII MATH www.esaral.com 26

Put $x = \cos 2\theta$ so that $\theta = \frac{1}{2}\cos^{-1}x$. Then, we have:

Question 11:

Solve
$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$$

Answer

$$2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$$

$$\Rightarrow \tan^{-1}\left(\frac{2\cos x}{1-\cos^2 x}\right) = \tan^{-1}\left(2\csc x\right) \qquad \left[2\tan^{-1} x = \tan^{-1}\frac{2x}{1-x^2}\right]$$

$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}$$

$$\Rightarrow \frac{2\cos x}{1-\cos^2 x} = 2\csc x$$

$$\Rightarrow \frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x}$$

$$\Rightarrow \cos x = \sin x$$

$$\Rightarrow \tan x = 1$$

$$\therefore x = \frac{\pi}{4}$$

Question 12:

Solve
$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x, (x > 0)$$

$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \tan \frac{\pi}{6}$$

$$\therefore x = \frac{1}{\sqrt{3}}$$

Question 13:

Solve $\sin(\tan^{-1}x)$, |x| < 1 is equal to

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Let $\tan^{-1} x = y$. Then, $\tan y = x \Rightarrow \sin y = \frac{x}{\sqrt{1 + x^2}}$. $\therefore y = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}}\right) \Rightarrow \tan^{-1} x = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}}\right)$ $\therefore \sin\left(\tan^{-1} x\right) = \sin\left(\sin^{-1} \frac{x}{\sqrt{1 + x^2}}\right) = \frac{x}{\sqrt{1 + x^2}}$

The correct answer is D.

Question 14:

Solve $\sin^{-1}(1-x)-2\sin^{-1}x=\frac{\pi}{2}$, then *x* is equal to

(A)
$$0, \frac{1}{2}$$
(B) $1, \frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$

Answer

$$\sin^{-1}(1-x)-2\sin^{-1}x=\frac{\pi}{2}$$

$$\Rightarrow$$
 $-2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$

$$\Rightarrow -2\sin^{-1}x = \cos^{-1}(1-x)$$

Let
$$\sin^{-1} x = \theta \Rightarrow \sin \theta = x \Rightarrow \cos \theta = \sqrt{1 - x^2}$$
.

$$\therefore \theta = \cos^{-1}\left(\sqrt{1-x^2}\right)$$

$$\therefore \sin^{-1} x = \cos^{-1} \left(\sqrt{1 - x^2} \right)$$

Therefore, from equation (1), we have

$$-2\cos^{-1}\left(\sqrt{1-x^2}\right) = \cos^{-1}\left(1-x\right)$$

Put $x = \sin y$. Then, we have:

$$-2\cos^{-1}\left(\sqrt{1-\sin^2 y}\right) = \cos^{-1}\left(1-\sin y\right)$$

$$\Rightarrow$$
 $-2\cos^{-1}(\cos y) = \cos^{-1}(1-\sin y)$

$$\Rightarrow -2y = \cos^{-1}(1-\sin y)$$

$$\Rightarrow 1 - \sin y = \cos(-2y) = \cos 2y$$

$$\Rightarrow 1 - \sin y = 1 - 2\sin^2 y$$

$$\Rightarrow 2\sin^2 y - \sin y = 0$$

$$\Rightarrow \sin y (2\sin y - 1) = 0$$

$$\Rightarrow \sin y = 0 \text{ or } \frac{1}{2}$$

$$\therefore x = 0 \text{ or } x = \frac{1}{2}$$

But, when $x = \frac{1}{2}$, it can be observed that:

L.H.S. =
$$\sin^{-1}\left(1 - \frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$$

= $\sin^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\frac{1}{2}$
= $-\sin^{-1}\frac{1}{2}$
= $-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text{R.H.S.}$

$$\therefore x = \frac{1}{2}$$
 is not the solution of the given equation.
Thus, $x = 0$.

Thus, x = 0.

Hence, the correct answer is **C**.