Å

### Class XII : Maths Chapter 4 : Determinants

Questions and Solutions | Exercise 4.1 - NCERT Books

**Question 1:** 

Evaluate the determinants in Exercises 1 and 2.

 $\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$ 

Answer

$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$$

**Question 2:** 

Evaluate the determinants in Exercises 1 and 2.

(i) 
$$\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$$
 (ii)  $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$ 

Answer

$$\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} = (\cos\theta)(\cos\theta) - (-\sin\theta)(\sin\theta) = \cos^{2}\theta + \sin^{2}\theta = 1 \\ \begin{vmatrix} x^{2} - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$$

$$= (x^{2} - x + 1)(x + 1) - (x - 1)(x + 1) \\ = x^{3} - x^{2} + x + x^{2} - x + 1 - (x^{2} - 1) \\ = x^{3} + 1 - x^{2} + 1 \\ = x^{3} - x^{2} + 2$$

**Question 3:** 

 $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}, \text{ then show that } |2A| = 4|A|$ Answer

 $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}.$ The given matrix is

Å

$$\therefore 2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$$
  
$$\therefore L.H.S. = |2A| = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 2 \times 4 - 4 \times 8 = 8 - 32 = -24$$
  
Now,  $|A| = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 1 \times 2 - 2 \times 4 = 2 - 8 = -6$   
$$\therefore R.H.S. = 4|A| = 4 \times (-6) = -24$$
  
$$\therefore L.H.S. = R.H.S.$$

**Question 4:** 

 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}, \text{ then show that } |3A| = 27|A|.$ 

Answer

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

The given matrix is

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column  $(C_1)$  for easier calculation.

$$|A| = 1 \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 0 & 4 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = 1(4-0) - 0 + 0 = 4$$
  

$$\therefore 27 |A| = 27(4) = 108 \qquad \dots(i)$$
  
Now,  $3A = 3 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$   

$$\therefore |3A| = 3 \begin{vmatrix} 3 & 6 \\ 0 & 12 \end{vmatrix} - 0 \begin{vmatrix} 0 & 3 \\ 0 & 12 \end{vmatrix} + 0 \begin{vmatrix} 0 & 3 \\ 3 & 6 \end{vmatrix}$$
  

$$= 3(36-0) = 3(36) = 108 \qquad \dots(ii)$$

From equations (i) and (ii), we have:

$$\left|3A\right| = 27\left|A\right|$$

Hence, the given result is proved.

Å

## **∛Saral**

**Question 5:** Evaluate the determinants

$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix} \begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$$
  
(ii) 
$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix} (iv) \begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$

Answer

(i) Let 
$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

$$|A| = -0\begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 0\begin{vmatrix} 3 & -2 \\ 3 & 0 \end{vmatrix} - (-1)\begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix} = (-15+3) = -12$$
  
(ii) Let  
$$A = \begin{bmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{bmatrix}.$$
By expanding along the first row, we have:

$$|A| = 3\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} + 4\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$$
$$= 3(1+6) + 4(1+4) + 5(3-2)$$
$$= 3(7) + 4(5) + 5(1)$$

$$= 21 + 20 + 5 = 46$$

Class XII MATH

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}.$$
  
(iii) Let  
By expanding along the first row, we have:

$$|A| = 0 \begin{vmatrix} 0 & -3 \\ 3 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & -3 \\ -2 & 0 \end{vmatrix} + 2 \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}$$
$$= 0 - 1(0 - 6) + 2(-3 - 0)$$

$$= -1(-6) + 2(-3)$$
$$= 6 - 6 = 0$$
$$A = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}.$$

(iv) Let

By expanding along the first column, we have:

$$|A| = 2\begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} - 0\begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 3\begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix}$$
$$= 2(0-5) - 0 + 3(1+4)$$
$$= -10 + 15 = 5$$

**Question 6:** 

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}, \text{ find} |A|.$$

Answer

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}.$$
  
Let

By expanding along the first row, we have:

$$|A| = 1 \begin{vmatrix} 1 & -3 \\ 4 & -9 \end{vmatrix} - 1 \begin{vmatrix} 2 & -3 \\ 5 & -9 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$
  
= 1(-9+12)-1(-18+15)-2(8-5)  
= 1(3)-1(-3)-2(3)  
= 3+3-6  
= 6-6  
= 0

Question 7:

Find values of x, if

(i) 
$$\begin{vmatrix} 2 & 4 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
 (ii)  $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$ 

Answer

$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
  

$$\Rightarrow 2 \times 1 - 5 \times 4 = 2x \times x - 6 \times 4$$
  

$$\Rightarrow 2 - 20 = 2x^{2} - 24$$
  

$$\Rightarrow 2x^{2} = 6$$
  

$$\Rightarrow x^{2} = 3$$
  

$$\Rightarrow x = \pm \sqrt{3}$$
  
(ii) 
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$
  

$$\Rightarrow 2 \times 5 - 3 \times 4 = x \times 5 - 3 \times 2x$$
  

$$\Rightarrow 10 - 12 = 5x - 6x$$
  

$$\Rightarrow -2 = -x$$
  

$$\Rightarrow x = 2$$

**Question 8:** 

If  $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ , then x is equal to

(A) 6 (B) ±6 (C) -6 (D) 0 Answer

Answer: B

$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
$$\Rightarrow x^2 - 36 = 36 - 36$$
$$\Rightarrow x^2 - 36 = 0$$
$$\Rightarrow x^2 = 36$$
$$\Rightarrow x = \pm 6$$

Hence, the correct answer is B.

Д

### Class XII : Maths Chapter 4 : Determinants

### Questions and Solutions | Exercise 4.2 - NCERT Books

**Question 1:** 

Find area of the triangle with vertices at the point given in each of the following:

(i) (1, 0), (6, 0), (4, 3) (ii) (2, 7), (1, 1), (10, 8)

(iii) (-2, -3), (3, 2), (-1, -8)

### Answer

(i) The area of the triangle with vertices (1, 0), (6, 0), (4, 3) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1(0-3) - 0(6-4) + 1(18-0) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -3+18 \end{bmatrix} = \frac{15}{2} \text{ square units}$$

(ii) The area of the triangle with vertices (2, 7), (1, 1), (10, 8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2(1-8) - 7(1-10) + 1(8-10) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2(-7) - 7(-9) + 1(-2) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -14 + 63 - 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -16 + 63 \end{bmatrix}$$
$$= \frac{47}{2} \text{ square units}$$

(iii) The area of the triangle with vertices (-2, -3), (3, 2), (-1, -8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} -2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -2(2+8) + 3(3+1) + 1(-24+2) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -2(10) + 3(4) + 1(-22) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -20 + 12 - 22 \end{bmatrix}$$
$$= -\frac{30}{2} = -15$$

Class XII MATH

Ă

Hence, the area of the triangle is |-15| = 15 square units .

**Question 2:** 

Show that points

A(a, b+c), B(b, c+a), C(c, a+b) are collinear

### Answer

Area of  $\triangle ABC$  is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b-a & a-b & 0 \\ c-a & a-c & 0 \end{vmatrix}$$
 (Applying  $R_2 \rightarrow R_2 - R_1$  and  $R_3 \rightarrow R_3 - R_1$ )
$$= \frac{1}{2} (a-b)(c-a) \begin{vmatrix} a & b+c & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= \frac{1}{2} (a-b)(c-a) \begin{vmatrix} a & b+c & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix}$$
 (Applying  $R_3 \rightarrow R_3 + R_2$ )
$$= 0$$
 (All elements of  $R_3$  are 0)

Thus, the area of the triangle formed by points A, B, and C is zero. Hence, the points A, B, and C are collinear.

Å

### **∛S**aral

**Question 3:** 

Find values of k if area of triangle is 4 square units and vertices are (i) (k, 0), (4, 0), (0, 2) (ii) (-2, 0), (0, 4), (0, k)Answer

We know that the area of a triangle whose vertices are  $(x_1, y_1)$ ,  $(x_2, y_2)$ , and  $(x_3, y_3)$  is the absolute value of the determinant ( $\Delta$ ), where

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

It is given that the area of triangle is 4 square units.

$$\therefore \Delta = \pm 4.$$

(i) The area of the triangle with vertices (k, 0), (4, 0), (0, 2) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} k (0-2) - 0(4-0) + 1(8-0) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -2k+8 \end{bmatrix} = -k+4$$
$$\therefore -k+4 = \pm 4$$
When  $-k+4 = \pm 4$ When  $-k+4 = -4$ ,  $k = 8$ .

When -k + 4 = 4, k = 0. Hence, k = 0, 8.

# <mark>∛</mark>Saral

(ii) The area of the triangle with vertices (-2, 0), (0, 4), (0, k) is given by the relation,

 $\frac{1}{2} \begin{vmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{vmatrix}$  $= \frac{1}{2} \Big[ -2(4-k) \Big]$ = k - 4 $\therefore k - 4 = \pm 4$ When k - 4 = -4, k = 0. When k - 4 = 4, k = 8. Hence, k = 0, 8.

**Question 4:** 

(i) Find equation of line joining (1, 2) and (3, 6) using determinants

(ii) Find equation of line joining (3, 1) and (9, 3) using determinants

Answer

(i) Let P (x, y) be any point on the line joining points A (1, 2) and B (3, 6). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\begin{array}{c} \therefore \frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1 \end{vmatrix} = 0 \\ \Rightarrow \frac{1}{2} \left[ 1(6-y) - 2(3-x) + 1(3y-6x) \right] = 0 \\ \Rightarrow 6-y-6+2x+3y-6x = 0 \\ \Rightarrow 2y-4x = 0 \\ \Rightarrow y = 2x \end{array}$$

Hence, the equation of the line joining the given points is y = 2x. (ii) Let P (x, y) be any point on the line joining points A (3, 1) and

B (9, 3). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\therefore \frac{1}{2} \begin{vmatrix} 3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0 \Rightarrow \frac{1}{2} [3(3-y) - 1(9-x) + 1(9y - 3x)] = 0 \Rightarrow 9 - 3y - 9 + x + 9y - 3x = 0 \Rightarrow 6y - 2x = 0 \Rightarrow x - 3y = 0$$

Hence, the equation of the line joining the given points is x - 3y = 0.

#### **Question 5:**

If area of triangle is 35 square units with vertices (2, -6), (5, 4), and (k, 4). Then k is **A.** 12 **B.** -2 **C.** -12, -2 **D.** 12, -2

Answer

#### Answer: D

The area of the triangle with vertices (2, -6), (5, 4), and (k, 4) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2(4-4) + 6(5-k) + 1(20-4k) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 30 - 6k + 20 - 4k \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 50 - 10k \end{bmatrix}$$
$$= 25 - 5k$$

It is given that the area of the triangle is  $\pm 35$ .

Therefore, we have:

 $\Rightarrow 25-5k = \pm 35$   $\Rightarrow 5(5-k) = \pm 35$   $\Rightarrow 5-k = \pm 7$ When 5 - k = -7, k = 5 + 7 = 12. When 5 - k = 7, k = 5 - 7 = -2. Hence, k = 12, -2. The correct answer is D.

### Class XII : Maths Chapter 4 : Determinants

Questions and Solutions | Exercise 4.3 - NCERT Books

#### **Question 1:**

Write Minors and Cofactors of the elements of following determinants:

(i)  $\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$  (ii)  $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$ 

Answer

(i) The given determinant is  $\begin{bmatrix} 2 & -4 \\ 0 & 3 \end{bmatrix}$ Minor of element  $a_{ij}$  is  $M_{ij}$ .

 $\therefore M_{11} = \text{minor of element } a_{11} = 3$ 

 $M_{12}$  = minor of element  $a_{12}$  = 0  $M_{21}$  = minor of element  $a_{21}$  = -4  $M_{22}$  = minor of element  $a_{22}$  = 2 Cofactor of  $a_{ij}$  is  $A_{ij}$  =  $(-1)^{i+j} M_{ij}$ .

$$\therefore A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$$

 $\begin{aligned} A_{12} &= (-1)^{1+2} M_{12} = (-1)^3 (0) = 0\\ A_{21} &= (-1)^{2+1} M_{21} = (-1)^3 (-4) = 4\\ A_{22} &= (-1)^{2+2} M_{22} = (-1)^4 (2) = 2\\ \end{aligned}$ (ii) The given determinant is  $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$ . Minor of element  $a_{ij}$  is  $M_{ij}$ .

Å

 $\therefore M_{11} = \text{minor of element } a_{11} = d$ 

 $M_{12}$  = minor of element  $a_{12} = b$   $M_{21}$  = minor of element  $a_{21} = c$   $M_{22}$  = minor of element  $a_{22} = a$ Cofactor of  $a_{ij}$  is  $A_{ij} = (-1)^{i+j} M_{ij}$ .

$$\therefore A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (d) = d$$

 $A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (b) = -b$   $A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (c) = -c$  $A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (a) = a$ 

**Question 2:** 

Answer

$$1 0 0 \\
 0 1 0 \\
 0 0 1$$

(i) The given determinant is  $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ .

By the definition of minors and cofactors, we have:

$$M_{11} = \text{ minor of } a_{11} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$
$$M_{12} = \text{ minor of } a_{12} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

Class XII MATH

 $\mathsf{M}_{13} = \text{ minor of } a_{13} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0$  $\mathsf{M}_{21} = \text{ minor of } a_{21} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$  $M_{22} = \text{minor of } a_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$  $M_{23} = \text{minor of } a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$  $M_{31} = \text{minor of } a_{31} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0$  $M_{32} = \text{minor of } a_{32} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$  $M_{33} = \text{minor of } a_{33} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1$  $A_{11} = \text{cofactor of } a_{11} = (-1)^{1+1} M_{11} = 1$  $A_{12} = \text{cofactor of } a_{12} = (-1)^{1+2} M_{12} = 0$  $A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = 0$  $A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 0$  $A_{22} = \text{cofactor of } a_{22} = (-1)^{2+2} M_{22} = 1$  $A_{23} = cofactor of a_{23} = (-1)^{2+3} M_{23} = 0$  $A_{31} = \text{cofactor of } a_{31} = (-1)^{3+1} M_{31} = 0$  $A_{32} = \text{cofactor of } a_{32} = (-1)^{3+2} M_{32} = 0$  $A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = 1$ 1 0 4 3 5 -1 (ii) The given determinant is  $\begin{vmatrix} 0 & 1 & 2 \end{vmatrix}$ 

By definition of minors and cofactors, we have:

M<sub>11</sub> = minor of 
$$a_{11} = \begin{vmatrix} 5 & -1 \\ 1 & 2 \end{vmatrix} = 10 + 1 = 11$$

 $M_{12} = \text{minor of } a_{12} = \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix} = 6 - 0 = 6$ M<sub>13</sub> = minor of  $a_{13} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$ M<sub>21</sub> = minor of  $a_{21} = \begin{vmatrix} 0 & 4 \\ 1 & 2 \end{vmatrix} = 0 - 4 = -4$ M<sub>22</sub> = minor of  $a_{22}$  =  $\begin{vmatrix} 1 & 4 \\ 0 & 2 \end{vmatrix} = 2 - 0 = 2$  $M_{23} = \text{minor of } a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$  $M_{31} = \text{minor of } a_{31} = \begin{vmatrix} 0 & 4 \\ 5 & -1 \end{vmatrix} = 0 - 20 = -20$ M<sub>32</sub> = minor of  $a_{32} = \begin{vmatrix} 1 & 4 \\ 3 & -1 \end{vmatrix} = -1 - 12 = -13$  $M_{33} = \text{minor of } a_{33} = \begin{vmatrix} 1 & 0 \\ 3 & 5 \end{vmatrix} = 5 - 0 = 5$  $A_{11} = \text{cofactor of } a_{11} = (-1)^{1+1} M_{11} = 11$  $A_{12} = \text{cofactor of } a_{12} = (-1)^{1+2} M_{12} = -6$  $A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = 3$  $A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 4$  $A_{22} = cofactor of a_{22} = (-1)^{2+2} M_{22} = 2$  $A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -1$  $A_{31} = \text{cofactor of } a_{31} = (-1)^{3+1} M_{31} = -20$  $A_{32} = \text{cofactor of } a_{32} = (-1)^{3+2} M_{32} = 13$  $A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = 5$ 

5 3 8

Å

**Question 3:** 

Using Cofactors of elements of second row, evaluate  $\Delta = \begin{vmatrix} 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$ . Answer  $\begin{vmatrix} 5 & 3 & 8 \end{vmatrix}$ 

The given determinant is  $\begin{vmatrix} 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$ . We have:

$$\mathsf{M}_{21} = \begin{vmatrix} 3 & 8 \\ 2 & 3 \end{vmatrix} = 9 - 16 = -7$$

 $\therefore A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 7$ 

$$\mathsf{M}_{22} = \begin{vmatrix} 5 & 8 \\ 1 & 3 \end{vmatrix} = 15 - 8 = 7$$

$$A_{22} = \text{cofactor of } a_{22} = (-1)^{2+2} M_{22} = 7$$

$$M_{23} = \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} = 10 - 3 = 7$$

 $\therefore A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -7$ 

We know that  $\Delta$  is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$\therefore \Delta = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = 2(7) + 0(7) + 1(-7) = 14 - 7 = 7$$

Å

**Question 4:** 

| 1                                                                                                                                                                     | х | yz |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| Using Cofactors of elements of third column, evaluate $\Delta = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$                                                            | у | zx |
| Answer 1                                                                                                                                                              | z | xy |
| 1 x yz                                                                                                                                                                |   |    |
| The given determinant is $\begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$ .<br>We have:                                                         |   |    |
| We have: $\begin{vmatrix} 1 & z & xy \end{vmatrix}$                                                                                                                   |   |    |
| $M_{13} = \begin{vmatrix} 1 & y \\ 1 & z \end{vmatrix} = z - y$ $M_{23} = \begin{vmatrix} 1 & x \\ 1 & z \end{vmatrix} = z - x$ $\begin{vmatrix} 1 & x \end{vmatrix}$ |   |    |
| $M_{33} = \begin{vmatrix} 1 & x \\ 1 & y \end{vmatrix} = y - x$                                                                                                       |   |    |

 $\therefore A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = (z - y)$ 

A<sub>23</sub> = cofactor of  $a_{23} = (-1)^{2+3}$  M<sub>23</sub> = -(z - x) = (x - z)A<sub>33</sub> = cofactor of  $a_{33} = (-1)^{3+3}$  M<sub>33</sub> = (y - x)

We know that  $\Delta$  is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

#### JEE | NEET | CLASS 8 - 10 Download eSaral APP

A

### **∛S**aral

$$\therefore \Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33} = yz(z-y) + zx(x-z) + xy(y-x) = yz^2 - y^2z + x^2z - xz^2 + xy^2 - x^2y = (x^2z - y^2z) + (yz^2 - xz^2) + (xy^2 - x^2y) = z(x^2 - y^2) + z^2(y-x) + xy(y-x) = z(x-y)(x+y) + z^2(y-x) + xy(y-x) = (x-y)[zx + zy - z^2 - xy] = (x-y)[z(x-z) + y(z-x)] = (x-y)(z-x)[-z+y] = (x-y)(y-z)(z-x)$$

Hence,  $\Delta = (x-y)(y-z)(z-x)$ .

Question 5: If  $\Delta = \begin{vmatrix} a_{21} & a_{22} & a_{23} \end{vmatrix} A_{ij}$  is Cofactors of  $a_{ij}$ , then value of  $\Delta$  is given by  $a_{31}$   $a_{32}$   $a_{33}$ (A)  $a_{11}A_{11} + a_{12}A_{32} + a_{13}A_{33}$ (B)  $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$ (C)  $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$ (D)  $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$ Answer 5:  $|a_{11} \ a_{12} \ a_{13}|$ The value of  $|a_{21}|$  $a_{23}$  is given by:  $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$  $a_{22}$  $|a_{31}|$  $a_{32}$   $a_{33}$ Hence, the option (D) is correct.

Å

### Class XII : Maths Chapter 4 : Determinants

### Questions and Solutions | Exercise 4.4 - NCERT Books

#### Question 1:

Find adjoint of each of the matrices.

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 

Answer

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

We have,

$$A_{11} = 4, \ A_{12} = -3, \ A_{21} = -2, \ A_{22} = 1$$
  
$$\therefore adjA = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

**Question 2:** 

Find adjoint of each of the matrices.

| [1 | -1 | 2 |
|----|----|---|
| 2  | 3  | 5 |
| 2  | 0  | 1 |

Answer

Let 
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$
.

We have,

$$A_{11} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$
$$A_{12} = -\begin{vmatrix} 2 & 5 \\ -2 & 1 \end{vmatrix} = -(2 + 10) = -12$$
$$A_{13} = \begin{vmatrix} 2 & 3 \\ -2 & 0 \end{vmatrix} = 0 + 6 = 6$$

$$A_{21} = -\begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -(-1-0) = 1$$

$$A_{22} = \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = 1+4=5$$

$$A_{23} = -\begin{vmatrix} 1 & -1 \\ -2 & 0 \end{vmatrix} = -(0-2) = 2$$

$$A_{31} = \begin{vmatrix} -1 & 2 \\ -2 & 0 \end{vmatrix} = -5-6 = -11$$

$$A_{32} = -\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = -(5-4) = -1$$

$$A_{33} = \begin{vmatrix} 1 & -1 \\ 2 & 5 \end{vmatrix} = 3+2=5$$
Hence,  $adjA = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5 \end{bmatrix}.$ 

**Question 3:** 

Verify  $A(adj A) = (adj A) A = \begin{bmatrix} A \\ I \end{bmatrix}$ .

$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

Answer

Å

 $A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$ we have. |A| = -12 - (-12) = -12 + 12 = 0 $\therefore |A|I = 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Now,  $A_{11} = -6, A_{12} = 4, A_{21} = -3, A_{22} = 2$  $\therefore adjA = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$ Now,  $A(adjA) = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$  $=\begin{bmatrix} -12+12 & -6+6\\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$ Also,  $(adjA)A = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$  $= \begin{bmatrix} -12+12 & -18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 0

Hence, A(adjA) = (adjA)A = |A|I.

**Question 4:** 

Verify A(adj A) = (adj A) A = |A|I.  $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$ 

Answer

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$
$$|A| = 1(0-0) + 1(9+2) + 2(0-0) = 11$$
$$\therefore |A| I = 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Now,

$$A_{11} = 0, A_{12} = -(9+2) = -11, A_{13} = 0$$
  

$$A_{21} = -(-3-0) = 3, A_{22} = 3-2 = 1, A_{23} = -(0+1) = -11$$
  

$$A_{31} = 2-0 = 2, A_{32} = -(-2-6) = 8, A_{33} = 0+3 = 3$$
  

$$\therefore adjA = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

Now,

$$A(adjA) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 & 3+0-3 & 2+0+9 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Also,

$$(adjA) \cdot A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0+0+0 & 0+2+9 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$
Hence,  $A(adjA) = (adjA)A = |A|I.$ 

Class XII MATH

A

### **∛S**aral

Question 5: Find the inverse of each of the matrices (if it exists):  $\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$ 

Answer 5:

Here,  $A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$ , Therefore,  $A_{11} = 3$   $A_{12} = -4$   $A_{21} = 2$   $A_{22} = 2 |A| = 6 + 8 = 14 \neq 0 \Rightarrow A^{-1}$  exists.  $A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$ 

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

**Question 6:** 

Answer

Let 
$$A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

we have,

$$|A| = -2 + 15 = 13$$
  
Now,

$$A_{11} = 2, A_{12} = 3, A_{21} = -5, A_{22} = -1$$
  
$$\therefore adjA = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$
  
$$\therefore A^{-1} = \frac{1}{|A|}adjA = \frac{1}{13} \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

**Question 7:** 

Find the inverse of each of the matrices (if it exists).

| <b>[</b> 1            | 2               | 3                  |                                                                         |          |
|-----------------------|-----------------|--------------------|-------------------------------------------------------------------------|----------|
| 1<br>0<br>0           | 2               | 4                  |                                                                         |          |
| 0                     | 0               | 5                  |                                                                         |          |
| Answer                |                 |                    |                                                                         |          |
|                       | [1              | 2                  | 3                                                                       |          |
| Let A =               | 0               | 2                  | 4.                                                                      |          |
|                       | 0               | 0                  | 5                                                                       |          |
| We hav                | e,              |                    |                                                                         |          |
| A  = 1(1)             | 10-0)-          | 2(0-0              | ) + 3(0-0) = 10                                                         |          |
| Now,                  |                 |                    |                                                                         |          |
| $A_{11} = 10$         | 0 - 0 = 10      | $0, A_{12} = -$    | $-(0-0)=0, A_{13}=0$                                                    | -0 = 0   |
| $A_{21} = -$          | (10-0)          | = -10,             | $A_{22} = 5 - 0 = 5, A_{23} =$                                          | -(0-0)=0 |
| $A_{31} = 8$          | -6=2,           | $A_{32} = -($      | $(4-0) = -4, A_{33} = 2$                                                | -0 = 2   |
|                       | [10             | -10                | 2]                                                                      |          |
| ∴ adjA                | = 0             | 5                  | -4                                                                      |          |
| ţ.                    | lo              | 0                  | 2                                                                       |          |
|                       | _               | . [                | 10 -10 2]                                                               |          |
| $\therefore A^{-1} =$ | = <u>1</u> adj. | $A = \frac{1}{16}$ | $\begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$ |          |
|                       | A               | 10                 | 0 0 2                                                                   |          |

Class XII MATH

Question 8:

Find the inverse of each of the matrices (if it exists).

| [1                                          | 0                    | 0 ]                    |        |                        |                |           |    |
|---------------------------------------------|----------------------|------------------------|--------|------------------------|----------------|-----------|----|
| 3                                           | 3                    | 0                      |        |                        |                |           |    |
| $\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ | 2                    | -1                     |        |                        |                |           |    |
| Answer                                      |                      |                        |        |                        |                |           |    |
| Let $A =$                                   | [1                   | 0                      | 0      |                        |                |           |    |
| Let $A =$                                   | 3                    | 3                      | 0.     |                        |                |           |    |
|                                             | 5                    | 2                      | -1     |                        |                |           |    |
| We hav                                      | e,                   |                        |        |                        |                |           |    |
| A  = 1(-                                    | -3-0)-               | -0+0 =                 | -3     |                        |                |           |    |
| Now,                                        |                      |                        |        |                        |                |           |    |
| $A_{11} = -3$                               | -0 = -               | 3, A <sub>12</sub> =   | -(-3-  | 0) = 3, .              | $A_{13} = 6 -$ | -15 = -9  | ,  |
| $A_{21} = -($                               | (0-0) =              | = 0, A <sub>22</sub> = | = -1-0 | = -1, A                | $_{23} = -(2$  | (2-0) = - | -2 |
| $A_{31} = 0$ -                              | -0 = 0, 1            | $A_{32} = -($          | 0-0)=  | = 0, A <sub>33</sub> = | = 3 - 0 =      | - 3       |    |
|                                             | <b>−</b> 3           | 0                      | 0]     |                        |                |           |    |
| ∴ adjA =                                    | = 3                  | -1                     | 0      |                        |                |           |    |
|                                             | 9                    | -2                     | 3      |                        |                |           |    |
| $\therefore A^{-1} =$                       | 1 .                  | . 1                    | -3     | 0                      | 0              |           |    |
| $\therefore A^{-i} =$                       | $\frac{1}{ A }$ adj. | $4 = -\frac{1}{3}$     | 3      | -1                     | 0              |           |    |
|                                             | 1 1                  | l                      | 9      | -2                     | 3              |           |    |

Class XII MATH

Å

### **Question 9:**

Find the inverse of each of the matrices (if it exists).

| 2 | 1  | 3           |
|---|----|-------------|
| 4 | -1 | 3<br>0<br>1 |
| 7 | 2  | 1           |

#### Answer

|           | 2  | 1  | 3  |
|-----------|----|----|----|
| Let $A =$ | 4  | -1 | 0. |
|           | -7 | 2  | 1  |

We have,

$$|A| = 2(-1-0) - 1(4-0) + 3(8-7)$$
  
= 2(-1) - 1(4) + 3(1)  
= -2 - 4 + 3  
= -3

Now,

$$A_{11} = -1 - 0 = -1, A_{12} = -(4 - 0) = -4, A_{13} = 8 - 7 = 1$$
  

$$A_{21} = -(1 - 6) = 5, A_{22} = 2 + 21 = 23, A_{23} = -(4 + 7) = -11$$
  

$$A_{31} = 0 + 3 = 3, A_{32} = -(0 - 12) = 12, A_{33} = -2 - 4 = -6$$

$$\therefore adjA = \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|}adjA = -\frac{1}{3} \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

Question 10:

Find the inverse of each of the matrices (if it exists).

 $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ 

Answer

Let 
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$
.  
By expanding along  $C_1$ , we have:  
 $|A| = 1(8-6) - 0 + 3(3-4) = 2 - 3 = -1$   
Now,  
 $A_{11} = 8 - 6 = 2, A_{12} = -(0+9) = -9, A_{13} = 0 - 6 = -6$   
 $A_{21} = -(-4+4) = 0, A_{22} = 4 - 6 = -2, A_{23} = -(-2+3) = -1$   
 $A_{31} = 3 - 4 = -1, A_{32} = -(-3-0) = 3, A_{33} = 2 - 0 = 2$   
 $\therefore adjA = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix}$   
 $\therefore A^{-1} = \frac{1}{|A|}adjA = -\begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ 

1

Question 11:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & -\cos\alpha \end{bmatrix}$$

Answer

Let 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$
.

We have,

$$|A| = 1\left(-\cos^{2}\alpha - \sin^{2}\alpha\right) = -\left(\cos^{2}\alpha + \sin^{2}\alpha\right) = -1$$
  
Now,  

$$A_{11} = -\cos^{2}\alpha - \sin^{2}\alpha = -1, A_{12} = 0, A_{13} = 0$$
  

$$A_{21} = 0, A_{22} = -\cos\alpha, A_{23} = -\sin\alpha$$
  

$$A_{31} = 0, A_{32} = -\sin\alpha, A_{33} = \cos\alpha$$
  

$$\therefore adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix}$$
  

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = -\begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & -\cos\alpha \end{bmatrix}$$

Question 12:

$$A = \begin{bmatrix} 3 & & 7 \\ 2 & & 5 \end{bmatrix}_{\text{and}} B = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 8\\9 \end{bmatrix}$$
. Verify that  $(AB)^{-1} = B^{-1}A^{-1}$ 

Answer

Let  $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ .

We have,

$$|A| = 15 - 14 = 1$$

Now,

$$A_{11} = 5, A_{12} = -2, A_{21} = -7, A_{22} = 3$$
  
$$\therefore adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$
  
$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

Class XII MATH

Å

Now, let  $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$ . We have, |B| = 54 - 56 = -2  $\therefore adjB = \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$  $\therefore B^{-1} = \frac{1}{|B|}adjB = -\frac{1}{2}\begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{bmatrix}$ 

Now,

$$B^{-1}A^{-1} = \begin{bmatrix} -\frac{9}{2} & 4\\ \frac{7}{2} & -3 \end{bmatrix} \begin{bmatrix} 5 & -7\\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{45}{2} - 8 & \frac{63}{2} + 12\\ \frac{35}{2} + 6 & -\frac{49}{2} - 9 \end{bmatrix} = \begin{bmatrix} -\frac{61}{2} & \frac{87}{2}\\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (1)$$

Å

Then,

$$4B = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 18+49 & 24+63 \\ 12+35 & 16+45 \end{bmatrix}$$
$$= \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

Therefore, we have  $|AB| = 67 \times 61 - 87 \times 47 = 4087 - 4089 = -2$ .

Also,

$$adj (AB) = \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$
  
$$\therefore (AB)^{-1} = \frac{1}{|AB|} adj (AB) = -\frac{1}{2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (2)$$

From (1) and (2), we have:  $(AB)^{-1} = B^{-1}A^{-1}$ Hence, the given result is proved.

**Question 13:** 

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \text{ show that } A^2 - 5A + 7I = O. \text{ Hence find } A^{-1}.$$

Answer

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

$$\therefore A^{2} - 5A + 7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Hence,  $A^{2} - 5A + 7I = O$ .  

$$\therefore A \cdot A - 5A = -7I$$

$$\Rightarrow A \cdot A(A^{-1}) - 5I = -7A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{7}(A - 5I)$$

$$\Rightarrow A^{-1} = \frac{1}{7}\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \frac{1}{7}\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

Question 14:

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
, find the numbers *a* and *b* such that  $A^2 + aA + bI = O$ .  
Answer

Å

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
  
$$\therefore A^{2} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 9+2 & 6+2 \\ 3+1 & 2+1 \end{bmatrix} = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix}$$

Now,

$$A^{2} + aA + bI = O$$
  

$$\Rightarrow (AA) A^{-1} + aAA^{-1} + bIA^{-1} = O$$
  

$$\Rightarrow A(AA^{-1}) + aI + b(IA^{-1}) = O$$
  

$$\Rightarrow AI + aI + bA^{-1} = O$$
  

$$\Rightarrow A + aI = -bA^{-1}$$
  

$$\Rightarrow A^{-1} = -\frac{1}{b}(A + aI)$$
  
Post-multiplying by  $A^{-1}$  as  $|A| \neq 0$ 

Now,

$$A^{-1} = \frac{1}{|A|} a dj A = \frac{1}{1} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

We have:

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = -\frac{1}{b} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} + \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = -\frac{1}{b} \begin{bmatrix} 3+a & 2 \\ 1 & 1+a \end{bmatrix} = \begin{bmatrix} \frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b} \end{bmatrix}$$

Comparing the corresponding elements of the two matrices, we have:

$$\frac{-\frac{1}{b} = -1 \Longrightarrow b = 1}{\frac{-3-a}{b} = 1 \Longrightarrow -3 - a = 1 \Longrightarrow a = -4}$$

Hence, -4 and 1 are the required values of *a* and *b* respectively.

# <mark>∛S</mark>aral

Å

**Question 15:**  $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$  show that  $A^3 - 6A^2 + 5A + 11 I = 0$ . Hence, find For the matrix  $A^{-1.}$ Answer  $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$  $A^{2} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$  $\begin{bmatrix} 1+1+2 & 1+2-1 & 1-3+3 \\ 1+2-6 & 1+4+3 & 1-6-9 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ -3 & 8 \end{bmatrix}$ 1 -14 2-1+6 2-2-3 2+3+9 7 -3 14  $A^{3} = A^{2} \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ 4+2+2 4+4-1 4-6+3= -3+8-28 -3+16+14 -3-24-427-3+28 7-6-14 7+9+42  $=\begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \end{bmatrix}$ 32 -13 58

$$\begin{aligned} \therefore A^{3} - 6A^{2} + 5A + 11I \\ = \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - 6\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} + 5\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 11\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15 \end{bmatrix} + \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \\ = \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O \\ Thus, A^{3} - 6A^{2} + 5A + 11I = O \\ \Rightarrow (AAA) A^{-1} - 6(AA) A^{-1} + 5AA^{-1} + 11IA^{-1} = 0 \\ \Rightarrow (AAA) A^{-1} - 6A(AA^{-1}) + 5(AA^{-1}) = -11(IA^{-1}) \\ \Rightarrow A^{2} - 6A + 5I = -11A^{-1} \\ \Rightarrow A^{-1} = -\frac{1}{11}(A^{2} - 6A + 5I) \\ \qquad \dots (1) \end{aligned}$$

Now,  

$$A^{2}-6A+5I$$

$$=\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - 6\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$=\begin{bmatrix} 9 & 2 & 1 \\ -3 & 13 & -14 \\ 7 & -3 & 19 \end{bmatrix} - \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18 \end{bmatrix}$$

$$=\begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$$

From equation (1), we have:

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}$$

**Question 16:** 

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
verify that  $A^3 - 6A^2 + 9A - 4I = O$  and hence find  $A^{-1}$ 

Answer

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4+1+1 & -2-2-2-1 & 2+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 12+5+5 & -6-10-5 & 6+5+10 \\ -10-6-5 & 5+12+5 & -5-6-10 \\ 10+5+6 & -5-10-6 & 5+5+12 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$$

Class XII MATH

www.esaral.com

36

| Now,                                    |                     |                                                                                                   |                   |                        |     |                 |               |                 |
|-----------------------------------------|---------------------|---------------------------------------------------------------------------------------------------|-------------------|------------------------|-----|-----------------|---------------|-----------------|
| $A^3 - 6A^2$                            | +9A -               | 41                                                                                                |                   |                        |     |                 |               |                 |
| 22                                      | -21                 | 21 6                                                                                              | -5                | 5 ] [ 2                | -1  | 1] [1           | 0             | 0               |
| = -21                                   | 22                  | $\begin{bmatrix} 21\\ -21\\ 22 \end{bmatrix} - 6 \begin{bmatrix} 6\\ -5\\ 5 \end{bmatrix}$        | 6                 | -5 +9 -1               | 2   | -1 - 4 0        | 1             | 0               |
| 21                                      | -21                 | 22 5                                                                                              | -5                | 6 1                    | -1  | 2 0             | 0             | 1               |
| 22                                      | -21                 | $ \begin{bmatrix} 21 \\ -21 \\ 22 \end{bmatrix} - \begin{bmatrix} 36 \\ -30 \\ 30 \end{bmatrix} $ | -30               | 30   [18               | -9  | 9 ] [4          | 0             | 0]              |
| = -21                                   | 22                  | -2130                                                                                             | 36                | -30 + -9               | 18  | -9 - 0          | 4             | 0               |
| 21                                      | -21                 | 22 ] [ 30                                                                                         | -30               | 3 <mark>6   9</mark>   | -9  | 18 0            | 0             | 4               |
| 40                                      | -30                 | $ \begin{bmatrix} 30 \\ -30 \\ 40 \end{bmatrix} - \begin{bmatrix} 40 \\ -30 \\ 30 \end{bmatrix} $ | -30               | 30 0                   | 0   | 0               |               |                 |
| = -30                                   | 40                  | -3030                                                                                             | 40                | -30 = 0                | 0   | 0               |               |                 |
|                                         |                     |                                                                                                   | -30               | 40 0                   | 0   | 0               |               |                 |
| $\therefore A^3 - 6A$                   | $A^{2} + 9A$        | -4I = O                                                                                           |                   |                        |     |                 |               |                 |
| Now,                                    |                     |                                                                                                   |                   |                        |     |                 |               |                 |
| $A^3 - 6A^2$                            |                     |                                                                                                   |                   |                        |     |                 |               | _               |
| ⇒(AAA                                   | $A^{-1} - 6$        | 5(AA)A <sup>-1</sup> +9A                                                                          | $4^{-1} - 4L^{2}$ | $4^{-1} = O$           | Po  | ost-multiplying | ; by $A^{-1}$ | as $ A  \neq 0$ |
|                                         |                     | $5A(AA^{-1})+9(A$                                                                                 | $A^{-1}$ ) = 4    | $\left(LA^{-1}\right)$ |     |                 |               |                 |
|                                         |                     | $9I = 4A^{-1}$                                                                                    |                   |                        |     |                 |               |                 |
| $\Rightarrow A^2 - 6$                   | 5A+9I               | $=4A^{-1}$                                                                                        |                   |                        |     |                 |               |                 |
| $\Rightarrow A^{-1} =$                  | $\frac{1}{4}(A^2 -$ | 6A+9I                                                                                             |                   | (1)                    |     |                 |               |                 |
| $A^2 - 6A -$                            | +91                 |                                                                                                   |                   |                        |     |                 |               |                 |
| [6                                      | -5                  | 5 ] [ 2                                                                                           | -1                | 1] [0                  | 0   | 0]              |               |                 |
| = -5                                    | 6                   | $\begin{bmatrix} 5\\-5\\6 \end{bmatrix} - 6 \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$               | 2                 | -1 +9 0                | 0   | 0               |               |                 |
| 5                                       | -5                  | 6 ] [1                                                                                            | -1                | 2 0                    | 0   | 0               |               |                 |
| 6                                       | -5                  | 5 ] [12                                                                                           | -6                | 6 ] [9                 | 0 ( | 0]              |               |                 |
| $= \begin{bmatrix} -5\\5 \end{bmatrix}$ | 6<br>-5             | $\begin{bmatrix} 5 \\ -5 \\ 6 \end{bmatrix} - \begin{bmatrix} 12 \\ -6 \\ 6 \end{bmatrix}$        | 12<br>6           | -6 + 0                 | 9 ( |                 |               |                 |
| 5                                       | -5                  | 6 ] [ 6                                                                                           | -6                | 12 0                   | 0 9 | 9]              |               |                 |
| 3                                       | 1<br>3              | -1]                                                                                               |                   |                        |     |                 |               |                 |
| = 1                                     | 3                   | 1                                                                                                 |                   |                        |     |                 |               |                 |
| 1                                       | 1                   | 3                                                                                                 |                   |                        |     |                 |               |                 |

From equation (1), we have:

Å

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

Question 17:

Let A be a nonsingular square matrix of order 3  $\times$  3. Then |adjA| is equal to

**A.** 
$$|A|_{\mathbf{B}}$$
  $|A|^2$  **C.**  $|A|^3$  **D.**  $3|A|$ 

Answer **B** 

We know that,

$$(adjA) A = |A|I = \begin{bmatrix} |A| & 0 & 0\\ 0 & |A| & 0\\ 0 & 0 & |A| \end{bmatrix}$$
$$\Rightarrow |(adjA) A| = \begin{vmatrix} |A| & 0 & 0\\ 0 & |A| & 0\\ 0 & 0 & |A| \end{vmatrix}$$
$$\Rightarrow |adjA||A| = |A|^{3} \begin{vmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{vmatrix} = |A|^{3} (I)$$

EL al

 $\therefore |adjA| = |A|^2$ 

Hence, the correct answer is B.

**Question 18:** 

If A is an invertible matrix of order 2, then det  $(A^{-1})$  is equal to

**A.** det (A) **B.** 
$$\frac{1}{\det(A)}$$
**C.** 1 **D.** 0  
Answer

$$A^{-1}$$
 exists and  $A^{-1} = \frac{1}{|A|} adjA.$ 

Since A is an invertible matrix,

As matrix A is of order 2, let 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.  
Then,  $|A| = ad - bc$  and  $adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

Now,

$$A^{-1} = \frac{1}{|A|} a dj A = \begin{bmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$$
  
$$\therefore |A^{-1}| = \begin{vmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix} = \frac{1}{|A|^2} (ad - bc) = \frac{1}{|A|^2} . |A| = \frac{1}{|A|}$$
  
$$\therefore \det (A^{-1}) = \frac{1}{\det (A)}$$

Hence, the correct answer is B.

#### Class XII : Maths Chapter 4 : Determinants

Questions and Solutions | Exercise 4.5 - NCERT Books

**Question 1:** 

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3

Answer

The given system of equations is:

$$x + 2y = 2$$

$$2x + 3y = 3$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$
  
Now,

$$|A| = 1(3) - 2(2) = 3 - 4 = -1 \neq 0$$

 $\therefore$  A is non-singular.

#### Therefore, $A^{-1}$ exists.

Hence, the given system of equations is consistent.

```
Question 2:
```

Examine the consistency of the system of equations.

2x - y = 5 x + y = 4Answer The given system of equations is: 2x - y = 5

x + y = 4

The given system of equations can be written in the form of AX = B, where

Class XII MATH

Д.

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Now,  $|A| = 2(1) - (-1)(1) = 2 + 1 = 3 \neq 0$ 

 $\therefore$  A is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent.

**Question 3:** 

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8

Answer

The given system of equations is:

$$x + 3y = 5$$

2x + 6y = 8

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Now,

$$|A| = 1(6) - 3(2) = 6 - 6 = 0$$

 $\therefore A$  is a singular matrix.

#### JEE | NEET | CLASS 8 - 10 Download eSaral APP

Å

## **∛S**aral

Now,

$$(adjA) = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$
$$(adjA)B = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 30-24 \\ -10+8 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \neq O$$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 4:

Examine the consistency of the system of equations.

$$x + y + z = 1$$

2x + 3y + 2z = 2

$$ax + ay + 2az = 4$$

Answer

The given system of equations is:

$$x + y + z = 1$$

2x + 3y + 2z = 2

$$ax + ay + 2az = 4$$

This system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}.$$

Now,

$$|A| = 1(6a - 2a) - 1(4a - 2a) + 1(2a - 3a)$$
  
= 4a - 2a - a = 4a - 3a = a \ne 0

 $\therefore A$  is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent.

#### **\*Saral**

#### **Question 5:**

Examine the consistency of the system of equations.

$$3x - y - 2z = 2$$

$$2y - z = -1$$

$$3x - 5y = 3$$

Answer

The given system of equations is:

3x - y - 2z = 22y - z = -1

$$2y - 2 = -1$$

3x - 5y = 3

This system of equations can be written in the form of AX = B, where

|     | 3 | -1 | -2]     |                                                  | 2   |
|-----|---|----|---------|--------------------------------------------------|-----|
| A = | 0 | 2  | -1, X = | $\begin{bmatrix} y \\ z \end{bmatrix}$ and $B =$ | -1. |
|     | 3 | -5 | 0       |                                                  | 3   |

Now,

$$|A| = 3(0-5) - 0 + 3(1+4) = -15 + 15 = 0$$

 $\therefore A$  is a singular matrix.

Now,

$$(adjA) = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}$$
$$\therefore (adjA)B = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10 - 10 + 15 \\ -6 - 6 + 9 \\ -12 - 12 + 18 \end{bmatrix} = \begin{bmatrix} -5 \\ -3 \\ -6 \end{bmatrix} \neq O$$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

#### **\***Saral

**Question 6:** 

Examine the consistency of the system of equations.

5x - y + 4z = 5

$$2x + 3y + 5z = 2$$

5x - 2y + 6z = -1

Answer

The given system of equations is:

5x - y + 4z = 52x + 3y + 5z = 25x - 2y + 6z = -1

This system of equations can be written in the form of AX = B, where

|     | 5  | -1 | 4                                           | $\begin{bmatrix} x \end{bmatrix}$ | Γ            | 5  |
|-----|----|----|---------------------------------------------|-----------------------------------|--------------|----|
| A = | 2  | 3  | 5 , X =                                     | y and                             | 1 <i>B</i> = | 2. |
|     | 5  | -2 | $\begin{bmatrix} 5 \\ 6 \end{bmatrix}, X =$ | z                                 |              | -1 |
| Nov | ν, |    |                                             |                                   |              |    |
|     | ,  |    |                                             |                                   |              |    |

$$|A| = 5(18+10) + 1(12-25) + 4(-4-15)$$
  
= 5(28) + 1(-13) + 4(-19)  
= 140 - 13 - 76  
= 51 \neq 0

 $\therefore$  A is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent.

```
Question 7:
```

Solve system of linear equations, using matrix method.

$$5x + 2y = 4$$

$$7x + 3y = 5$$

Answer



The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
  
Now  $|A| = 15 - 14 = 1 \neq 0$ 

Now,  $|A| = 15 - 14 = 1 \neq 0$ .

Thus, *A* is non-singular. Therefore, its inverse exists.

Now,

$$A^{-1} = \frac{1}{|A|} (adjA)$$
  

$$\therefore A^{-1} = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$
  

$$\therefore X = A^{-1}B = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
  

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 - 10 \\ -28 + 25 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

Hence, x = 2 and y = -3.

#### **Question 8:**

Solve system of linear equations, using matrix method.

$$2x - y = -2$$

3x + 4y = 3

#### Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}.$$

Now,

$$|A| = 8 + 3 = 11 \neq 0$$

Thus, *A* is non-singular. Therefore, its inverse exists.

Å

Now,

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$
  
$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
  
$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -8+3 \\ 6+6 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -5 \\ 12 \end{bmatrix} = \begin{bmatrix} -\frac{5}{11} \\ \frac{12}{11} \end{bmatrix}$$
  
Hence,  $x = \frac{-5}{11}$  and  $y = \frac{12}{11}$ .

#### **Question 9:**

Solve system of linear equations, using matrix method.

$$4x - 3y = 3$$

$$3x - 5y = 7$$

#### Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 \\ 7 \end{bmatrix}.$$

Now,

 $|A| = -20 + 9 = -11 \neq 0$ 

Thus, *A* is non-singular. Therefore, its inverse exists.

Д

Now,

$$A^{-1} = \frac{1}{|A|} (adjA) = -\frac{1}{11} \begin{bmatrix} -5 & 3 \\ -3 & 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix}$$
$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 15 - 21 \\ 9 - 28 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -6 \\ -19 \end{bmatrix} = \begin{bmatrix} -\frac{6}{11} \\ -\frac{19}{11} \end{bmatrix}$$
Hence,  $x = \frac{-6}{11}$  and  $y = \frac{-19}{11}$ .

**Question 10:** 

Solve system of linear equations, using matrix method.

- 5x + 2y = 3
- 3x + 2y = 5

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$$

Now,

 $|A| = 10 - 6 = 4 \neq 0$ 

Thus, A is non-singular. Therefore, its inverse exists.

#### **Question 11:**

Solve system of linear equations, using matrix method.

$$2x + y + z = 1$$
$$x - 2y - z = \frac{3}{2}$$
$$3y - 5z = 9$$

#### Answer

The given system of equations can be written in the form of AX = B, where

Class XII MATH

Å

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}.$$

Now,

$$|A| = 2(10+3) - 1(-5-3) + 0 = 2(13) - 1(-8) = 26 + 8 = 34 \neq 0$$

Thus, *A* is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 13, A_{12} = 5, A_{13} = 3$$
  
 $A_{21} = 8, A_{22} = -10, A_{23} = -6$   
 $A_{31} = 1, A_{32} = 3, A_{33} = -5$   
 $\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix}^{1}$   
 $\therefore X = A^{-1}B = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}$   
 $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{34} \begin{bmatrix} 13+12+9 \\ 5-15+27 \\ 3-9-45 \end{bmatrix}$   
 $= \frac{1}{34} \begin{bmatrix} 34 \\ 17 \\ -51 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$   
Hence,  $x = 1, y = \frac{1}{2}$ , and  $z = -\frac{3}{2}$ .

#### Question 12:

Solve system of linear equations, using matrix method.

x - y + z = 42x + y - 3z = 0

Å

x + y + z = 2

Answer

The given system of equations can be written in the form of AX = B, where

 $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}.$ 

Now,

$$|A| = 1(1+3) + 1(2+3) + 1(2-1) = 4+5+1 = 10 \neq 0$$

Thus, *A* is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 4$$
,  $A_{12} = -5$ ,  $A_{13} = 1$   
 $A_{21} = 2$ ,  $A_{22} = 0$ ,  $A_{23} = -2$   
 $A_{31} = 2$ ,  $A_{32} = 5$ ,  $A_{33} = 3$   
 $\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$   
 $\therefore X = A^{-1}B = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$   
 $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 16+0+4 \\ -20+0+10 \\ 4+0+6 \end{bmatrix}$   
 $= \frac{1}{10} \begin{bmatrix} 20 \\ -10 \\ 10 \end{bmatrix}$   
 $= \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ 

Hence, x = 2, y = -1, and z = 1.

Question 13:

Solve system of linear equations, using matrix method.

Class XII MATH

2x + 3y + 3z = 5 x - 2y + z = -43x - y - 2z = 3

Answer

The given system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}.$$
Now,  

$$|A| = 2(4+1) - 3(-2-3) + 3(-1+6) = 2(5) - 3(-5) + 3(5) = 10 + 15 + 15 = 40 \neq 0$$
Thus, A is non-singular. Therefore, its inverse exists.  
Now,  $A_{11} = 5, A_{12} = 5, A_{13} = 5$   
 $A_{21} = 3, A_{22} = -13, A_{23} = 11$   
 $A_{31} = 9, A_{32} = 1, A_{33} = -7$   
 $\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$   
 $\therefore X = A^{-1}B = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$   
 $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 25 - 12 + 27 \\ 25 + 52 + 3 \\ 25 - 44 - 21 \end{bmatrix}$   
 $= \frac{1}{40} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$ 

Hence, x = 1, y = 2, and z = -1.

### **∛Saral**

**Question 14:** 

Solve system of linear equations, using matrix method.

$$x - y + 2z = 7$$
  
3x + 4y - 5z = -5  
2x - y + 3z = 12

#### Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

Now,

$$|A| = 1(12-5)+1(9+10)+2(-3-8) = 7+19-22 = 4 \neq 0$$

Thus, *A* is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 7$$
,  $A_{12} = -19$ ,  $A_{13} = -11$   
 $A_{21} = 1$ ,  $A_{22} = -1$ ,  $A_{23} = -1$   
 $A_{31} = -3$ ,  $A_{32} = 11$ ,  $A_{33} = 7$   
 $\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$   
 $\therefore X = A^{-1}B = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$   
 $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$   
 $= \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ 

Hence, x = 2, y = 1, and z = 3.

# <mark>∛S</mark>aral

Question 15:  $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \text{ find } A^{-1}. \text{ Using } A^{-1} \text{ solve the system of equations}$  2x - 3y + 5z = 11 3x + 2y - 4z = -5 x + y - 2z = -3Answer  $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$   $\therefore |A| = 2(-4+4) + 3(-6+4) + 5(3-2) = 0 - 6 + 5 = -1 \neq 0$ Now,  $A_{11} = 0, A_{12} = 2, A_{13} = 1$   $A_{21} = -1, A_{22} = -9, A_{23} = -5$   $A_{31} = 2, A_{32} = 23, A_{33} = 13$   $\therefore A^{-1} = \frac{1}{|A|}(adjA) = -\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \dots \dots (1)$ 

Now, the given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}.$$

# **\***Saral

v

A

The solution of the system of equations is given by  $X = A^{-1}B$ .

$$X = A^{-1}B$$
  

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \qquad [Using (1)]$$
  

$$= \begin{bmatrix} 0 - 5 + 6 \\ -22 - 45 + 69 \\ -11 - 25 + 39 \end{bmatrix}$$
  

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence, x = 1, y = 2, and z = 3.

#### **Question 16:**

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively. Then, the given situation can be represented by a system of equations as:

4x + 3y + 2z = 602x + 4y + 6z = 906x + 2y + 3z = 70

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}.$$
$$|A| = 4(12 - 12) - 3(6 - 36) + 2(4 - 24) = 0 + 90 - 40 = 50 \neq 0$$
$$Now, \qquad A_{11} = 0, A_{12} = 30, A_{13} = -20$$
$$A_{21} = -5, A_{22} = 0, A_{23} = 10$$
$$A_{21} = -5, A_{22} = 0, A_{23} = 10$$
$$A_{23} = 10, A_{23} = -20, A_{23} = 10$$

Class XII MATH

Å

$$\therefore adjA = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

Now,

$$X = A^{-1} B$$
  

$$\Rightarrow X = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$
  

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 0 - 450 + 700 \\ 1800 + 0 - 1400 \\ -1200 + 900 + 700 \end{bmatrix}$$
  

$$= \frac{1}{50} \begin{bmatrix} 250 \\ 400 \\ 400 \end{bmatrix}$$
  

$$= \begin{bmatrix} 5 \\ 8 \\ 8 \end{bmatrix}$$
  

$$\therefore x = 5, y = 8, \text{ and } z = 8.$$

Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg, and the cost of rice is Rs 8 per kg.

Class XII MATH

Д

#### Class XII : Maths Chapter 4 : Determinants

Questions and Solutions | Miscellaneous Exercise 4 - NCERT Books

**Ouestion 1:**  $\sin\theta \cos\theta$ х Prove that the determinant  $-\sin\theta$ -x1 is independent of  $\theta$ . Answer  $\cos\theta$ 1 х x  $\sin\theta \cos\theta$  $\Delta = -\sin\theta - x = 1$  $\cos\theta = 1$ х  $= x(x^{2}-1) - \sin\theta(-x\sin\theta - \cos\theta) + \cos\theta(-\sin\theta + x\cos\theta)$  $= x^{3} - x + x \sin^{2} \theta + \sin \theta \cos \theta - \sin \theta \cos \theta + x \cos^{2} \theta$  $=x^{3}-x+x(\sin^{2}\theta+\cos^{2}\theta)$  $= x^{3} - x + x$  $= x^3$  (Independent of  $\theta$ ) Hence,  $\Delta$  is independent of  $\theta$ . **Question** 2:  $\cos \alpha \cos \beta$  $\cos \alpha \sin \beta$  $-\sin \alpha$  $-\sin\beta$  $\cos \beta$ 0 Evaluate  $\sin \alpha \cos \beta$  $\sin \alpha \sin \beta$  $\cos \alpha$ Answer  $\cos \alpha \cos \beta$  $\cos \alpha \sin \beta$  $-\sin \alpha$  $\Delta = -\sin\beta$ 0  $\cos \beta$  $\sin \alpha \cos \beta$  $\sin \alpha \sin \beta$  $\cos \alpha$ Expanding along  $C_3$ , we have:  $\Delta = -\sin\alpha \left( -\sin\alpha \sin^2\beta - \cos^2\beta \sin\alpha \right) + \cos\alpha \left( \cos\alpha \cos^2\beta + \cos\alpha \sin^2\beta \right)$  $=\sin^2\alpha\left(\sin^2\beta+\cos^2\beta\right)+\cos^2\alpha\left(\cos^2\beta+\sin^2\beta\right)$ 

$$=\sin^2\alpha(1)+\cos^2\alpha(1)$$
$$=1$$

Class XII MATH

Question 3: If  $A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ , find  $(AB)^{-1}$ . Answer 3: Here,  $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ , Therefore,  $|B| = 1(3 - 0) - 2(-1 - 0) - 2(2 - 0) = 1 \neq 0 \Rightarrow B^{-1}$  exists.  $B_{11} = 3$   $B_{21} = 2$   $B_{31} = 6$  $B^{-1} = \frac{1}{|B|}$  adj  $B = \frac{1}{1} \begin{bmatrix} B_{11} & B_{21} & B_{31} \\ B_{12} & B_{22} & B_{32} \\ B_{13} & B_{23} & B_{33} \end{bmatrix} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \end{pmatrix}$ 

We know that:  $(AB)^{-1} = B^{-1}A^{-1}$ , therefore

$$(AB)^{-1} = B^{-1}A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 9 - 30 + 30 & -3 + 12 - 12 & 3 - 10 + 12 \\ 3 - 15 + 10 & -1 + 6 - 4 & 1 - 5 + 4 \\ 6 - 30 + 25 & -2 + 12 - 10 & 2 - 10 + 10 \end{bmatrix} = \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

<u>Д</u>

Question 4: Γ1  $-2 \ 1$ Let  $A = \begin{bmatrix} -2 & 3 & 1 \end{bmatrix}$  . Verify that  $1 \ 1 \ 5$ (i)  $(\operatorname{adj} A)^{-1} = \operatorname{adj} (A^{-1})$ (ii)  $(A^{-1})^{-1} = A$ Answer 4: (i) Here,  $A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$ , therefore  $|A| = 1(15-1) + 2(-10-1) + 1(-2-3) = -13 \neq 0 \Rightarrow A^{-1}$  exists.  $A_{11} = 14$  $A_{12} = 11$  $A_{13} = -5$  $A_{21} = 11$  $A_{22} = 4$  $A_{23} = -3$  $A_{31} = -5$  $A_{32} = -3$  $A_{32} = -3$  $A_{33} = -1$  $A_{33} = -1$   $dj A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix}$   $A^{-1} = \frac{1}{|A|} adj A = \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \frac{1}{-13} \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix}$ 

adj

Let, 
$$B = \operatorname{adj} A$$
, so,  $B = \begin{bmatrix} 14 & 11 & -5\\ 11 & 4 & -3\\ -5 & -3 & -1 \end{bmatrix}$ , therefore  
 $|B| = 14(-4-9) - 11(-11-15) - 5(-33+20) = -182 + 286 + 65 = 169 \neq 0 \Rightarrow B^{-1}$  exists.  
 $B_{11} = -13 \quad B_{12} = 26 \quad B_{13} = -13$   
 $B_{21} = 26 \quad B_{22} = -39 \quad B_{23} = -13$   
 $B_{31} = -13 \quad B_{32} = -13$ 

Class XII MATH

www.esaral.com

57

#### **\*Saral**

2

Å

$$\Rightarrow (\operatorname{adj} A)^{-1} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$
  
Let,  $C = A^{-1}$ , so,  $C = \frac{1}{-13} \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix} = \begin{bmatrix} -\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13} \end{bmatrix}$ , therefore

$$\operatorname{Adj} C = \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} = \begin{bmatrix} -\frac{1}{13} & \frac{2}{13} & -\frac{1}{13} \\ \frac{2}{13} & -\frac{1}{13} & -\frac{1}{13} \\ -\frac{1}{13} & -\frac{1}{13} & -\frac{5}{13} \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$

$$\Rightarrow \operatorname{Adj} C = \operatorname{adj} (A^{-1}) = rac{1}{13} egin{bmatrix} -1 & 2 & -1 \ 2 & -3 & -1 \ -1 & -1 & -5 \end{bmatrix}$$

From the equations (2) and (3), we have,  $(\operatorname{adj} A)^{-1} = \operatorname{adj}(A^{-1})$ (ii) From the equation (1), we have,

$$A^{-1} = \frac{1}{-13} \begin{bmatrix} 14 & 11 & -5\\ 11 & 4 & -3\\ -5 & -3 & -1 \end{bmatrix}$$
  
Let,  $D = A^{-1}$ , so,  $D = \frac{1}{-13} \begin{bmatrix} 14 & 11 & -5\\ 11 & 4 & -3\\ -5 & -3 & -1 \end{bmatrix} = \begin{bmatrix} -\frac{14}{13} & -\frac{11}{13} & \frac{5}{13}\\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13}\\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13}\\ -\frac{5}{12} & \frac{3}{12} & \frac{1}{12} \end{bmatrix}$ , therefore  
 $|D| = -\left(\frac{1}{13}\right)^3 [14(-4-9) - 11(-11-15) - 5(-33+20)]$   
 $= -\left(\frac{1}{13}\right)^3 (169) = -\frac{1}{13} \neq 0 \Rightarrow D^{-1}$  exists.  
 $D_{11} = -\frac{1}{13}$   
 $D_{12} = \frac{2}{13}$   
 $D_{21} = \frac{2}{13}$   
 $D_{22} = -\frac{3}{13}$   
 $D_{23} = -\frac{1}{13}$   
 $D_{31} = -\frac{1}{13}$ 

Class XII MATH

 $egin{aligned} & \left|1 & y & y+k
ight| \ &= 2(x+y)\{(-x)(x-y)-y,y\} & ext{[Expending along $C_1$]} \ &= 2(x+y)ig(-x^2+xy-y^2ig) = -2(x+y)ig(x^2-xy+y^2ig) = -2ig(x^3+y^3ig) \end{aligned}$ 

[Taking 2(x + y) as common from  $C_1$  ]

Question 5:  $\begin{aligned}
x & y & x+y \\
y & x+y & x \\
x+y & x & y
\end{aligned}$ Answer 5: Given that:  $\begin{vmatrix}
x & y & x+y \\
y & x+y & x \\
y & x+y & x \\
x+y & x & y
\end{vmatrix}$   $= \begin{vmatrix}
2(x+y) & y & x+y \\
y & x+y & x \\
2(x+y) & x & y
\end{vmatrix}$ [Applying  $C_1 \to C_1 + C_2 + C_3$ ]  $= 2(x+y) \begin{vmatrix}
1 & y & x+y \\
1 & x+y & x \\
1 & x & y
\end{vmatrix}$   $= 2(x+y) \begin{vmatrix}
0 & -x & y \\
1 & x & y \\
1 & y & y+k
\end{vmatrix}$ [Applying  $R_1 \to R_1 - R_2, R_2 \to R_2 - R_3$ ]  $= 2(x+y) \{(-x)(x-y) - y \cdot y\}$ 

 $=2(x+y)ig(-x^2+xy-y^2ig)=-2(x+y)ig(x^2-xy+y^2ig)=-2ig(x^3+y^3ig)$ 

Class XII MATH

www.esaral.com

60

Evaluate  $\begin{vmatrix} 1 & x & y \\ 1 & x + y & y \\ 1 & x & x + y \end{vmatrix}$ Answer 6: Given that:  $\begin{vmatrix} 1 & x & y \\ 1 & x + y & y \\ 1 & x & x + y \end{vmatrix} = \begin{vmatrix} 0 & -y & 0 \\ 0 & y & -x \\ 1 & x & x + y \end{vmatrix}$ [Applying  $R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3$ ] = {(-y)(-x) - y.0} [Expending along  $C_1$ ] = xy

Question 7:

Question 6:

| $\frac{2}{x}$               | $+\frac{3}{y}$ -                 | $+\frac{10}{z}=4$                       |
|-----------------------------|----------------------------------|-----------------------------------------|
| $\frac{4}{x}$ $\frac{6}{x}$ | $-\frac{6}{y}$<br>$+\frac{9}{2}$ | $+rac{5}{z} = 1$<br>$-rac{20}{z} = 2$ |

Answer 7:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$

The given system of equations:

Solve the system of equations:

| 4 |   | <b>6</b> |   | <b>5</b> |   | - |  |
|---|---|----------|---|----------|---|---|--|
| _ | _ | _        | + | _        | = | 1 |  |
| x |   | y        |   | z        |   |   |  |

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

This system of equations can be written as AX = B, where

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix} \cdot X = \begin{bmatrix} 1/x \\ 1/y \\ 1/z \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$
$$|A| = 2(120 - 45) - 3(-80 - 30) + 10(36 + 36) = 150 + 330 + 720 = 1200 \neq 0 \Rightarrow A^{-1} \text{ exists.}$$
$$A_{12} = 110 \\ A_{11} = 75 \\ A_{21} = 150 \\ A_{31} = 75 \\A^{-1} = \frac{1}{|A|} \text{ adj } A = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$
$$X = A^{-1}B \Rightarrow \begin{bmatrix} 1/x \\ 1/y \\ 1/z \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

Question 8:

Choose the correct answer.

| $\begin{bmatrix} x & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| If x, y, z are nonzero real numbers, then the inverse of matrix $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} x^{-1} \\ 0 \end{bmatrix} \begin{bmatrix}$ | 0 is |
| $ \mathbf{A}. \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} \mathbf{B}. \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} \mathbf{B}. \begin{bmatrix} 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z    |
| $\frac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}_{\mathbf{D}} \frac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Answer: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$<br>$\therefore  A  = x(yz - 0) = xyz \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Now, $A_{11} = yz$ , $A_{12} = 0$ , $A_{13} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| $A_{21} = 0, A_{22} = xz, A_{23} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| $A_{31} = 0, A_{32} = 0, A_{33} = xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| $\therefore adjA = \begin{bmatrix} yz & 0 & 0 \\ 0 & xz & 0 \\ 0 & 0 & xy \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{ A } adjA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |

Å

$$=\frac{1}{xyz}\begin{bmatrix} yz & 0 & 0\\ 0 & xz & 0\\ 0 & 0 & xy \end{bmatrix}$$
$$=\begin{bmatrix} \frac{yz}{xyz} & 0 & 0\\ 0 & \frac{xz}{xyz} & 0\\ 0 & 0 & \frac{xy}{xyz} \end{bmatrix}$$
$$=\begin{bmatrix} \frac{1}{x} & 0 & 0\\ 0 & \frac{1}{y} & 0\\ 0 & 0 & \frac{1}{z} \end{bmatrix} =\begin{bmatrix} x^{-1} & 0 & 0\\ 0 & y^{-1} & 0\\ 0 & 0 & z^{-1} \end{bmatrix}$$

The correct answer is A.

Question 9:

Choose the correct answer.

 $A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}, \text{ where } 0 \le \theta \le 2\pi, \text{ then}$ A. Det (A) = 0 B. Det (A)  $\in (2, \infty)$ 

C. Det (A) ∈ (2, 4)
D. Det (A)∈ [2, 4]

Class XII MATH

Answer

#### sAnswer: D

$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$$
  
$$\therefore |A| = 1(1 + \sin^2 \theta) - \sin \theta (-\sin \theta + \sin \theta) + 1(\sin^2 \theta + 1)$$
  
$$= 1 + \sin^2 \theta + \sin^2 \theta + 1$$
  
$$= 2 + 2\sin^2 \theta$$
  
$$= 2(1 + \sin^2 \theta)$$
  
Now,  $0 \le \theta \le 2\pi$   
$$\Rightarrow 0 \le \sin \theta \le 1$$
  
$$\Rightarrow 0 \le \sin^2 \theta \le 1$$
  
$$\Rightarrow 1 \le 1 + \sin^2 \theta \le 2$$
  
$$\Rightarrow 2 \le 2(1 + \sin^2 \theta) \le 4$$
  
$$\therefore \operatorname{Det}(A) \in [2, 4]$$

The correct answer is D.