Class XII : Maths

Chapter 4 : Determinants

Questions and Solutions | Exercise 4.1 - NCERT Books

Question 1:

Evaluate the determinants in Exercises 1 and 2.
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
Answer
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|=2(-1)-4(-5)=-2+20=18$

Question 2:

Evaluate the determinants in Exercises 1 and 2.
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|_{\text {(ii) }}\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

Answer
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=(\cos \theta)(\cos \theta)-(-\sin \theta)(\sin \theta)=\cos ^{2} \theta+\sin ^{2} \theta=1$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$

Question 3:

If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$
Answer
The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$.
$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
\therefore L.H.S. $=|2 A|=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right|=2 \times 4-4 \times 8=8-32=-24$
Now, $|A|=\left|\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right|=1 \times 2-2 \times 4=2-8=-6$
\therefore R.H.S. $=4|A|=4 \times(-6)=-24$
\therefore L.H.S. $=$ R.H.S.

Question 4:

If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 A|=27|A|$.
Answer

The given matrix is

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $\left(C_{1}\right)$ for easier calculation.
$|\mathrm{A}|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$
$\therefore 27|\mathrm{~A}|=27(4)=108$
Now, $3 \mathrm{~A}=3\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12\end{array}\right]$
$\therefore|3 \mathrm{~A}|=3\left|\begin{array}{cc}3 & 6 \\ 0 & 12\end{array}\right|-0\left|\begin{array}{cc}0 & 3 \\ 0 & 12\end{array}\right|+0\left|\begin{array}{ll}0 & 3 \\ 3 & 6\end{array}\right|$

$$
\begin{equation*}
=3(36-0)=3(36)=108 \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we have:
$|3 A|=27|A|$
Hence, the given result is proved.

Question 5:

Evaluate the determinants
(i) $\left\lvert\, \begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right.$ (iii) $\left|\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
(ii) $\left\lvert\, \begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right.$ (iv) $\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$

Answer
(i) Let $A=\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$.

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.
$|A|=-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+0\left|\begin{array}{cc}3 & -2 \\ 3 & 0\end{array}\right|-(-1)\left|\begin{array}{cc}3 & -1 \\ 3 & -5\end{array}\right|=(-15+3)=-12$
(ii) Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$.

By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =3\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|+4\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|+5\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right| \\
& =3(1+6)+4(1+4)+5(3-2) \\
& =3(7)+4(5)+5(1) \\
& =21+20+5=46
\end{aligned}
$$

(iii) Let

$$
A=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right] .
$$

By expanding along the first row, we have:
$|A|=0\left|\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right|-1\left|\begin{array}{cc}-1 & -3 \\ -2 & 0\end{array}\right|+2\left|\begin{array}{ll}-1 & 0 \\ -2 & 3\end{array}\right|$
$=0-1(0-6)+2(-3-0)$
$=-1(-6)+2(-3)$
$=6-6=0$
(iv) Let

$$
A=\left[\begin{array}{ccc}
2 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right]
$$

By expanding along the first column, we have:

$$
\begin{aligned}
|A| & =2\left|\begin{array}{cc}
2 & -1 \\
-5 & 0
\end{array}\right|-0\left|\begin{array}{cc}
-1 & -2 \\
-5 & 0
\end{array}\right|+3\left|\begin{array}{cc}
-1 & -2 \\
2 & -1
\end{array}\right| \\
& =2(0-5)-0+3(1+4) \\
& =-10+15=5
\end{aligned}
$$

Question 6:

If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$, find $|\mathrm{A}|$.
Answer
Let $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$.
By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =1(-9+12)-1(-18+15)-2(8-5) \\
& =1(3)-1(-3)-2(3) \\
& =3+3-6 \\
& =6-6 \\
& =0
\end{aligned}
$$

Question 7:

Find values of x, if
(i) $\left|\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$ (ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$

Answer
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$\Rightarrow 2 \times 1-5 \times 4=2 x \times x-6 \times 4$
$\Rightarrow 2-20=2 x^{2}-24$
$\Rightarrow 2 x^{2}=6$
$\Rightarrow x^{2}=3$
$\Rightarrow x= \pm \sqrt{3}$
(ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
$\Rightarrow 2 \times 5-3 \times 4=x \times 5-3 \times 2 x$
$\Rightarrow 10-12=5 x-6 x$
$\Rightarrow-2=-x$
$\Rightarrow x=2$

Question 8:
If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to
(A) 6 (B) ± 6 (C) -6 (D) 0

Answer

Answer: B

$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
$\Rightarrow x^{2}-36=36-36$
$\Rightarrow x^{2}-36=0$
$\Rightarrow x^{2}=36$
$\Rightarrow x= \pm 6$
Hence, the correct answer is B.

Class XII : Maths

Chapter 4 : Determinants

Questions and Solutions | Exercise 4.2 - NCERT Books

Question 1:

Find area of the triangle with vertices at the point given in each of the following:
(i) $(1,0),(6,0),(4,3)$ (ii) $(2,7),(1,1),(10,8)$
(iii) $(-2,-3),(3,2),(-1,-8)$

Answer
(i) The area of the triangle with vertices $(1,0),(6,0),(4,3)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 1 \\
6 & 0 & 1 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)] \\
& =\frac{1}{2}[-3+18]=\frac{15}{2} \text { square units }
\end{aligned}
$$

(ii) The area of the triangle with vertices $(2,7),(1,1),(10,8)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{1}{2}[2(-7)-7(-9)+1(-2)] \\
& =\frac{1}{2}[-14+63-2]=\frac{1}{2}[-16+63] \\
& =\frac{47}{2} \text { square units }
\end{aligned}
$$

(iii) The area of the triangle with vertices $(-2,-3),(3,2),(-1,-8)$
is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{rrr}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)] \\
& =\frac{1}{2}[-2(10)+3(4)+1(-22)] \\
& =\frac{1}{2}[-20+12-22] \\
& =-\frac{30}{2}=-15
\end{aligned}
$$

Hence, the area of the triangle is $|-15|=15$ square units .

Question 2:

Show that points
$\mathrm{A}(a, b+c), \mathrm{B}(b, c+a), \mathrm{C}(c, a+b)$ are collinear

Answer

Area of $\triangle A B C$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
& =\frac{1}{2}\left|\begin{array}{ccc}
a & b+c & 1 \\
b-a & a-b & 0 \\
c-a & a-c & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\right) \\
& =\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right| \\
& =\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}\right) \\
& \left.=0 \quad \text { (All elements of } \mathrm{R}_{3} \text { are } 0\right)
\end{aligned}
$$

Thus, the area of the triangle formed by points A, B, and C is zero.
Hence, the points A, B, and C are collinear.

Question 3:

Find values of k if area of triangle is 4 square units and vertices are
(i) $(k, 0),(4,0),(0,2)$ (ii) $(-2,0),(0,4),(0, k)$

Answer
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is the absolute value of the determinant (Δ), where
$\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
It is given that the area of triangle is 4 square units.

$$
\therefore \Delta= \pm 4
$$

(i) The area of the triangle with vertices $(k, 0),(4,0),(0,2)$ is given by the relation,

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right| \\
& \Delta= \\
& =\frac{1}{2}[k(0-2)-0(4-0)+1(8-0)] \\
& =\frac{1}{2}[-2 k+8]=-k+4 \\
& \therefore-k+4= \pm 4 \\
& \text { When }-k+4=-4, k=8 \\
& \text { When }-k+4=4, k=0 \\
& \text { Hence, } k=0,8
\end{aligned}
$$

(ii) The area of the triangle with vertices $(-2,0),(0,4),(0, k)$ is given by the relation, $\Delta=\frac{1}{2}\left|\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1\end{array}\right|$
$=\frac{1}{2}[-2(4-k)]$
$=k-4$
$\therefore k-4= \pm 4$
When $k-4=-4, k=0$.
When $k-4=4, k=8$.
Hence, $k=0,8$.

Question 4:

(i) Find equation of line joining $(1,2)$ and $(3,6)$ using determinants
(ii) Find equation of line joining $(3,1)$ and $(9,3)$ using determinants

Answer
(i) Let $P(x, y)$ be any point on the line joining points $A(1,2)$ and $B(3,6)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.
$\therefore \frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0$
$\Rightarrow \frac{1}{2}[1(6-y)-2(3-x)+1(3 y-6 x)]=0$
$\Rightarrow 6-y-6+2 x+3 y-6 x=0$
$\Rightarrow 2 y-4 x=0$
$\Rightarrow y=2 x$
Hence, the equation of the line joining the given points is $y=2 x$.
(ii) Let $\mathrm{P}(x, y)$ be any point on the line joining points $\mathrm{A}(3,1)$ and
$B(9,3)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle $A B P$ will be zero.

$$
\begin{aligned}
& \therefore \frac{1}{2}\left|\begin{array}{lll}
3 & 1 & 1 \\
9 & 3 & 1 \\
x & y & 1
\end{array}\right|=0 \\
& \Rightarrow \frac{1}{2}[3(3-y)-1(9-x)+1(9 y-3 x)]=0 \\
& \Rightarrow 9-3 y-9+x+9 y-3 x=0 \\
& \Rightarrow 6 y-2 x=0 \\
& \Rightarrow x-3 y=0
\end{aligned}
$$

Hence, the equation of the line joining the given points is $x-3 y=0$.

Question 5:

If area of triangle is 35 square units with vertices $(2,-6),(5,4)$, and $(k, 4)$. Then k is
A. 12 B. -2
C. $-12,-2$
D. $12,-2$

Answer

Answer: D

The area of the triangle with vertices $(2,-6),(5,4)$, and $(k, 4)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & -6 & 1 \\
5 & 4 & 1 \\
k & 4 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(4-4)+6(5-k)+1(20-4 k)] \\
& =\frac{1}{2}[30-6 k+20-4 k] \\
& =\frac{1}{2}[50-10 k] \\
& =25-5 k
\end{aligned}
$$

It is given that the area of the triangle is ± 35.
Therefore, we have:
$\Rightarrow 25-5 k= \pm 35$
$\Rightarrow 5(5-k)= \pm 35$
$\Rightarrow 5-k= \pm 7$
When $5-k=-7, k=5+7=12$.
When $5-k=7, k=5-7=-2$.
Hence, $k=12,-2$.
The correct answer is D .

Class XII : Maths

Chapter 4 : Determinants

Questions and Solutions | Exercise 4.3 - NCERT Books

Question 1:

Write Minors and Cofactors of the elements of following determinants:
(i) $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$ (ii) $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$

Answer
(i) The given determinant is $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$.

Minor of element $a_{i j}$ is $M_{i j}$.
$\therefore \mathrm{M}_{11}=$ minor of element $a_{11}=3$
$M_{12}=$ minor of element $a_{12}=0$
$M_{21}=$ minor of element $a_{21}=-4$
$M_{22}=$ minor of element $a_{22}=2$
Cofactor of $a_{i j}$ is $\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$.
$\therefore \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(3)=3$
$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(0)=0$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(-4)=4$
$A_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(2)=2$
(ii) The given determinant is $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$.

Minor of element $a_{i j}$ is $M_{i j}$.
$\therefore \mathrm{M}_{11}=$ minor of element $a_{11}=d$
$M_{12}=$ minor of element $a_{12}=b$
$M_{21}=$ minor of element $a_{21}=c$
$M_{22}=$ minor of element $a_{22}=a$
Cofactor of $a_{i j}$ is $A_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$.
$\therefore \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(d)=d$
$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(b)=-b$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(c)=-c$
$A_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(a)=a$

Question 2:

(i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|_{\text {(ii) }}\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$

Answer
(i) The given determinant is ${ }^{\circ}$

$$
\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

By the definition of minors and cofactors, we have:
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$
$M_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0$
$M_{21}=$ minor of $a_{21}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$
$M_{22}=$ minor of $a_{22}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$M_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0$
$M_{31}=$ minor of $a_{31}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0$
$M_{32}=$ minor of $a_{32}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0$
$M_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$A_{11}=$ cofactor of $a_{11}=(-1)^{1+1} M_{11}=1$
$A_{12}=$ cofactor of $a_{12}=(-1)^{1+2} M_{12}=0$
$A_{13}=$ cofactor of $a_{13}=(-1)^{1+3} M_{13}=0$
$A_{21}=$ cofactor of $a_{21}=(-1)^{2+1} M_{21}=0$
$A_{22}=$ cofactor of $a_{22}=(-1)^{2+2} M_{22}=1$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=0$
$A_{31}=$ cofactor of $a_{31}=(-1)^{3+1} M_{31}=0$
$A_{32}=$ cofactor of $a_{32}=(-1)^{3+2} M_{32}=0$
$A_{33}=$ cofactor of $a_{33}=(-1)^{3+3} M_{33}=1$
(ii) The given determinant is $\left.\begin{array}{lll}0 & 1 & 2\end{array} \right\rvert\,$.
$\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$.
By definition of minors and cofactors, we have:
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right|=10+1=11$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{cc}3 & -1 \\ 0 & 2\end{array}\right|=6-0=6$
$M_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$M_{21}=$ minor of $a_{21}=\left|\begin{array}{ll}0 & 4 \\ 1 & 2\end{array}\right|=0-4=-4$
$M_{22}=$ minor of $a_{22}=\left|\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right|=2-0=2$
$M_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$
$M_{31}=$ minor of $a_{31}=\left|\begin{array}{cc}0 & 4 \\ 5 & -1\end{array}\right|=0-20=-20$
$M_{32}=$ minor of $a_{32}=\left|\begin{array}{cc}1 & 4 \\ 3 & -1\end{array}\right|=-1-12=-13$
$M_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right|=5-0=5$
$\mathrm{A}_{11}=$ cofactor of $a_{11}=(-1)^{1+1} \mathrm{M}_{11}=11$
$A_{12}=$ cofactor of $a_{12}=(-1)^{1+2} M_{12}=-6$
$\mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=3$
$A_{21}=$ cofactor of $a_{21}=(-1)^{2+1} M_{21}=4$
$A_{22}=$ cofactor of $a_{22}=(-1)^{2+2} M_{22}=2$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=-1$
$A_{31}=$ cofactor of $a_{31}=(-1)^{3+1} M_{31}=-20$
$A_{32}=$ cofactor of $a_{32}=(-1)^{3+2} M_{32}=13$
$A_{33}=$ cofactor of $a_{33}=(-1)^{3+3} M_{33}=5$

Question 3:

Using Cofactors of elements of second row, evaluate $\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$.
Answer
The given determinant is $\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$.
We have:
$M_{21}=\left|\begin{array}{ll}3 & 8 \\ 2 & 3\end{array}\right|=9-16=-7$
$\therefore \mathrm{A}_{21}=$ cofactor of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=7$
$M_{22}=\left|\begin{array}{ll}5 & 8 \\ 1 & 3\end{array}\right|=15-8=7$
$\therefore \mathrm{A}_{22}=$ cofactor of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=7$
$M_{23}=\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right|=10-3=7$
$\therefore \mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=-7$
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$
\therefore \Delta=a_{21} \mathrm{~A}_{21}+a_{22} \mathrm{~A}_{22}+a_{23} \mathrm{~A}_{23}=2(7)+0(7)+1(-7)=14-7=7
$$

Question 4:

Using Cofactors of elements of third column, evaluate $\Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ \text { Answer } & z & x y\end{array}\right|$
The given determinant is $\left|\begin{array}{lll}1 & x & y z \\ \text { We have: } & y & z x \\ 1 & z & x y\end{array}\right|$.
$\mathrm{M}_{13}=\left|\begin{array}{ll}1 & y \\ 1 & z\end{array}\right|=z-y$
$\mathrm{M}_{23}=\left|\begin{array}{ll}1 & x \\ 1 & z\end{array}\right|=z-x$
$M_{33}=\left|\begin{array}{ll}1 & x \\ 1 & y\end{array}\right|=y-x$
$\therefore \mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=(z-y)$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=-(z-x)=(x-z)$
$A_{33}=$ cofactor of $a_{33}=(-1)^{3+3} M_{33}=(y-x)$
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$
\begin{aligned}
\therefore \Delta & =a_{13} \mathrm{~A}_{13}+a_{23} \mathrm{~A}_{23}+a_{33} \mathrm{~A}_{33} \\
& =y z(z-y)+z x(x-z)+x y(y-x) \\
& =y z^{2}-y^{2} z+x^{2} z-x z^{2}+x y^{2}-x^{2} y \\
& =\left(x^{2} z-y^{2} z\right)+\left(y z^{2}-x z^{2}\right)+\left(x y^{2}-x^{2} y\right) \\
& =z\left(x^{2}-y^{2}\right)+z^{2}(y-x)+x y(y-x) \\
& =z(x-y)(x+y)+z^{2}(y-x)+x y(y-x) \\
& =(x-y)\left[z x+z y-z^{2}-x y\right] \\
& =(x-y)[z(x-z)+y(z-x)] \\
& =(x-y)(z-x)[-z+y] \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

Hence, $\Delta=(x-y)(y-z)(z-x)$.
Question 5:
If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right| A_{i j}$ is Cofactors of $a_{i j}$, then value of Δ is given by
(A) $a_{11} A_{11}+a_{12} A_{32}+a_{13} A_{33}$
(B) $a_{11} A_{11}+a_{12} A_{21}+a_{13} A_{31}$
(C) $a_{21} A_{11}+a_{22} A_{12}+a_{23} A_{13}$
(D) $a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}$

Answer 5:
The value of $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ is given by: $a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}$
Hence, the option (D) is correct.

Class XII : Maths

Chapter 4 : Determinants

Questions and Solutions | Exercise 4.4 - NCERT Books

Question 1:

Find adjoint of each of the matrices.
$\left[\begin{array}{ll}1 & 2 \\ 3 & \end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
We have,
$A_{11}=4, A_{12}=-3, A_{21}=-2, A_{22}=1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right]=\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$

Question 2:

Find adjoint of each of the matrices.
$\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$

Answer
Let $A=\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$.
We have,
$A_{11}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$A_{12}=-\left|\begin{array}{ll}2 & 5 \\ -2 & 1\end{array}\right|=-(2+10)=-12$
$A_{13}=\left|\begin{array}{ll}2 & 3 \\ -2 & 0\end{array}\right|=0+6=6$
$A_{21}=-\left|\begin{array}{ll}-1 & 2 \\ 0 & 1\end{array}\right|=-(-1-0)=1$
$A_{22}=\left|\begin{array}{ll}1 & 2 \\ -2 & 1\end{array}\right|=1+4=5$
$A_{23}=-\left|\begin{array}{ll}1 & -1 \\ -2 & 0\end{array}\right|=-(0-2)=2$
$A_{31}=\left|\begin{array}{ll}-1 & 2 \\ 3 & 5\end{array}\right|=-5-6=-11$
$A_{32}=-\left|\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right|=-(5-4)=-1$
$A_{33}=\left|\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right|=3+2=5$
Hence, adj $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{lll}3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right]$.

Question 3:

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
$\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$
Answer

$$
A=\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]
$$

we have,
$|A|=-12-(-12)=-12+12=0$
$\therefore|A| I=0\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Now,
$A_{11}=-6, A_{12}=4, A_{21}=-3, A_{22}=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]\left[\begin{array}{rr}
-6 & -3 \\
4 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-12+12 & -6+6 \\
24-24 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Also, $(\operatorname{adj} A) A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$

$$
=\left[\begin{array}{cc}
-12+12 & -18+18 \\
8-8 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 4:

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
$\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
Answer
$A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$|A|=1(0-0)+1(9+2)+2(0-0)=11$
$\therefore|A| I=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
Now,
$A_{11}=0, A_{12}=-(9+2)=-11, A_{13}=0$
$A_{21}=-(-3-0)=3, A_{22}=3-2=1, A_{23}=-(0+1)=-1$
$A_{31}=2-0=2, A_{32}=-(-2-6)=8, A_{33}=0+3=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{llr}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{lll}
0+11+0 & 3-1-2 & 2-8+6 \\
0+0+0 & 9+0+2 & 6+0-6 \\
0+0+0 & 3+0-3 & 2+0+9
\end{array}\right] \\
& =\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
\end{aligned}
$$

Also,
$(\operatorname{adj} A) \cdot A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{lcr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$

$$
=\left[\begin{array}{lll}
0+9+2 & 0+0+0 & 0-6+6 \\
-11+3+8 & 11+0+0 & -22-2+24 \\
0-3+3 & 0+0+0 & 0+2+9
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 5:
Find the inverse of each of the matrices (if it exists): $\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$
Answer 5:
Here, $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$,
Therefore, $A_{11}=3 \quad A_{12}=-4 \quad A_{21}=2 \quad A_{22}=2|A|=6+8=14 \neq 0 \Rightarrow A^{-1}$ exists.

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{|A|}\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22}
\end{array}\right]=\frac{1}{14}\left[\begin{array}{cc}
3 & 2 \\
-4 & 2
\end{array}\right]
$$

Question 6:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$
Answer

Let $A=\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$.
we have,
$|A|=-2+15=13$
Now,
$A_{11}=2, A_{12}=3, A_{21}=-5, A_{22}=-1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{13}\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$

Question 7:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$.
We have,
$|A|=1(10-0)-2(0-0)+3(0-0)=10$
Now,

$$
\begin{aligned}
& A_{11}=10-0=10, A_{12}=-(0-0)=0, A_{13}=0-0=0 \\
& A_{21}=-(10-0)=-10, A_{22}=5-0=5, A_{23}=-(0-0)=0 \\
& A_{31}=8-6=2, A_{32}=-(4-0)=-4, A_{33}=2-0=2
\end{aligned}
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$

Question 8:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$.
We have,
$|A|=1(-3-0)-0+0=-3$
Now,
$A_{11}=-3-0=-3, A_{12}=-(-3-0)=3, A_{13}=6-15=-9$
$A_{21}=-(0-0)=0, A_{22}=-1-0=-1, A_{23}=-(2-0)=-2$
$A_{31}=0-0=0, A_{32}=-(0-0)=0, A_{33}=3-0=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$

Question 9:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$.
We have,

$$
\begin{aligned}
|A| & =2(-1-0)-1(4-0)+3(8-7) \\
& =2(-1)-1(4)+3(1) \\
& =-2-4+3 \\
& =-3
\end{aligned}
$$

Now,
$A_{11}=-1-0=-1, A_{12}=-(4-0)=-4, A_{13}=8-7=1$
$A_{21}=-(1-6)=5, A_{22}=2+21=23, A_{23}=-(4+7)=-11$
$A_{31}=0+3=3, A_{32}=-(0-12)=12, A_{33}=-2-4=-6$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$

Question 10:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
Answer

Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
By expanding along C_{1}, we have:
$|A|=1(8-6)-0+3(3-4)=2-3=-1$
Now,
$A_{11}=8-6=2, A_{12}=-(0+9)=-9, A_{13}=0-6=-6$
$A_{21}=-(-4+4)=0, A_{22}=4-6=-2, A_{23}=-(-2+3)=-1$
$A_{31}=3-4=-1, A_{32}=-(-3-0)=3, A_{33}=2-0=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj $A=-\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$

Question 11:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$

Answer

Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$.
We have,
$|A|=1\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1$
Now,
$A_{11}=-\cos ^{2} \alpha-\sin ^{2} \alpha=-1, A_{12}=0, A_{13}=0$
$A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha$
$A_{31}=0, A_{32}=-\sin \alpha, A_{33}=\cos \alpha$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=-\left[\begin{array}{lll}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$

Question 12:

Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$. Verify that $(A B)^{-1}=B^{-1} A^{-1}$

Answer

Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$.
We have,
$|A|=15-14=1$
Now,
$A_{11}=5, A_{12}=-2, A_{21}=-7, A_{22}=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$

Now, let $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$.
We have,
$|B|=54-56=-2$
$\therefore \operatorname{adj} B=\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]$
$\therefore B^{-1}=\frac{1}{|B|} \operatorname{adj} B=-\frac{1}{2}\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]=\left[\begin{array}{cc}-\frac{9}{2} & 4 \\ \frac{7}{2} & -3\end{array}\right]$
Now,

$$
\begin{align*}
B^{-1} A^{-1} & =\left[\begin{array}{cc}
-\frac{9}{2} & 4 \\
\frac{7}{2} & -3
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
-2 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
-\frac{45}{2}-8 & \frac{63}{2}+12 \\
\frac{35}{2}+6 & -\frac{49}{2}-9
\end{array}\right]=\left[\begin{array}{ll}
-\frac{61}{2} & \frac{87}{2} \\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right] \tag{1}
\end{align*}
$$

Then,

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right]\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
18+49 & 24+63 \\
12+35 & 16+45
\end{array}\right] \\
& =\left[\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right]
\end{aligned}
$$

Therefore, we have $|A B|=67 \times 61-87 \times 47=4087-4089=-2$.
Also,
$\operatorname{adj}(A B)=\left[\begin{array}{rr}61 & -87 \\ -47 & 67\end{array}\right]$
$\therefore(A B)^{-1}=\frac{1}{|A B|} \operatorname{adj}(A B)=-\frac{1}{2}\left[\begin{array}{ll}61 & -87 \\ -47 & 67\end{array}\right]$

$$
=\left[\begin{array}{cc}
-\frac{61}{2} & \frac{87}{2} \tag{2}\\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right]
$$

From (1) and (2), we have:
$(A B)^{-1}=B^{-1} A^{-1}$
Hence, the given result is proved.

Question 13:

If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=O$. Hence find A^{-1}.
Answer

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& A^{2}=A \cdot A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right]=\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right] \\
& \therefore A^{2}-5 A+7 I \\
& =\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-5\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
-7 & 0 \\
0 & -7
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Hence, $A^{2}-5 A+7 I=O$.
$\therefore A \cdot A-5 A=-7 I$
$\Rightarrow A \cdot A\left(A^{-1}\right)-5 A A^{-1}=-7 I A^{-1} \quad\left[\right.$ Post-multiplying by A^{-1} as $\left.|A| \neq 0\right]$
$\Rightarrow A\left(A A^{-1}\right)-5 I=-7 A^{-1}$
$\Rightarrow A I-5 I=-7 A^{-1}$
$\Rightarrow A^{-1}=-\frac{1}{7}(A-5 I)$
$\Rightarrow A^{-1}=\frac{1}{7}(5 I-A)$
$=\frac{1}{7}\left(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]-\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]\right)=\frac{1}{7}\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{7}\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]$

Question 14:

For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $A^{2}+a A+b I=0$.

Answer

$A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}9+2 & 6+2 \\ 3+1 & 2+1\end{array}\right]=\left[\begin{array}{ll}11 & 8 \\ 4 & 3\end{array}\right]$
Now,

$$
\begin{aligned}
& A^{2}+a A+b I=O \\
& \Rightarrow(A A) A^{-1}+a A A^{-1}+b I A^{-1}=O \\
& \Rightarrow A\left(A A^{-1}\right)+a I+b\left(I A^{-1}\right)=O \\
& \Rightarrow A I+a I+b A^{-1}=O \\
& \Rightarrow A+a I=-b A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{b}(A+a I)
\end{aligned} \quad\left[\text { Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right]
$$

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{1}\left[\begin{array}{rr}1 & -2 \\ -1 & 3\end{array}\right]=\left[\begin{array}{rr}1 & -2 \\ -1 & 3\end{array}\right]$
We have:
$\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right]=-\frac{1}{b}\left(\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]+\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]\right)=-\frac{1}{b}\left[\begin{array}{ll}3+a & 2 \\ 1 & 1+a\end{array}\right]=\left[\begin{array}{ll}\frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b}\end{array}\right]$
Comparing the corresponding elements of the two matrices, we have:
$-\frac{1}{b}=-1 \Rightarrow b=1$
$\frac{-3-a}{b}=1 \Rightarrow-3-a=1 \Rightarrow a=-4$
Hence, -4 and 1 are the required values of a and b respectively.

Question 15:

For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]_{\text {show that }} A^{3}-6 A^{2}+5 A+11 I=0$. Hence, find A^{-1}.

Answer

$$
\left.\left.\begin{array}{rl}
A & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
A^{2} & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+1+2 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9 \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right]=\left[\begin{array}{cc}
4 & 2
\end{array} 1\right. \\
-3 & 8 \\
7 & -3
\end{array}\right] 14\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
A^{3} & =A^{2} \cdot A & =\left[\begin{array}{ccc}
4 & 2 & -1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
7-3+28 & 7-6-14 & 7+9+42
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]
\end{array}\right.
$$

$\therefore A^{3}-6 A^{2}+5 A+11 I$
$=\left[\begin{array}{ccc}8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58\end{array}\right]-6\left[\begin{array}{ccc}4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14\end{array}\right]+5\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]+11\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58\end{array}\right]-\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]+\left[\begin{array}{ccc}5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15\end{array}\right]+\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
$=\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]-\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=O$
Thus, $A^{3}-6 A^{2}+5 A+11 I=O$.
Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+5 A+11 I=O \\
& \left.\Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+5 A A^{-1}+11 L A^{-1}=0 \quad \text { [Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+5\left(A A^{-1}\right)=-11\left(I A^{-1}\right) \\
& \Rightarrow A^{2}-6 A+5 I=-11 A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{11}\left(A^{2}-6 A+5 I\right) \quad \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
& A^{2}-6 A+5 I \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-6\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-\left[\begin{array}{ccc}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{array}\right]+\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & 2 & 1 \\
-3 & 13 & -14 \\
7 & -3 & 19
\end{array}\right]-\left[\begin{array}{lll}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]
\end{aligned}
$$

From equation (1), we have:

$$
A^{-1}=-\frac{1}{11}\left[\begin{array}{lll}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]=\frac{1}{11}\left[\begin{array}{lll}
-3 & 4 & 5 \\
9 & -1 & -4 \\
5 & -3 & -1
\end{array}\right]
$$

Question 16:

If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]_{\text {verify }}$ that $A^{3}-6 A^{2}+9 A-4 I=O$ and hence find A^{-1}

Answer

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
A^{2} & =\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4+1+1 & -2-2-1 & 2+1+2 \\
-2-2-1 & 1+4+1 & -1-2-2 \\
2+1+2 & -1-2-2 & 1+1+4
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
A^{3} & =A^{2} A
\end{array}=\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
1 & -1 \\
-1
\end{array}\right] \quad \begin{array}{lll}
12+5+5 & -6-10-5 & 6+5+10 \\
-10-6-5 & 5+12+5 & -5-6-10 \\
10+5+6 & -5-10-6 & 5+5+12
\end{array}\right] .
$$

Now,

$$
\begin{aligned}
& A^{3}-6 A^{2}+9 A-4 I \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-\left[\begin{array}{ccc}
36 & -30 & 30 \\
-30 & 36 & -30 \\
30 & -30 & 36
\end{array}\right]+\left[\begin{array}{ccc}
18 & -9 & 9 \\
-9 & 18 & -9 \\
9 & -9 & 18
\end{array}\right]-\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]-\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \therefore A^{3}-6 A^{2}+9 A-4 I=O
\end{aligned}
$$

Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+9 A-4 I=O \\
& \Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+9 A A^{-1}-4 I A^{-1}=O \quad\left[\text { Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+9\left(A A^{-1}\right)=4\left(I A^{-1}\right) \\
& \Rightarrow A A I-6 A I+9 I=4 A^{-1} \\
& \Rightarrow A^{2}-6 A+9 I=4 A^{-1} \\
& \Rightarrow A^{-1}=\frac{1}{4}\left(A^{2}-6 A+9 I\right) \tag{1}\\
& A^{2}-6 A+9 I \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-\left[\begin{array}{ccc}
12 & -6 & 6 \\
-6 & 12 & -6 \\
6 & -6 & 12
\end{array}\right]+\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
\end{align*}
$$

From equation (1), we have:

$$
A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

Question 17:

Let A be a nonsingular square matrix of order 3×3. Then $|\operatorname{adj} A|_{\text {is equal to }}$
A. ${ }^{|A|}$
B. $|A|^{2}$
c. $|A|^{3}$
D. ${ }^{3|A|}$

Answer B
We know that,
$(\operatorname{adj} A) A=|A| I=\left[\begin{array}{lll}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right]$
$\Rightarrow|(\operatorname{adj} A) A|=\left|\begin{array}{lll}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right|$
$\Rightarrow|\operatorname{adj} A||A|=|A|^{3}\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=|A|^{3}(I)$
$\therefore|\operatorname{adj} A|=|A|^{2}$
Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to
A. $\operatorname{det}(A)$ B. $\frac{1}{\operatorname{det}(A)}$
C. 1 D. 0

Answer

Since A is an invertible matrix,

$$
A^{-1} \text { exists and } A^{-1}=\frac{1}{|A|} \operatorname{adj} A \text {. }
$$

As matrix A is of order 2, let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Then, $|A|=a d-b c$ and $\operatorname{adj} A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
Now,

$$
\begin{aligned}
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{ll}
\frac{d}{|A|} & \frac{-b}{|A|} \\
\frac{-c}{|A|} & \frac{a}{|A|}
\end{array}\right] \\
& \therefore\left|A^{-1}\right|=\left|\begin{array}{cc}
\frac{d}{|A|} & \frac{-b}{|A|} \\
\frac{-c}{|A|} & \left.\frac{a}{|A|} \right\rvert\,
\end{array}\right|=\frac{1}{|A|^{2}}\left|\begin{array}{cc}
d & -b \\
-c & a \mid
\end{array}\right|=\frac{1}{|A|^{2}}(a d-b c)=\frac{1}{|A|^{2}}|A|=\frac{1}{|A|} \\
& \therefore \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
\end{aligned}
$$

Hence, the correct answer is B.

Class XII : Maths

Chapter 4 : Determinants

Questions and Solutions | Exercise 4.5 - NCERT Books

Question 1:

Examine the consistency of the system of equations.
$x+2 y=2$
$2 x+3 y=3$
Answer
The given system of equations is:
$x+2 y=2$
$2 x+3 y=3$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Now,
$|A|=1(3)-2(2)=3-4=-1 \neq 0$
$\therefore A$ is non-singular.

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 2:

Examine the consistency of the system of equations.
$2 x-y=5$
$x+y=4$
Answer
The given system of equations is:
$2 x-y=5$
$x+y=4$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 4\end{array}\right]$.
Now,
$|A|=2(1)-(-1)(1)=2+1=3 \neq 0$
$\therefore A$ is non-singular.

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 3:

Examine the consistency of the system of equations.
$x+3 y=5$
$2 x+6 y=8$
Answer
The given system of equations is:
$x+3 y=5$
$2 x+6 y=8$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 8\end{array}\right]$.
Now,
$|A|=1(6)-3(2)=6-6=0$
$\therefore A$ is a singular matrix.

Now,
$(\operatorname{adj} A)=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$
$(\operatorname{adj} A) B=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{l}30-24 \\ -10+8\end{array}\right]=\left[\begin{array}{l}6 \\ -2\end{array}\right] \neq O$
Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 4:

Examine the consistency of the system of equations.
$x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=4$
Answer
The given system of equations is:
$x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=4$
This system of equations can be written in the form $A X=B$, where
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$.
Now,

$$
\begin{aligned}
|A| & =1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a) \\
& =4 a-2 a-a=4 a-3 a=a \neq 0
\end{aligned}
$$

$\therefore A$ is non-singular.
Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 5:

Examine the consistency of the system of equations.
$3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$
Answer
The given system of equations is:
$3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$.
Now,

$$
|A|=3(0-5)-0+3(1+4)=-15+15=0
$$

$\therefore A$ is a singular matrix.
Now,
$(\operatorname{adj} A)=\left[\begin{array}{lll}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$
$\therefore(\operatorname{adj} A) B=\left[\begin{array}{lll}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{l}-10-10+15 \\ -6-6+9 \\ -12-12+18\end{array}\right]=\left[\begin{array}{l}-5 \\ -3 \\ -6\end{array}\right] \neq O$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 6:

Examine the consistency of the system of equations.
$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
Answer
The given system of equations is:
$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{r}5 \\ 2 \\ -1\end{array}\right]$.
Now,

$$
\begin{aligned}
|A| & =5(18+10)+1(12-25)+4(-4-15) \\
& =5(28)+1(-13)+4(-19) \\
& =140-13-76 \\
& =51 \neq 0
\end{aligned}
$$

$\therefore A$ is non-singular.

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 7:

Solve system of linear equations, using matrix method.
$5 x+2 y=4$
$7 x+3 y=5$
Answer

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
Now, $|A|=15-14=1 \neq 0$.
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$\therefore A^{-1}=\left[\begin{array}{rr}3 & -2 \\ -7 & 5\end{array}\right]$
$\therefore X=A^{-1} B=\left[\begin{array}{rr}3 & -2 \\ -7 & 5\end{array}\right]\left[\begin{array}{l}4 \\ 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}12-10 \\ -28+25\end{array}\right]=\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Hence, $x=2$ and $y=-3$.

Question 8:

Solve system of linear equations, using matrix method.
$2 x-y=-2$
$3 x+4 y=3$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$.
Now,
$|A|=8+3=11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-8+3 \\ 6+6\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-5 \\ 12\end{array}\right]=\left[\begin{array}{c}-\frac{5}{11} \\ \frac{12}{11}\end{array}\right]$
Hence, $x=\frac{-5}{11}$ and $y=\frac{12}{11}$.

Question 9:

Solve system of linear equations, using matrix method.
$4 x-3 y=3$
$3 x-5 y=7$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
Now,
$|A|=-20+9=-11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Now,
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=-\frac{1}{11}\left[\begin{array}{ll}-5 & 3 \\ -3 & 4\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}15-21 \\ 9-28\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-6 \\ -19\end{array}\right]=\left[\begin{array}{c}-\frac{6}{11} \\ -\frac{19}{11}\end{array}\right]$
Hence, $x=\frac{-6}{11}$ and $y=\frac{-19}{11}$.

Question 10:

Solve system of linear equations, using matrix method.
$5 x+2 y=3$
$3 x+2 y=5$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
Now,
$|A|=10-6=4 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Question 11:

Solve system of linear equations, using matrix method.
$2 x+y+z=1$
$x-2 y-z=\frac{3}{2}$
$3 y-5 z=9$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$.
Now,
$|A|=2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=13, A_{12}=5, A_{13}=3$
$A_{21}=8, A_{22}=-10, A_{23}=-6$
$A_{31}=1, A_{32}=3, A_{33}=-5$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]\left[\begin{array}{l}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{l}13+12+9 \\ 5-15+27 \\ 3-9-45\end{array}\right]$

$$
=\frac{1}{34}\left[\begin{array}{l}
34 \\
17 \\
-51
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
-\frac{3}{2}
\end{array}\right]
$$

Hence, $x=1, y=\frac{1}{2}$, and $z=-\frac{3}{2}$.

Question 12:

Solve system of linear equations, using matrix method.
$x-y+z=4$
$2 x+y-3 z=0$
$x+y+z=2$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$.
Now,
$|A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=4, A_{12}=-5, A_{13}=1$
$A_{21}=2, A_{22}=0, A_{23}=-2$
$A_{31}=2, A_{32}=5, A_{33}=3$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}16+0+4 \\ -20+0+10 \\ 4+0+6\end{array}\right]$
$=\frac{1}{10}\left[\begin{array}{c}20 \\ -10 \\ 10\end{array}\right]$

$$
=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Hence, $x=2, y=-1$, and $z=1$.

Question 13:

Solve system of linear equations, using matrix method.
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$

Answer

The given system of equations can be written in the form $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & \begin{array}{c}
3 \\
3 \\
1 \\
3
\end{array} & \begin{array}{c}
-2 \\
-1
\end{array} \\
\hline-2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{l}
5 \\
-4 \\
3
\end{array}\right] .
$$

Now,

$$
|A|=2(4+1)-3(-2-3)+3(-1+6)=2(5)-3(-5)+3(5)=10+15+15=40 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=5, A_{12}=5, A_{13}=5$

$$
A_{21}=3, A_{22}=-13, A_{23}=11
$$

$$
A_{31}=9, A_{32}=1, A_{33}=-7
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]\left[\begin{array}{l}5 \\ -4 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{l}25-12+27 \\ 25+52+3 \\ 25-44-21\end{array}\right]$

$$
=\frac{1}{40}\left[\begin{array}{l}
40 \\
80 \\
-40
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Hence, $x=1, y=2$, and $z=-1$.

Question 14:

Solve system of linear equations, using matrix method.
$x-y+2 z=7$
$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$.
Now,

$$
|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=7, A_{12}=-19, A_{13}=-11$
$A_{21}=1, A_{22}=-1, A_{23}=-1$
$A_{31}=-3, A_{32}=11, A_{33}=7$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{l}7 \\ -5 \\ 12\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}49-5-36 \\ -133+5+132 \\ -77+5+84\end{array}\right]$

$$
=\frac{1}{4}\left[\begin{array}{l}
8 \\
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Hence, $x=2, y=1$, and $z=3$.

Question 15:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \text {, find } A^{-1} \text {. Using } A^{-1} \text { solve the system of equations } \\
& \text { If } \begin{aligned}
2 x-3 y+5 z & =11 \\
3 x+2 y-4 z & =-5 \\
x+y-2 z & =-3
\end{aligned}
\end{aligned}
$$

Answer

$A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$
$\therefore|A|=2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1 \neq 0$
Now, $A_{11}=0, A_{12}=2, A_{13}=1$

$$
\begin{align*}
& A_{21}=-1, A_{22}=-9, A_{23}=-5 \\
& A_{31}=2, A_{32}=23, A_{33}=13 \tag{1}
\end{align*}
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=-\left[\begin{array}{lll}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Now, the given system of equations can be written in the form of $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right]
$$

The solution of the system of equations is given by $X=A^{-1} B$.

$$
\begin{aligned}
X & =A^{-1} B \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right] \\
& =\left[\begin{array}{c}
0-5+6 \\
-22-45+69 \\
-11-25+39
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

Hence, $x=1, y=2$, and $z=3$.

Question 16:

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90 . The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70 . Find cost of each item per kg by matrix method.
Answer
Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively.
Then, the given situation can be represented by a system of equations as:
$4 x+3 y+2 z=60$
$2 x+4 y+6 z=90$
$6 x+2 y+3 z=70$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}60 \\ 90 \\ 70\end{array}\right]$.
$|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$
Now, $\quad A_{11}=0, A_{12}=30, A_{13}=-20$
$A_{21}=-5, A_{22}=0, A_{23}=10$
$A_{31}=10, A_{32}=-20, A_{33}=10$

$$
\begin{aligned}
& \therefore \operatorname{adj} A=\left[\begin{array}{ccc}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{50}\left[\begin{array}{ccc}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right]
\end{aligned}
$$

Now,

$$
X=A^{-1} B
$$

$$
\Rightarrow X=\frac{1}{50}\left[\begin{array}{ccc}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right]\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{50}\left[\begin{array}{l}
0-450+700 \\
1800+0-1400 \\
-1200+900+700
\end{array}\right]
$$

$$
=\frac{1}{50}\left[\begin{array}{l}
250 \\
400 \\
400
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
5 \\
8 \\
8
\end{array}\right]
$$

$\therefore x=5, y=8$, and $z=8$.
Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg, and the cost of rice is Rs 8 per kg.

Class XII : Maths

Chapter 4 : Determinants

Questions and Solutions | Miscellaneous Exercise 4 - NCERT Books

Question 1:

Prove that the determinant $\left.\left\lvert\, \begin{array}{ccc}x & \sin \theta & \cos \theta \\ \text { Answer } & \sin \theta & -x\end{array}\right.\right] 1$ is independent of θ.

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right| \\
& =x\left(x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta) \\
& =x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+x \cos ^{2} \theta \\
& =x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =x^{3}-x+x \\
& \left.=x^{3} \text { (Independent of } \theta\right)
\end{aligned}
$$

Hence, Δ is independent of θ.

Question 2:

Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$

Answer

$$
\Delta=\left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right|
$$

Expanding along C_{3}, we have:

$$
\begin{aligned}
\Delta & =-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta-\cos ^{2} \beta \sin \alpha\right)+\cos \alpha\left(\cos \alpha \cos ^{2} \beta+\cos \alpha \sin ^{2} \beta\right) \\
& =\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right) \\
& =\sin ^{2} \alpha(1)+\cos ^{2} \alpha(1) \\
& =1
\end{aligned}
$$

Question 3:
If $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$, find $(A B)^{-1}$.
Answer 3:
Here, $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$,
Therefore, $|B|=1(3-0)-2(-1-0)-2(2-0)=1 \neq 0 \Rightarrow B^{-1}$ exists.

$$
\left.\begin{array}{rl}
B_{11} & =3 \\
B_{21} & =2 \\
B_{31} & =6 \\
B^{-1} & =\frac{1}{|B|} \operatorname{adj} B=\frac{1}{1}
\end{array}\left[\begin{array}{lll}
B_{11} & B_{21} & B_{31} \\
B_{12} & B_{22} & B_{32} \\
B_{13} & B_{23} & B_{33}
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]\right)
$$

We know that: $(A B)^{-1}=B^{-1} A^{-1}$, therefore

$$
\begin{aligned}
& (A B)^{-1}=B^{-1} A^{-1}=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9-30+30 & -3+12-12 & 3-10+12 \\
3-15+10 & -1+6-4 & 1-5+4 \\
6-30+25 & -2+12-10 & 2-10+10
\end{array}\right]=\left[\begin{array}{ccc}
9 & -3 & 5 \\
-2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
\end{aligned}
$$

Question 4:
Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$. Verify that
(i) $(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)$
(ii) $\left(A^{-1}\right)^{-1}=A$

Answer 4:
(i) Here, $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$, therefore

$$
\begin{aligned}
& |A|=1(15-1)+2(-10-1)+1(-2-3)=-13 \neq 0 \Rightarrow A^{-1} \text { exists. } \\
& A_{11}=14 \\
& A_{12}=11 \\
& A_{13}=-5 \\
& A_{21}=11 \\
& A_{22}=4 \\
& A_{23}=-3 \\
& A_{31}=-5 \\
& A_{32}=-3 \\
& A_{32}=-3 \\
& A_{33}=-1 \\
& \operatorname{dj} A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \text { adj } A=\frac{1}{|A|}\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\frac{1}{-13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]
\end{aligned}
$$

adj
Let, $B=\operatorname{adj} A$, so, $B=\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]$, therefore
$|B|=14(-4-9)-11(-11-15)-5(-33+20)=-182+286+65=169 \neq 0 \Rightarrow B^{-1}$ exists.

$$
\begin{array}{rrr}
B_{11}=-13 & B_{12}=26 & B_{13}=-13 \\
B_{21}=26 & B_{22}=-39 & B_{23}=-13 \\
B_{31}=-13 & B_{32}=-13 &
\end{array}
$$

$$
B^{-1}=\frac{1}{|B|}\left[\begin{array}{lll}
B_{11} & B_{21} & B_{31} \\
B_{12} & B_{22} & B_{32} \\
B_{13} & B_{23} & B_{33}
\end{array}\right]=\frac{1}{169}\left[\begin{array}{ccc}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right]=\frac{1}{13}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
$$

$$
\Rightarrow(\operatorname{adj} A)^{-1}=\frac{1}{13}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
$$

Let, $C=A^{-1}$, so, $C=\frac{1}{-13}\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]=\left[\begin{array}{ccc}-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13}\end{array}\right]$, therefore

$$
\begin{array}{rrr}
C_{11}=-\frac{1}{13} & C_{12}=\frac{2}{13} & C_{13}=-\frac{1}{13} \\
C_{21}=\frac{2}{13} & C_{22}=-\frac{3}{13} & C_{23}=-\frac{1}{13} \\
C_{31}=-\frac{1}{13} & C_{32}=-\frac{1}{13} & C_{33}=-\frac{5}{13}
\end{array}
$$

Adj $C=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]=\left[\begin{array}{ccc}-\frac{1}{13} & \frac{2}{13} & -\frac{1}{13} \\ \frac{2}{13} & -\frac{3}{13} & -\frac{1}{13} \\ -\frac{1}{13} & -\frac{1}{13} & -\frac{5}{13}\end{array}\right]=\frac{1}{13}\left[\begin{array}{ccc}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]$

$$
\Rightarrow \operatorname{Adj} C=\operatorname{adj}\left(A^{-1}\right)=\frac{1}{13}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
$$

From the equations (2) and (3), we have, $(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)$
(ii) From the equation (1), we have,

$$
A^{-1}=\frac{1}{-13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]
$$

Let, $D=A^{-1}$, so, $D=\frac{1}{-13}\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]=\left[\begin{array}{ccc}-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\ \frac{5}{12} & \frac{3}{12} & \frac{1}{12}\end{array}\right]$, therefore
$|D|=-\left(\frac{1}{13}\right)^{3}[14(-4-9)-11(-11-15)-5(-33+20)]$
$=-\left(\frac{1}{13}\right)^{3}(169)=-\frac{1}{13} \neq 0 \Rightarrow D^{-1}$ exists.
$D_{11}=-\frac{1}{13}$
$D_{12}=\frac{2}{13}$
$D_{13}=-\frac{1}{13}$
$D_{21}=\frac{2}{13}$
$D_{22}=-\frac{3}{13}$
$D_{23}=-\frac{1}{13}$
$D_{31}=-\frac{1}{13}$
$D_{33}=-\frac{5}{13}$
$D^{-1}=\frac{1}{|D|}\left[\begin{array}{lll}D_{11} & D_{21} & D_{31} \\ D_{12} & D_{22} & D_{32} \\ D_{13} & D_{23} & D_{33}\end{array}\right]=\frac{1}{-1 / 13}\left[\begin{array}{ccc}-\frac{1}{13} & \frac{2}{13} & -\frac{1}{13} \\ \frac{2}{13} & -\frac{3}{13} & -\frac{1}{13} \\ -\frac{1}{13} & -\frac{1}{13} & -\frac{5}{13}\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$
$\Rightarrow D^{-1}=\left(A^{-1}\right)^{-1}=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]=A$

Question 5:
Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
Enswer 5:
Given that: $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
$=\left|\begin{array}{ccc}2(x+y) & y & x+y \\ 2(x+y) & x+y & x \\ 2(x+y) & x & y\end{array}\right|$
[Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$]

$$
=2(x+y)\left|\begin{array}{ccc}
1 & y & x+y \\
1 & x+y & x \\
1 & x & y
\end{array}\right|
$$

$=2(x+y)\left|\begin{array}{ccc}0 & -x & y \\ 0 & y & x-y \\ 1 & y & y+k\end{array}\right| \quad\left[\right.$ Applying $\left.R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}\right]$
$=2(x+y)\{(-x)(x-y)-y, y\} \quad$ [Expending along C_{1}]
$=2(x+y)\left(-x^{2}+x y-y^{2}\right)=-2(x+y)\left(x^{2}-x y+y^{2}\right)=-2\left(x^{3}+y^{3}\right)$
[Taking $2(x+y)$ as common from C_{1}]

Question 5:
Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
Answer 5:
Given that: $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$

$$
=\left|\begin{array}{ccc}
2(x+y) & y & x+y \\
2(x+y) & x+y & x \\
2(x+y) & x & y
\end{array}\right|
$$

[Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$]
$=2(x+y)\left|\begin{array}{ccc}1 & y & x+y \\ 1 & x+y & x \\ 1 & x & y\end{array}\right|$
$=2(x+y)\left|\begin{array}{ccc}0 & -x & y \\ 0 & y & x-y \\ 1 & y & y+k\end{array}\right|$
[Applying $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$]
$=2(x+y)\{(-x)(x-y)-y \cdot y\}$
$=2(x+y)\left(-x^{2}+x y-y^{2}\right)=-2(x+y)\left(x^{2}-x y+y^{2}\right)=-2\left(x^{3}+y^{3}\right)$

Question 6:
Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
Answer 6:
Given that: $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|=\left|\begin{array}{ccc}0 & -y & 0 \\ 0 & y & -x \\ 1 & x & x+y\end{array}\right|$
[Applying $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$] $=\{(-y)(-x)-y .0\}$
[Expending along C_{1}] $=x y$

Question 7:

$$
\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4
$$

Solve the system of equations:

$$
\begin{aligned}
& \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1 \\
& \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2
\end{aligned}
$$

Answer 7:

$$
\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4
$$

The given system of equations:

$$
\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1
$$

$$
\frac{\mathrm{o}}{x}+\frac{\mathrm{y}}{y}-\frac{\mathrm{zu}}{z}=2
$$

This system of equations can be written as $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right] \cdot X=\left[\begin{array}{l}
1 / x \\
1 / y \\
1 / z
\end{array}\right] \text { and } B=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

$$
|A|=2(120-45)-3(-80-30)+10(36+36)=150+330+720=1200 \neq 0 \Rightarrow A^{-1} \text { exists. }
$$

$$
\begin{aligned}
& A_{12}=110 \\
& A_{11}=75
\end{aligned} A_{23}=0
$$

$$
\begin{aligned}
& A_{11}=75 A_{23}=0 \\
& A_{21}=150
\end{aligned}
$$

$$
A_{31}=75
$$

$$
A^{-1}=\frac{1}{|A|} \text { adj } A=\frac{1}{1200}\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

$$
X=A^{-1} B \Rightarrow\left[\begin{array}{l}
1 / x \\
1 / y \\
1 / z
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Question 8:

Choose the correct answer.

If x, y, z are nonzero real numbers, then the inverse of matrix $A=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & 0 & z\end{array}\right]$ is
A. $\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]_{\text {B. }} x y z\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]$
C. $\frac{1}{x y z}\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]_{\text {D. }} \quad \frac{1}{x y z}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer

Answer: A

$A=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
$\therefore|A|=x(y z-0)=x y z \neq 0$

Now, $A_{11}=y z, A_{12}=0, A_{13}=0$

$$
A_{21}=0, A_{22}=x z, A_{23}=0
$$

$$
A_{31}=0, A_{32}=0, A_{33}=x y
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{lll}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj A

$$
\begin{aligned}
= & \frac{1}{x y z}\left[\begin{array}{lll}
y z & 0 & 0 \\
0 & x z & 0 \\
0 & 0 & x y
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{y z}{x y z} & 0 & 0 \\
0 & \frac{x z}{x y z} & 0 \\
0 & 0 & \frac{x y}{x y z}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{1}{x} & 0 & 0 \\
0 & \frac{1}{y} & 0 \\
0 & 0 & \frac{1}{z}
\end{array}\right]=\left[\begin{array}{lll}
x^{-1} & 0 & 0 \\
0 & y^{-1} & 0 \\
0 & 0 & z^{-1}
\end{array}\right]
\end{aligned}
$$

The correct answer is A.

Question 9:

Choose the correct answer.
Let $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, where $0 \leq \theta \leq 2 \pi$, then
A. $\operatorname{Det}(A)=0$
B. $\operatorname{Det}(A) \in(2, \infty)$
C. $\operatorname{Det}(A) \in(2,4)$
D. $\operatorname{Det}(A) \in[2,4]$

Answer
sAnswer: D

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & \sin \theta & 1 \\
-\sin \theta & 1 & \sin \theta \\
-1 & -\sin \theta & 1
\end{array}\right] \\
& \therefore|A|=1\left(1+\sin ^{2} \theta\right)-\sin \theta(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta+1\right) \\
& \quad=1+\sin ^{2} \theta+\sin ^{2} \theta+1 \\
& \quad=2+2 \sin ^{2} \theta \\
& \quad=2\left(1+\sin ^{2} \theta\right)
\end{aligned}
$$

Now, $0 \leq \theta \leq 2 \pi$
$\Rightarrow 0 \leq \sin \theta \leq 1$
$\Rightarrow 0 \leq \sin ^{2} \theta \leq 1$
$\Rightarrow 1 \leq 1+\sin ^{2} \theta \leq 2$
$\Rightarrow 2 \leq 2\left(1+\sin ^{2} \theta\right) \leq 4$
$\therefore \operatorname{Det}(A) \in[2,4]$
The correct answer is D.

