Class XII : Maths

Chapter 8 : Application Of Integrals

Questions and Solutions | Exercise 8.1 - NCERT Books

Question 1:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Answer

The given equation of the ellipse, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area of $O A B$

Area of $\mathrm{OAB}=\int_{0}^{4} y d x$
$=\int_{0}^{1} 3 \sqrt{1-\frac{x^{2}}{16}} d x$
$=\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x$
$=\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4}$
$=\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right]$
$=\frac{3}{4}\left[\frac{8 \pi}{2}\right]$
$=\frac{3}{4}[4 \pi]$
$=3 \pi$
herefore, area bounded by the ellipse $=4 \times 3 \pi=12 \pi$ units

Question 2:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
Answer
The given equation of the ellipse can be represented as

$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
$\Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}$
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area OAB

$$
\begin{aligned}
\therefore \text { Area of } \mathrm{OAB} & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x \quad \quad \text { Using (1)] } \\
& =\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-} \frac{x}{2}\right]_{0}^{2} \\
& =\frac{3}{2}\left[\frac{2 \pi}{2}\right] \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ units

Question 3:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. $!$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer
The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{2} y d x$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=2\left(\frac{\pi}{2}\right)$
$=\pi$ units
Thus, the correct answer is A.

Question 4:

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer
The area bounded by the curve, $y^{2}=4 x, y$-axis, and $y=3$ is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{3} x d y$
$=\int_{0}^{3} \frac{y^{2}}{4} d y$
$=\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}$
$=\frac{1}{12}(27)$
$=\frac{9}{4}$ units
Thus, the correct answer is B.

Class XII : Maths

Chapter 8 : Application Of Integrals

Questions and Solutions | Miscellaneous Exercise 8 - NCERT Books

Question 1:

Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x-axis

Answer
i. The required area is represented by the shaded area ADCBA as

Area $\mathrm{ADCBA}=\int_{1}^{2} y d x$
$=\int_{1}^{2} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{1}^{2}$
$=\frac{8}{3}-\frac{1}{3}$
$=\frac{7}{3}$ units
ii. The required area is represented by the shaded area ADCBA as

$$
\begin{aligned}
\text { Area ADCBA } & =\int_{1}^{5} x^{4} d x \\
& =\left[\frac{x^{5}}{5}\right]_{1}^{5} \\
& =\frac{(5)^{5}}{5}-\frac{1}{5} \\
& =(5)^{4}-\frac{1}{5} \\
& =625-\frac{1}{5} \\
& =624.8 \text { units }
\end{aligned}
$$

Question 2:

Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$

Answer

The given equation is $y=|x+3|$
The corresponding values of x and y are given in the following table.

x	-6	-5	-4	-3	-2	-1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of $y=|x+3|$ as follows.

It is known that, $(x+3) \leq 0$ for $-6 \leq x \leq-3$ and $(x+3) \geq 0$ for $-3 \leq x \leq 0$

$$
\begin{aligned}
\therefore \int_{-6}^{0}|(x+3)| d x & =-\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =-\left[\frac{x^{2}}{2}+3 x\right]_{-6}^{-3}+\left[\frac{x^{2}}{2}+3 x\right]_{-3}^{0} \\
& =-\left[\left(\frac{(-3)^{2}}{2}+3(-3)\right)-\left(\frac{(-6)^{2}}{2}+3(-6)\right)\right]+\left[0-\left(\frac{(-3)^{2}}{2}+3(-3)\right)\right] \\
& =-\left[-\frac{9}{2}\right]-\left[-\frac{9}{2}\right] \\
& =9
\end{aligned}
$$

Question 3:

Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$
Answer
The graph of $y=\sin x$ can be drawn as

\therefore Required area $=$ Area $O A B O+$ Area $B C D B$
$=\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right|$
$=[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right|$
$=[-\cos \pi+\cos 0]+|-\cos 2 \pi+\cos \pi|$
$=1+1+|(-1-1)|$
$=2+|-2|$
$=2+2=4$ units

Question 4:

Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer

Required area $=\int_{-2}^{1} y d x$
$=\int_{-2}^{1} x^{3} d x$
$=\left[\frac{x^{4}}{4}\right]_{-2}^{1}$
$=\left[\frac{1}{4}-\frac{(-2)^{4}}{4}\right]$
$=\left(\frac{1}{4}-4\right)=-\frac{15}{4}$ units
Thus, the correct answer is B.

Question 5:

The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1$ and $x=1$ is given by
[Hint: $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $x<0$]
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer

Required area $=\int_{-1}^{1} y d x$
$=\int_{-1}^{1} x|x| d x$
$=\int_{-1}^{0} x^{2} d x+\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=-\left(-\frac{1}{3}\right)+\frac{1}{3}$
$=\frac{2}{3}$ units
Thus, the correct answer is C.

