# Class XII : Maths <br> Chapter 9 : Differential Equations 

## Questions and Solutions | Exercise 9.1 - NCERT Books

## Question 1:

Determine order and degree(if defined) of differential equation $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$
Answer
$\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$
$\Rightarrow y^{\prime \prime \prime \prime}+\sin \left(y^{\prime \prime \prime}\right)=0$
The highest order derivative present in the differential equation is $y^{\prime \prime \prime \prime}$. Therefore, its order is four.
The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

## Question 2:

Determine order and degree(if defined) of differential equation $y^{\prime}+5 y=0$
Answer
The given differential equation is:

$$
y^{\prime}+5 y=0
$$

The highest order derivative present in the differential equation is $y^{\prime}$. Therefore, its order is one.
It is a polynomial equation in $y^{\prime}$. The highest power raised to $y^{\prime}$ is 1 . Hence, its degree is one.

## Question 3:

Determine order and degree(if defined) of differential equation $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$
Answer
$\left(\frac{d s}{d t}\right)^{4}+3 \frac{d^{2} s}{d t^{2}}=0$

The highest order derivative present in the given differential equation is $\frac{d^{2} s}{d t^{2}}$. Therefore, its order is two.

It is a polynomial equation in $\frac{d^{2} s}{d t^{2}}$ and $\frac{d s}{d t}$. The power raised to $\frac{d^{2} s}{d t^{2}}$ is 1 .
Hence, its degree is one.

## Question 4:

Determine order and degree(if defined) of differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
Answer
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
The highest order derivative present in the given differential equation is $\frac{d^{2} y}{d x^{2}}$. Therefore, its order is 2 .

The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

## Question 5:

Determine order and degree(if defined) of differential equation $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$ Answer
$\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-\cos 3 x-\sin 3 x=0$
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$. Therefore, its order is two.

It is a polynomial equation in $\frac{d^{2} y}{d x^{2}}$ and the power raised to $\frac{d^{2} y}{d x^{2}}$ is 1 . Hence, its degree is one.

## Question 6:

Determine order and degree(if defined) of differential equation
$\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
Answer
$\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)+y^{5}=0$
The highest order derivative present in the differential equation is $y^{\prime \prime \prime}$. Therefore, its order is three.
The given differential equation is a polynomial equation in $y^{\prime \prime \prime}, y^{\prime \prime}$, and $y^{\prime}$.
The highest power raised to $y^{\prime \prime \prime}$ is 2 . Hence, its degree is 2 .

## Question 7:

Determine order and degree(if defined) of differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$
Answer

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0
$$

The highest order derivative present in the differential equation is $y^{\prime \prime \prime \prime}$. Therefore, its order is three.
It is a polynomial equation in $y^{\prime \prime \prime}, y^{\prime \prime}$ and $y^{\prime}$. The highest power raised to $y^{\prime \prime \prime}$ is 1 . Hence, its degree is 1 .

## Question 8:

Determine order and degree(if defined) of differential equation $y^{\prime}+y=e^{x}$
Answer
$y^{\prime}+y=e^{x}$
$\Rightarrow y^{\prime}+y-e^{x}=0$

The highest order derivative present in the differential equation is $y^{\prime}$. Therefore, its order is one.

The given differential equation is a polynomial equation in $y^{\prime}$ and the highest power raised to $y^{\prime}$ is one. Hence, its degree is one.

## Question 9:

Determine order and degree(if defined) of differential equation $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$
Answer

$$
y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0
$$

The highest order derivative present in the differential equation is $y^{\prime \prime}$. Therefore, its order is two.

The given differential equation is a polynomial equation in $y^{\prime \prime}$ and $y^{\prime}$ and the highest power raised to $y^{\prime \prime}$ is one.

Hence, its degree is one.

## Question 10:

Determine order and degree(if defined) of differential equation $y^{\prime \prime}+2 y^{\prime}+\sin y=0$
Answer

$$
y^{\prime \prime}+2 y^{\prime}+\sin y=0
$$

The highest order derivative present in the differential equation is $y^{\prime \prime}$. Therefore, its order is two.

This is a polynomial equation in $y^{\prime \prime}$ and $y^{\prime}$ and the highest power raised to $y^{\prime \prime}$ is one. Hence, its degree is one.

## Question 11:

The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$ is
(A) 3 (B) 2 (C) 1 (D) not defined

Answer
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$
The given differential equation is not a polynomial equation in its derivatives. Therefore, its degree is not defined.
Hence, the correct answer is D.

## Question 12:

The order of the differential equation
$2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is
(A) 2 (B) 1 (C) 0 (D) not defined

Answer
$2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$
The highest order derivative present in the given differential equation is $\frac{d^{2} y}{d x^{2}}$. Therefore, its order is two.

Hence, the correct answer is A.

## Class XII : Maths <br> Chapter 9 : Differential Equations

## Questions and Solutions | Exercise 9.2 - NCERT Books

## Question 1:

$y=e^{x}+1 \quad: \quad y^{\prime \prime}-y^{\prime}=0$
Answer
$y=e^{x}+1$
Differentiating both sides of this equation with respect to $x$, we get:
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{x}+1\right)$
$\Rightarrow y^{\prime}=e^{x}$
Now, differentiating equation (1) with respect to $x$, we get:
$\frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x}\left(e^{x}\right)$
$\Rightarrow y^{\prime \prime}=e^{x}$
Substituting the values of $y^{\prime}$ and $y^{\prime \prime}$ in the given differential equation, we get the L.H.S. as:
$y^{\prime \prime}-y^{\prime}=e^{x}-e^{x}=0=$ R.H.S.
Thus, the given function is the solution of the corresponding differential equation.

## Question 2:

$y=x^{2}+2 x+\mathrm{C} \quad: y^{\prime}-2 x-2=0$
Answer
$y=x^{2}+2 x+C$
Differentiating both sides of this equation with respect to $x$, we get:
$y^{\prime}=\frac{d}{d x}\left(x^{2}+2 x+\mathrm{C}\right)$
$\Rightarrow y^{\prime}=2 x+2$
Substituting the value of $y^{\prime}$ in the given differential equation, we get:
L.H.S. $=y^{\prime}-2 x-2=2 x+2-2 x-2=0=$ R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

## Question 3:

$y=\cos x+C \quad: y^{\prime}+\sin x=0$
Answer
$y=\cos x+C$
Differentiating both sides of this equation with respect to $x$, we get:
$y^{\prime}=\frac{d}{d x}(\cos x+\mathrm{C})$
$\Rightarrow y^{\prime}=-\sin x$
Substituting the value of $y^{\prime}$ in the given differential equation, we get:
L.H.S. $=y^{\prime}+\sin x=-\sin x+\sin x=0=$ R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

## Question 4:

$y=\sqrt{1+x^{2}} \quad: \quad y^{\prime}=\frac{x y}{1+x^{2}}$
Answer
$y=\sqrt{1+x^{2}}$
Differentiating both sides of the equation with respect to $x$, we get:

$$
\begin{aligned}
& y^{\prime}=\frac{d}{d x}\left(\sqrt{1+x^{2}}\right) \\
& y^{\prime}=\frac{1}{2 \sqrt{1+x^{2}}} \cdot \frac{d}{d x}\left(1+x^{2}\right) \\
& y^{\prime}=\frac{2 x}{2 \sqrt{1+x^{2}}} \\
& y^{\prime}=\frac{x}{\sqrt{1+x^{2}}} \\
& \Rightarrow y^{\prime}=\frac{x}{1+x^{2}} \times \sqrt{1+x^{2}} \\
& \Rightarrow y^{\prime}=\frac{x}{1+x^{2}} \cdot y \\
& \Rightarrow y^{\prime}=\frac{x y}{1+x^{2}} \\
& \therefore \text { L.H.S. }=\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

## Question 5:

$y=\mathrm{A} x \quad: \quad x y^{\prime}=y(x \neq 0)$
Answer
$y=\mathrm{A} x$
Differentiating both sides with respect to $x$, we get:
$y^{\prime}=\frac{d}{d x}(\mathrm{~A} x)$
$\Rightarrow y^{\prime}=\mathrm{A}$
Substituting the value of $y^{\prime}$ in the given differential equation, we get:
L.H.S. $=x y^{\prime}=x \cdot \mathrm{~A}=\mathrm{A} x=y=$ R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

## Question 6:

$y=x \sin x \quad: x y^{\prime}=y+x \sqrt{x^{2}-y^{2}}(x \neq 0$ and $x>y$ or $x<-y)$
Answer
$y=x \sin x$
Differentiating both sides of this equation with respect to $x$, we get:
$y^{\prime}=\frac{d}{d x}(x \sin x)$
$\Rightarrow y^{\prime}=\sin x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\sin x)$
$\Rightarrow y^{\prime}=\sin x+x \cos x$
Substituting the value of $y^{\prime}$ in the given differential equation, we get:

$$
\begin{aligned}
\text { L.H.S. }=x y^{\prime} & =x(\sin x+x \cos x) \\
& =x \sin x+x^{2} \cos x \\
& =y+x^{2} \cdot \sqrt{1-\sin ^{2} x} \\
= & y+x^{2} \sqrt{1-\left(\frac{y}{x}\right)^{2}} \\
= & y+x \sqrt{y^{2}-x^{2}} \\
= & \text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

## Question 7:

$x y=\log y+\mathrm{C} \quad: y^{\prime}=\frac{y^{2}}{1-x y}(x y \neq 1)$
Answer
$x y=\log y+\mathrm{C}$
Differentiating both sides of this equation with respect to $x$, we get:
$\frac{d}{d x}(x y)=\frac{d}{d x}(\log y)$
$\Rightarrow y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}=\frac{1}{y} \frac{d y}{d x}$
$\Rightarrow y+x y^{\prime}=\frac{1}{y} y^{\prime}$
$\Rightarrow y^{2}+x y y^{\prime}=y^{\prime}$
$\Rightarrow(x y-1) y^{\prime}=-y^{2}$
$\Rightarrow y^{\prime}=\frac{y^{2}}{1-x y}$
$\therefore$ L.H.S. $=$ R.H.S.
Hence, the given function is the solution of the corresponding differential equation.

## Question 8:

$y-\cos y=x \quad:(y \sin y+\cos y+x) y^{\prime}=y$

## Answer

$$
\begin{equation*}
y-\cos y=x \tag{1}
\end{equation*}
$$

Differentiating both sides of the equation with respect to $x$, we get:
$\frac{d y}{d x}-\frac{d}{d x}(\cos y)=\frac{d}{d x}(x)$
$\Rightarrow y^{\prime}+\sin y \cdot y^{\prime}=1$
$\Rightarrow y^{\prime}(1+\sin y)=1$
$\Rightarrow y^{\prime}=\frac{1}{1+\sin y}$
Substituting the value of $y^{\prime}$ in equation (1), we get:

$$
\begin{aligned}
\text { L.H.S. } & =(y \sin y+\cos y+x) y^{\prime} \\
& =(y \sin y+\cos y+y-\cos y) \times \frac{1}{1+\sin y} \\
& =y(1+\sin y) \cdot \frac{1}{1+\sin y} \\
& =y \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

## Question 9:

$x+y=\tan ^{-1} y \quad: y^{2} y^{\prime}+y^{2}+1=0$
Answer
$x+y=\tan ^{-1} y$
Differentiating both sides of this equation with respect to $x$, we get:
$\frac{d}{d x}(x+y)=\frac{d}{d x}\left(\tan ^{-1} y\right)$
$\Rightarrow 1+y^{\prime}=\left[\frac{1}{1+y^{2}}\right] y^{\prime}$
$\Rightarrow y^{\prime}\left[\frac{1}{1+y^{2}}-1\right]=1$
$\Rightarrow y^{\prime}\left[\frac{1-\left(1+y^{2}\right)}{1+y^{2}}\right]=1$
$\Rightarrow y^{\prime}\left[\frac{-y^{2}}{1+y^{2}}\right]=1$
$\Rightarrow y^{\prime}=\frac{-\left(1+y^{2}\right)}{y^{2}}$
Substituting the value of $y^{\prime}$ in the given differential equation, we get:

$$
\begin{aligned}
\text { L.H.S. }=y^{2} y^{\prime}+y^{2}+1 & =y^{2}\left[\frac{-\left(1+y^{2}\right)}{y^{2}}\right]+y^{2}+1 \\
& =-1-y^{2}+y^{2}+1 \\
& =0 \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

## Question 10:

$y=\sqrt{a^{2}-x^{2}} x \in(-a, a) \quad: x+y \frac{d y}{d x}=0(y \neq 0)$
Answer
$y=\sqrt{a^{2}-x^{2}}$
Differentiating both sides of this equation with respect to $x$, we get:

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{d}{d x}\left(\sqrt{a^{2}-x^{2}}\right) \\
\Rightarrow \frac{d y}{d x} & =\frac{1}{2 \sqrt{a^{2}-x^{2}}} \cdot \frac{d}{d x}\left(a^{2}-x^{2}\right) \\
& =\frac{1}{2 \sqrt{a^{2}-x^{2}}}(-2 x) \\
& =\frac{-x}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

Substituting the value of $\frac{d y}{d x}$ in the given differential equation, we get:

$$
\begin{aligned}
\text { L.H.S. }=x+y \frac{d y}{d x} & =x+\sqrt{a^{2}-x^{2}} \times \frac{-x}{\sqrt{a^{2}-x^{2}}} \\
& =x-x \\
& =0 \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

## Question 11:

The numbers of arbitrary constants in the general solution of a differential equation of fourth order are:

$$
\text { (A) } 0 \text { (B) } 2 \text { (C) } 3 \text { (D) } 4
$$

Answer
We know that the number of constants in the general solution of a differential equation of order $n$ is equal to its order.

Therefore, the number of constants in the general equation of fourth order differential equation is four.
Hence, the correct answer is D.

## Question 12:

The numbers of arbitrary constants in the particular solution of a differential equation of third order are:
(A) 3 (B) 2 (C) 1 (D) 0

Answer
In a particular solution of a differential equation, there are no arbitrary constants. Hence, the correct answer is D.

Class XII : Maths
Chapter 9 : Differential Equations

## Questions and Solutions | Exercise 9.3 - NCERT Books

## Question 1:

$\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$
Answer
The given differential equation is:
$\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}=\tan ^{2} \frac{x}{2}$
$\Rightarrow \frac{d y}{d x}=\left(\sec ^{2} \frac{x}{2}-1\right)$
Separating the variables, we get:
$d y=\left(\sec ^{2} \frac{x}{2}-1\right) d x$
Now, integrating both sides of this equation, we get:
$\int d y=\int\left(\sec ^{2} \frac{x}{2}-1\right) d x=\int \sec ^{2} \frac{x}{2} d x-\int d x$
$\Rightarrow y=2 \tan \frac{x}{2}-x+\mathrm{C}$
This is the required general solution of the given differential equation.

## Question 2:

$\frac{d y}{d x}=\sqrt{4-y^{2}} \quad(-2<y<2)$
Answer
The given differential equation is:
$\frac{d y}{d x}=\sqrt{4-y^{2}}$
Separating the variables, we get:
$\Rightarrow \frac{d y}{\sqrt{4-y^{2}}}=d x$
Now, integrating both sides of this equation, we get:
$\int \frac{d y}{\sqrt{4-y^{2}}}=\int d x$
$\Rightarrow \sin ^{-1} \frac{y}{2}=x+\mathrm{C}$
$\Rightarrow \frac{y}{2}=\sin (x+\mathrm{C})$
$\Rightarrow y=2 \sin (x+\mathrm{C})$
This is the required general solution of the given differential equation.

## Question 3:

$\frac{d y}{d x}+y=1(y \neq 1)$
Answer
The given differential equation is:
$\frac{d y}{d x}+y=1$
$\Rightarrow d y+y d x=d x$
$\Rightarrow d y=(1-y) d x$
Separating the variables, we get:
$\Rightarrow \frac{d y}{1-y}=d x$
Now, integrating both sides, we get:

$$
\begin{aligned}
& \int \frac{d y}{1-y}=\int d x \\
& \Rightarrow \log (1-y)=x+\log \mathrm{C} \\
& \Rightarrow-\log \mathrm{C}-\log (1-y)=x \\
& \Rightarrow \log \mathrm{C}(1-y)=-x \\
& \Rightarrow \mathrm{C}(1-y)=e^{-x} \\
& \Rightarrow 1-y=\frac{1}{\mathrm{C}} e^{-x} \\
& \Rightarrow y=1-\frac{1}{\mathrm{C}} e^{-x} \\
& \Rightarrow y=1+A e^{-x}\left(\text { where } A=-\frac{1}{\mathrm{C}}\right)
\end{aligned}
$$

This is the required general solution of the given differential equation.

## Question 4:

$\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
Answer
The given differential equation is:

$$
\begin{aligned}
& \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0 \\
& \Rightarrow \frac{\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y}{\tan x \tan y}=0 \\
& \Rightarrow \frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\tan y} d y=0 \\
& \Rightarrow \frac{\sec ^{2} x}{\tan x} d x=-\frac{\sec ^{2} y}{\tan y} d y
\end{aligned}
$$

Integrating both sides of this equation, we get:

$$
\begin{equation*}
\int \frac{\sec ^{2} x}{\tan x} d x=-\int \frac{\sec ^{2} y}{\tan y} d y \tag{1}
\end{equation*}
$$

Let $\tan x=t$.
$\therefore \frac{d}{d x}(\tan x)=\frac{d t}{d x}$
$\Rightarrow \sec ^{2} x=\frac{d t}{d x}$
$\Rightarrow \sec ^{2} x d x=d t$
Now, $\int \frac{\sec ^{2} x}{\tan x} d x=\int \frac{1}{t} d t$.

$$
\begin{aligned}
& =\log t \\
& =\log (\tan x)
\end{aligned}
$$

Similarly, $\int \frac{\sec ^{2} x}{\tan x} d y=\log (\tan y)$.
Substituting these values in equation (1), we get:

$$
\begin{aligned}
& \log (\tan x)=-\log (\tan y)+\log \mathrm{C} \\
& \Rightarrow \log (\tan x)=\log \left(\frac{\mathrm{C}}{\tan y}\right) \\
& \Rightarrow \tan x=\frac{\mathrm{C}}{\tan y} \\
& \Rightarrow \tan x \tan y=\mathrm{C}
\end{aligned}
$$

This is the required general solution of the given differential equation.

## Question 5:

$\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

## Answer

The given differential equation is:
$\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$
$\Rightarrow\left(e^{x}+e^{-x}\right) d y=\left(e^{x}-e^{-x}\right) d x$
$\Rightarrow d y=\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x$
Integrating both sides of this equation, we get:
$\int d y=\int\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x+\mathrm{C}$
$\Rightarrow y=\int\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x+\mathrm{C}$
Let $\left(e^{x}+e^{-x}\right)=t$.
Differentiating both sides with respect to $x$, we get:
$\frac{d}{d x}\left(e^{x}+e^{-x}\right)=\frac{d t}{d x}$
$\Rightarrow e^{x}-e^{-x}=\frac{d t}{d t}$
$\Rightarrow\left(e^{x}-e^{-x}\right) d x=d t$
Substituting this value in equation (1), we get:
$y=\int_{t}^{\frac{1}{t}} d t+\mathrm{C}$
$\Rightarrow y=\log (t)+\mathrm{C}$
$\Rightarrow y=\log \left(e^{x}+e^{-x}\right)+\mathrm{C}$
This is the required general solution of the given differential equation.

## Question 6:

$\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
Answer
The given differential equation is:
$\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
$\Rightarrow \frac{d y}{1+y^{2}}=\left(1+x^{2}\right) d x$
Integrating both sides of this equation, we get:
$\int \frac{d y}{1+y^{2}}=\int\left(1+x^{2}\right) d x$
$\Rightarrow \tan ^{-1} y=\int d x+\int x^{2} d x$
$\Rightarrow \tan ^{-1} y=x+\frac{x^{3}}{3}+\mathrm{C}$
This is the required general solution of the given differential equation.

## Question 7:

$y \log y d x-x d y=0$
Answer
The given differential equation is:
$y \log y d x-x d y=0$
$\Rightarrow y \log y d x=x d y$
$\Rightarrow \frac{d y}{y \log y}=\frac{d x}{x}$
Integrating both sides, we get:
$\int \frac{d y}{y \log y}=\int \frac{d x}{x}$

Let $\log y=t$.
$\therefore \frac{d}{d y}(\log y)=\frac{d t}{d y}$
$\Rightarrow \frac{1}{y}=\frac{d t}{d y}$
$\Rightarrow \frac{1}{y} d y=d t$
Substituting this value in equation (1), we get:

$$
\begin{aligned}
& \int \frac{d t}{t}=\int \frac{d x}{x} \\
& \Rightarrow \log t=\log x+\log \mathrm{C} \\
& \Rightarrow \log (\log y)=\log C x \\
& \Rightarrow \log y=\mathrm{C} x \\
& \Rightarrow y=e^{\mathrm{Cx}}
\end{aligned}
$$

This is the required general solution of the given differential equation.

## Question 8:

$x^{5} \frac{d y}{d x}=-y^{5}$
Answer
The given differential equation is:
$x^{5} \frac{d y}{d x}=-y^{5}$
$\Rightarrow \frac{d y}{y^{5}}=-\frac{d x}{x^{5}}$
$\Rightarrow \frac{d x}{x^{5}}+\frac{d y}{y^{5}}=0$
Integrating both sides, we get:
$\int \frac{d x}{x^{5}}+\int \frac{d y}{y^{5}}=k$ (where $k$ is any constant)
$\Rightarrow \int x^{-5} d x+\int y^{-5} d y=k$
$\Rightarrow \frac{x^{-4}}{-4}+\frac{y^{-4}}{-4}=k$
$\Rightarrow x^{-4}+y^{-4}=-4 k$
$\Rightarrow x^{-4}+y^{-4}=\mathrm{C}$
This is the required general solution of the given differential equation.

Question 9:
$\frac{d y}{d x}=\sin ^{-1} x$
Answer
The given differential equation is:
$\frac{d y}{d x}=\sin ^{-1} x$
$\Rightarrow d y=\sin ^{-1} x d x$
Integrating both sides, we get:
$\int d y=\int \sin ^{-1} x d x$
$\Rightarrow y=\int\left(\sin ^{-1} x \cdot 1\right) d x$
$\Rightarrow y=\sin ^{-1} x \cdot \int(1) d x-\int\left[\left(\frac{d}{d x}\left(\sin ^{-1} x\right) \cdot \int(1) d x\right)\right] d x$
$\Rightarrow y=\sin ^{-1} x \cdot x-\int\left(\frac{1}{\sqrt{1-x^{2}}} \cdot x\right) d x$
$\Rightarrow y=x \sin ^{-1} x+\int \frac{-x}{\sqrt{1-x^{2}}} d x$
Let $1-x^{2}=t$.
$\Rightarrow \frac{d}{d x}\left(1-x^{2}\right)=\frac{d t}{d x}$
$\Rightarrow-2 x=\frac{d t}{d x}$
$\Rightarrow x d x=-\frac{1}{2} d t$
Substituting this value in equation (1), we get:

$$
\begin{aligned}
& y=x \sin ^{-1} x+\int \frac{1}{2 \sqrt{t}} d t \\
& \Rightarrow y=x \sin ^{-1} x+\frac{1}{2} \cdot \int(t)^{-\frac{1}{2}} d t \\
& \Rightarrow y=x \sin ^{-1} x+\frac{1}{2} \cdot \frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C} \\
& \Rightarrow y=x \sin ^{-1} x+\sqrt{t}+\mathrm{C} \\
& \Rightarrow y=x \sin ^{-1} x+\sqrt{1-x^{2}}+\mathrm{C}
\end{aligned}
$$

This is the required general solution of the given differential equation.

## Question 10:

$e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

## Answer

The given differential equation is:
$e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$
$\left(1-e^{x}\right) \sec ^{2} y d y=-e^{x} \tan y d x$
Separating the variables, we get:
$\frac{\sec ^{2} y}{\tan y} d y=\frac{-e^{x}}{1-e^{x}} d x$
Integrating both sides, we get:
$\int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{-e^{x}}{1-e^{x}} d x$
Let $\tan y=u$.
$\Rightarrow \frac{d}{d y}(\tan y)=\frac{d u}{d y}$
$\Rightarrow \sec ^{2} y=\frac{d u}{d y}$
$\Rightarrow \sec ^{2} y d y=d u$
$\therefore \int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{d u}{u}=\log u=\log (\tan y)$

Now, let $1-e^{x}=t$.
$\therefore \frac{d}{d x}\left(1-e^{x}\right)=\frac{d t}{d x}$
$\Rightarrow-e^{x}=\frac{d t}{d x}$
$\Rightarrow-e^{x} d x=d t$
$\Rightarrow \int \frac{-e^{x}}{1-e^{x}} d x=\int \frac{d t}{t}=\log t=\log \left(1-e^{x}\right)$
Substituting the values of $\int \frac{\sec ^{2} y}{\tan y} d y$ and $\int \frac{-e^{x}}{1-e^{x}} d x$ in equation (1), we get:
$\Rightarrow \log (\tan y)=\log \left(1-e^{x}\right)+\log C$
$\Rightarrow \log (\tan y)=\log \left[C\left(1-e^{x}\right)\right]$
$\Rightarrow \tan y=\mathrm{C}\left(1-e^{x}\right)$
This is the required general solution of the given differential equation.

## Question 11:

$\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x ; y=1$ when $x=0$

## Answer

The given differential equation is:
$\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$
$\Rightarrow \frac{d y}{d x}=\frac{2 x^{2}+x}{\left(x^{3}+x^{2}+x+1\right)}$
$\Rightarrow d y=\frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x$
Integrating both sides, we get:

$$
\begin{align*}
& \int d y=\int \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x  \tag{1}\\
& \text { Let } \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1} .  \tag{2}\\
& \Rightarrow \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A x^{2}+A+(B x+C)(x+1)}{(x+1)\left(x^{2}+1\right)} \\
& \Rightarrow 2 x^{2}+x=A x^{2}+A+B x^{2}+B x+C x+C \\
& \Rightarrow 2 x^{2}+x=(A+B) x^{2}+(B+C) x+(A+C)
\end{align*}
$$

Comparing the coefficients of $x^{2}$ and $x$, we get:
$A+B=2$
$B+C=1$
$A+C=0$
Solving these equations, we get:
$A=\frac{1}{2}, B=\frac{3}{2}$ and $C=\frac{-1}{2}$
Substituting the values of $A, B$, and $C$ in equation (2), we get:
$\frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{1}{2} \cdot \frac{1}{(x+1)}+\frac{1}{2} \frac{(3 x-1)}{\left(x^{2}+1\right)}$
Therefore, equation (1) becomes:
$\int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^{2}+1} d x$
$\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{2} \int \frac{x}{x^{2}+1} d x-\frac{1}{2} \int \frac{1}{x^{2}+1} d x$
$\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{4} \cdot \int \frac{2 x}{x^{2}+1} d x-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
$\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
$\Rightarrow y=\frac{1}{4}\left[2 \log (x+1)+3 \log \left(x^{2}+1\right)\right]-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
$\Rightarrow y=\frac{1}{4}\left[(x+1)^{2}\left(x^{2}+1\right)^{3}\right]-\frac{1}{2} \tan ^{-1} x+C$

Now, $y=1$ when $x=0$.
$\Rightarrow \mathrm{I}=\frac{1}{4} \log (1)-\frac{1}{2} \tan ^{-1} 0+\mathrm{C}$
$\Rightarrow 1=\frac{1}{4} \times 0-\frac{1}{2} \times 0+C$
$\Rightarrow \mathrm{C}=1$
Substituting $C=1$ in equation (3), we get:
$y=\frac{1}{4}\left[\log (x+1)^{2}\left(x^{2}+1\right)^{3}\right]-\frac{1}{2} \tan ^{-1} x+1$

## Question 12:

$x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0$ when $x=2$
Answer

$$
\begin{aligned}
& x\left(x^{2}-1\right) \frac{d y}{d x}=1 \\
& \Rightarrow d y=\frac{d x}{x\left(x^{2}-1\right)} \\
& \Rightarrow d y=\frac{1}{x(x-1)(x+1)} d x
\end{aligned}
$$

Integrating both sides, we get:

$$
\begin{equation*}
\int d y=\int \frac{1}{x(x-1)(x+1)} d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Let } \frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} . \tag{2}
\end{equation*}
$$

$\Rightarrow \frac{1}{x(x-1)(x+1)}=\frac{A(x-1)(x+1)+B x(x+1)+C x(x-1)}{x(x-1)(x+1)}$

$$
=\frac{(A+B+C) x^{2}+(B-C) x-A}{x(x-1)(x+1)}
$$

Comparing the coefficients of $x^{2}, x$, and constant, we get:
$A=-1$
$B-C=0$
$A+B+C=0$
Solving these equations, we get $B=\frac{1}{2}$ and $C=\frac{1}{2}$.
Substituting the values of $A, B$, and $C$ in equation (2), we get:
$\frac{1}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1}{2(x-1)}+\frac{1}{2(x+1)}$
Therefore, equation (1) becomes:
$\int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{1}{x+1} d x$
$\Rightarrow y=-\log x+\frac{1}{2} \log (x-1)+\frac{1}{2} \log (x+1)+\log k$
$\Rightarrow y=\frac{1}{2} \log \left[\frac{k^{2}(x-1)(x+1)}{x^{2}}\right]$

Now, $y=0$ when $x=2$.
$\Rightarrow 0=\frac{1}{2} \log \left[\frac{k^{2}(2-1)(2+1)}{4}\right]$
$\Rightarrow \log \left(\frac{3 k^{2}}{4}\right)=0$
$\Rightarrow \frac{3 k^{2}}{4}=1$
$\Rightarrow 3 k^{2}=4$
$\Rightarrow k^{2}=\frac{4}{3}$
Substituting the value of $k^{2}$ in equation (3), we get:
$y=\frac{1}{2} \log \left[\frac{4(x-1)(x+1)}{3 x^{2}}\right]$
$y=\frac{1}{2} \log \left[\frac{4\left(x^{2}-1\right)}{3 x^{2}}\right]$

Question 13:
$\cos \left(\frac{d y}{d x}\right)=a(a \in R) ; y=1$ when $x=0$
Answer
$\cos \left(\frac{d y}{d x}\right)=a$
$\Rightarrow \frac{d y}{d x}=\cos ^{-1} a$
$\Rightarrow d y=\cos ^{-1} a d x$
Integrating both sides, we get:
$\int d y=\cos ^{-1} a \int d x$
$\Rightarrow y=\cos ^{-1} a \cdot x+\mathrm{C}$
$\Rightarrow y=x \cos ^{-1} a+\mathrm{C}$

Now, $y=1$ when $x=0$.
$\Rightarrow 1=0 \cdot \cos ^{-1} a+\mathrm{C}$
$\Rightarrow \mathrm{C}=1$
Substituting $\mathrm{C}=1$ in equation (1), we get:
$y=x \cos ^{-1} a+1$
$\Rightarrow \frac{y-1}{x}=\cos ^{-1} a$
$\Rightarrow \cos \left(\frac{y-1}{x}\right)=a$

Question 14:
$\frac{d y}{d x}=y \tan x ; y=1$ when $x=0$
Answer
$\frac{d y}{d x}=y \tan x$
$\Rightarrow \frac{d y}{y}=\tan x d x$
Integrating both sides, we get:

$$
\begin{align*}
& \int \frac{d y}{y}=-\int \tan x d x \\
& \Rightarrow \log y=\log (\sec x)+\log \mathrm{C} \\
& \Rightarrow \log y=\log (\mathrm{C} \sec x) \\
& \Rightarrow y=\mathrm{C} \sec x \tag{1}
\end{align*}
$$

Now, $y=1$ when $x=0$.
$\Rightarrow 1=\mathrm{C} \times \sec 0$
$\Rightarrow 1=\mathrm{C} \times 1$
$\Rightarrow \mathrm{C}=1$
Substituting $\mathrm{C}=1$ in equation (1), we get:
$y=\sec x$

## Question 15:

Find the equation of a curve passing through the point $(0,0)$ and whose differential equation is $y^{\prime}=e^{x} \sin x$.
Answer
The differential equation of the curve is:
$y^{\prime}=e^{x} \sin x$
$\Rightarrow \frac{d y}{d x}=e^{x} \sin x$
$\Rightarrow d y=e^{x} \sin x$
Integrating both sides, we get:
$\int d y=\int e^{x} \sin x d x$
Let $I=\int e^{x} \sin x d x$.
$\Rightarrow I=\sin x \int e^{x} d x-\int\left(\frac{d}{d x}(\sin x) \cdot \int e^{x} d x\right) d x$

$$
\begin{aligned}
& \Rightarrow I=\sin x \cdot e^{x}-\int \cos x \cdot e^{x} d x \\
& \Rightarrow I=\sin x \cdot e^{x}-\left[\cos x \cdot \int e^{x} d x-\int\left(\frac{d}{d x}(\cos x) \cdot \int e^{x} d x\right) d x\right] \\
& \Rightarrow I=\sin x \cdot e^{x}-\left[\cos x \cdot e^{x}-\int(-\sin x) \cdot e^{x} d x\right] \\
& \Rightarrow I=e^{x} \sin x-e^{x} \cos x-I \\
& \Rightarrow 2 I=e^{x}(\sin x-\cos x) \\
& \Rightarrow I=\frac{e^{x}(\sin x-\cos x)}{2}
\end{aligned}
$$

Substituting this value in equation (1), we get:
$y=\frac{e^{x}(\sin x-\cos x)}{2}+\mathrm{C}$
Now, the curve passes through point $(0,0)$.
$\therefore 0=\frac{e^{0}(\sin 0-\cos 0)}{2}+\mathrm{C}$
$\Rightarrow 0=\frac{1(0-1)}{2}+\mathrm{C}$
$\Rightarrow \mathrm{C}=\frac{1}{2}$
Substituting $\mathrm{C}=\frac{1}{2}$ in equation (2), we get:
$y=\frac{e^{x}(\sin x-\cos x)}{2}+\frac{1}{2}$
$\Rightarrow 2 y=e^{x}(\sin x-\cos x)+1$
$\Rightarrow 2 y-1=e^{x}(\sin x-\cos x)$
Hence, the required equation of the curve is $2 y-1=e^{x}(\sin x-\cos x)$.

## Question 16:

For the differential equation $x y \frac{d y}{d x}=(x+2)(y+2)$, find the solution curve passing through the point $(1,-1)$.

Answer
The differential equation of the given curve is:
$x y \frac{d y}{d x}=(x+2)(y+2)$
$\Rightarrow\left(\frac{y}{y+2}\right) d y=\left(\frac{x+2}{x}\right) d x$
$\Rightarrow\left(1-\frac{2}{y+2}\right) d y=\left(1+\frac{2}{x}\right) d x$
Integrating both sides, we get:

$$
\begin{align*}
& \int\left(1-\frac{2}{y+2}\right) d y=\int\left(1+\frac{2}{x}\right) d x \\
& \Rightarrow \int d y-2 \int \frac{1}{y+2} d y=\int d x+2 \int \frac{1}{x} d x \\
& \Rightarrow y-2 \log (y+2)=x+2 \log x+\mathrm{C} \\
& \Rightarrow y-x-\mathrm{C}=\log x^{2}+\log (y+2)^{2} \\
& \Rightarrow y-x-\mathrm{C}=\log \left[x^{2}(y+2)^{2}\right] \tag{1}
\end{align*}
$$

Now, the curve passes through point $(1,-1)$.
$\Rightarrow-1-1-\mathrm{C}=\log \left[(1)^{2}(-1+2)^{2}\right]$
$\Rightarrow-2-\mathrm{C}=\log 1=0$
$\Rightarrow \mathrm{C}=-2$
Substituting $C=-2$ in equation (1), we get:
$y-x+2=\log \left[x^{2}(y+2)^{2}\right]$
This is the required solution of the given curve.

## Question 17:

Find the equation of a curve passing through the point $(0,-2)$ given that at any point $(x, y)$ on the curve, the product of the slope of its tangent and $y$-coordinate of the point is equal to the $x$-coordinate of the point.
Answer
Let $x$ and $y$ be the $x$-coordinate and $y$-coordinate of the curve respectively.

We know that the slope of a tangent to the curve in the coordinate axis is given by the relation,
$\frac{d y}{d x}$
According to the given information, we get:
$y \cdot \frac{d y}{d x}=x$
$\Rightarrow y d y=x d x$
Integrating both sides, we get:
$\int y d y=\int x d x$
$\Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+\mathrm{C}$
$\Rightarrow y^{2}-x^{2}=2 \mathrm{C}$
Now, the curve passes through point $(0,-2)$.
$\therefore(-2)^{2}-0^{2}=2 C$
$\Rightarrow 2 \mathrm{C}=4$
Substituting $2 \mathrm{C}=4$ in equation (1), we get:
$y^{2}-x^{2}=4$
This is the required equation of the curve.

## Question 18:

At any point $(x, y)$ of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve given that it passes through $(-2,1)$.
Answer

It is given that $(x, y)$ is the point of contact of the curve and its tangent.
The slope $\left(m_{1}\right)$ of the line segment joining $(x, y)$ and $(-4,-3)$ is $\frac{y+3}{x+4}$.
We know that the slope of the tangent to the curve is given by the relation,
$\frac{d y}{d x}$
$\therefore$ Slope $\left(m_{2}\right)$ of the tangent $=\frac{d y}{d x}$
According to the given information:
$m_{2}=2 m_{1}$
$\Rightarrow \frac{d y}{d x}=\frac{2(y+3)}{x+4}$
$\Rightarrow \frac{d y}{y+3}=\frac{2 d x}{x+4}$
Integrating both sides, we get:
$\int \frac{d y}{y+3}=2 \int \frac{d x}{x+4}$
$\Rightarrow \log (y+3)=2 \log (x+4)+\log C$
$\Rightarrow \log (y+3) \log \mathrm{C}(x+4)^{2}$
$\Rightarrow y+3=\mathrm{C}(x+4)^{2}$
This is the general equation of the curve.
It is given that it passes through point $(-2,1)$.
$\Rightarrow 1+3=C(-2+4)^{2}$
$\Rightarrow 4=4 \mathrm{C}$
$\Rightarrow \mathrm{C}=1$
Substituting $C=1$ in equation (1), we get:
$y+3=(x+4)^{2}$
This is the required equation of the curve.

## Question 19:

The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after $t$ seconds.

Answer
Let the rate of change of the volume of the balloon be $k$ (where $k$ is a constant).
$\Rightarrow \frac{d v}{d t}=k$
$\Rightarrow \frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=k \quad\left[\right.$ Volume of sphere $\left.=\frac{4}{3} \pi r^{3}\right]$
$\Rightarrow \frac{4}{3} \pi \cdot 3 r^{2} \cdot \frac{d r}{d t}=k$
$\Rightarrow 4 \pi r^{2} d r=k d t$
Integrating both sides, we get:
$4 \pi \int r^{2} d r=k \int d t$
$\Rightarrow 4 \pi \cdot \frac{r^{3}}{3}=k t+\mathrm{C}$
$\Rightarrow 4 \pi r^{3}=3(k t+C)$
Now, at $t=0, r=3$ :
$\Rightarrow 4 \pi \times 3^{3}=3(k \times 0+C)$
$\Rightarrow 108 \square=3 C$
$\Rightarrow C=36 п$

At $t=3, r=6$ :
$\Rightarrow 4 \pi \times 6^{3}=3(k \times 3+C)$
$\Rightarrow 864 п=3(3 k+36 п)$
$\Rightarrow 3 k=-288 п-36 п=252 п$
$\Rightarrow k=84 п$

Substituting the values of $k$ and $C$ in equation (1), we get:

$$
\begin{aligned}
& 4 \pi r^{3}=3[84 \pi t+36 \pi] \\
& \Rightarrow 4 \pi r^{3}=4 \pi(63 t+27) \\
& \Rightarrow r^{3}=63 t+27 \\
& \Rightarrow r=(63 t+27)^{\frac{1}{3}}
\end{aligned}
$$

Thus, the radius of the balloon after $t$ seconds is $(63 t+27)^{\frac{1}{3}}$.

## Question 20:

In a bank, principal increases continuously at the rate of $r \%$ per year. Find the value of $r$ if Rs 100 doubles itself in 10 years $\left(\log _{e} 2=0.6931\right)$.

## Answer

Let $p, t$, and $r$ represent the principal, time, and rate of interest respectively.
It is given that the principal increases continuously at the rate of $r \%$ per year.
$\Rightarrow \frac{d p}{d t}=\left(\frac{r}{100}\right) p$
$\Rightarrow \frac{d p}{p}=\left(\frac{r}{100}\right) d t$
Integrating both sides, we get:
$\int \frac{d p}{p}=\frac{r}{100} \int d t$
$\Rightarrow \log p=\frac{r t}{100}+k$
$\Rightarrow p=e^{\frac{n t}{100}+k}$
It is given that when $t=0, p=100$.
$\Rightarrow 100=e^{k}$

Now, if $t=10$, then $p=2 \times 100=200$.
Therefore, equation (1) becomes:
$200=e^{\frac{r}{10}+k}$
$\Rightarrow 200=e^{\frac{r}{10}} \cdot e^{k}$
$\Rightarrow 200=e^{\frac{r}{10}} \cdot 100$
(From (2))
$\Rightarrow e^{\frac{r}{10}}=2$
$\Rightarrow \frac{r}{10}=\log _{e} 2$
$\Rightarrow \frac{r}{10}=0.6931$
$\Rightarrow r=6.931$
Hence, the value of $r$ is $6.93 \%$.

## Question 21:

In a bank, principal increases continuously at the rate of $5 \%$ per year. An amount of Rs
1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$.
Answer
Let $p$ and $t$ be the principal and time respectively.
It is given that the principal increases continuously at the rate of $5 \%$ per year.
$\Rightarrow \frac{d p}{d t}=\left(\frac{5}{100}\right) p$
$\Rightarrow \frac{d p}{d t}=\frac{p}{20}$
$\Rightarrow \frac{d p}{p}=\frac{d t}{20}$
Integrating both sides, we get:
$\int \frac{d p}{p}=\frac{1}{20} \int d t$
$\Rightarrow \log p=\frac{t}{20}+\mathrm{C}$
$\Rightarrow p=e^{\frac{1}{20}+\mathrm{C}}$
Now, when $t=0, p=1000$.
$\Rightarrow 1000=e^{c}$

At $t=10$, equation (1) becomes:
$p=e^{\frac{1}{2}+\mathrm{C}}$
$\Rightarrow p=e^{0.5} \times e^{\mathrm{c}}$
$\Rightarrow p=1.648 \times 1000$
$\Rightarrow p=1648$
Hence, after 10 years the amount will worth Rs 1648.

## Question 22:

In a culture, the bacteria count is 1,00,000. The number is increased by $10 \%$ in 2 hours.
In how many hours will the count reach $2,00,000$, if the rate of growth of bacteria is proportional to the number present?

Answer
Let $y$ be the number of bacteria at any instant $t$.
It is given that the rate of growth of the bacteria is proportional to the number present.
$\therefore \frac{d y}{d t} \propto y$
$\Rightarrow \frac{d y}{d t}=k y$ (where $k$ is a constant)
$\Rightarrow \frac{d y}{y}=k d t$
Integrating both sides, we get:
$\int \frac{d y}{y}=k \int d t$
$\Rightarrow \log y=k t+\mathrm{C}$
Let $y_{0}$ be the number of bacteria at $t=0$.
$\Rightarrow \log y_{0}=C$

Substituting the value of $C$ in equation (1), we get:

$$
\begin{align*}
& \log y=k t+\log y_{0} \\
& \Rightarrow \log y-\log y_{0}=k t \\
& \Rightarrow \log \left(\frac{y}{y_{0}}\right)=k t \\
& \Rightarrow k t=\log \left(\frac{y}{y_{0}}\right) \tag{2}
\end{align*}
$$

Also, it is given that the number of bacteria increases by $10 \%$ in 2 hours.
$\Rightarrow y=\frac{110}{100} y_{0}$
$\Rightarrow \frac{y}{y_{0}}=\frac{11}{10}$
Substituting this value in equation (2), we get:
$k \cdot 2=\log \left(\frac{11}{10}\right)$
$\Rightarrow k=\frac{1}{2} \log \left(\frac{11}{10}\right)$
Therefore, equation (2) becomes:
$\frac{1}{2} \log \left(\frac{11}{10}\right) \cdot t=\log \left(\frac{y}{y_{0}}\right)$
$\Rightarrow t=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}$
Now, let the time when the number of bacteria increases from 100000 to 200000 be $t_{1}$.
$\Rightarrow y=2 y_{0}$ at $t=t_{1}$

From equation (4), we get:
$t_{1}=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}=\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$
Hence, in $\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$ hours the number of bacteria increases from 100000 to 200000.

## Question 23:

The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{x}+e^{-y}=\mathrm{C}$
B. $e^{x}+e^{y}=\mathrm{C}$
C. $e^{-x}+e^{y}=\mathrm{C}$
D. $e^{-x}+e^{-y}=\mathrm{C}$

Answer
$\frac{d y}{d x}=e^{x+y}=e^{x} \cdot e^{y}$
$\Rightarrow \frac{d y}{e^{y}}=e^{x} d x$
$\Rightarrow e^{-y} d y=e^{x} d x$
Integrating both sides, we get:
$\int e^{-y} d y=\int e^{x} d x$
$\Rightarrow-e^{-y}=e^{x}+k$
$\Rightarrow e^{x}+e^{-y}=-k$
$\Rightarrow e^{x}+e^{-y}=c$

$$
(c=-k)
$$

Hence, the correct answer is A.

## Questions and Solutions | Exercise 9.4 - NCERT Books

## Question 1:

$\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

Answer
The given differential equation i.e., $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$ can be written as:
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}$
Let $F(x, y)=\frac{x^{2}+y^{2}}{x^{2}+x y}$.
Now, $F(\lambda x, \lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}=\frac{x^{2}+y^{2}}{x^{2}+x y}=\lambda^{0} \cdot F(x, y)$
This shows that equation (1) is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
Differentiating both sides with respect to $x$, we get:
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $v$ and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{x^{2}+(v x)^{2}}{x^{2}+x(v x)} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{1+v^{2}}{1+v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}-v=\frac{\left(1+v^{2}\right)-v(1+v)}{1+v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{1-v}{1+v} \\
& \Rightarrow\left(\frac{1+v}{1-v}\right)=d v=\frac{d x}{x} \\
& \Rightarrow\left(\frac{2-1+v}{1-v}\right) d v=\frac{d x}{x} \\
& \Rightarrow\left(\frac{2}{1-v}-1\right) d v=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:

$$
\begin{aligned}
& -2 \log (1-v)-v=\log x-\log k \\
& \Rightarrow v=-2 \log (1-v)-\log x+\log k \\
& \Rightarrow v=\log \left[\frac{k}{x(1-v)^{2}}\right] \\
& \Rightarrow \frac{y}{x}=\log \left[\frac{k}{x\left(1-\frac{y}{x}\right)^{2}}\right] \\
& \Rightarrow \frac{y}{x}=\log \left[\frac{k x}{(x-y)^{2}}\right] \\
& \Rightarrow \frac{k x}{(x-y)^{2}}=e^{\frac{y}{x}} \\
& \Rightarrow(x-y)^{2}=k x e^{-\frac{y}{x}}
\end{aligned}
$$

This is the required solution of the given differential equation.

Question 2:
$y^{\prime}=\frac{x+y}{x}$
Answer
The given differential equation is:
$y^{\prime}=\frac{x+y}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{x+y}{x}$
Let $F(x, y)=\frac{x+y}{x}$.
Now, $F(\lambda x, \lambda y)=\frac{\lambda x+\lambda y}{\lambda x}=\frac{x+y}{x}=\lambda^{0} F(x, y)$
Thus, the given equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
Differentiating both sides with respect to $x$, we get:
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x+v x}{x}$
$\Rightarrow v+x \frac{d v}{d x}=1+v$
$x \frac{d v}{d x}=1$
$\Rightarrow d v=\frac{d x}{x}$
Integrating both sides, we get:
$v=\log x+C$
$\Rightarrow \frac{y}{x}=\log x+\mathrm{C}$
$\Rightarrow y=x \log x+\mathrm{C} x$
This is the required solution of the given differential equation.

## Question 3:

$(x-y) d y-(x+y) d x=0$

## Answer

The given differential equation is:
$(x-y) d y-(x+y) d x=0$
$\Rightarrow \frac{d y}{d x}=\frac{x+y}{x-y}$
Let $F(x, y)=\frac{x+y}{x-y}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}=\frac{x+y}{x-y}=\lambda^{0} \cdot F(x, y)$
Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x+v x}{x-v x}=\frac{1+v}{1-v}$
$x \frac{d v}{d x}=\frac{1+v}{1-v}-v=\frac{1+v-v(1-v)}{1-v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{1-v}$
$\Rightarrow \frac{1-v}{\left(1+v^{2}\right)} d v=\frac{d x}{x}$
$\Rightarrow\left(\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}}\right) d v=\frac{d x}{x}$

Integrating both sides, we get:
$\tan ^{-1} v-\frac{1}{2} \log \left(1+v^{2}\right)=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2} \log \left[1+\left(\frac{y}{x}\right)^{2}\right]=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2} \log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2}\left[\log \left(x^{2}+y^{2}\right)-\log x^{2}\right]=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+\mathrm{C}$
This is the required solution of the given differential equation.

## Question 4:

$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

## Answer

The given differential equation is:
$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}$
Let $F(x, y)=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}$.
$\therefore F(\lambda x, \lambda y)=\left[\frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)}\right]=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=-\left[\frac{x^{2}-(v x)^{2}}{2 x \cdot(v x)}\right]$
$v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}-v=\frac{v^{2}-1-2 v^{2}}{2 v}$
$\Rightarrow x \frac{d v}{d x}=-\frac{\left(1+v^{2}\right)}{2 v}$
$\Rightarrow \frac{2 v}{1+v^{2}} d v=-\frac{d x}{x}$
Integrating both sides, we get:
$\log \left(1+v^{2}\right)=-\log x+\log \mathrm{C}=\log \frac{\mathrm{C}}{x}$
$\Rightarrow 1+v^{2}=\frac{\mathrm{C}}{x}$
$\Rightarrow\left[1+\frac{y^{2}}{x^{2}}\right]=\frac{\mathrm{C}}{x}$
$\Rightarrow x^{2}+y^{2}=\mathrm{C} x$
This is the required solution of the given differential equation.

Question 5:
$x^{2} \frac{d y}{d x}-x^{2}-2 y^{2}+x y$
Answer
The given differential equation is:
$x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$
$\frac{d y}{d x}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}$
Let $F(x, y)=\frac{x^{2}-2 y^{2}+x y}{x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda x)(\lambda y)}{(\lambda x)^{2}}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x^{2}-2(v x)^{2}+x \cdot(v x)}{x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=1-2 v^{2}+v$
$\Rightarrow x \frac{d v}{d x}=1-2 v^{2}$
$\Rightarrow \frac{d v}{1-2 v^{2}}=\frac{d x}{x}$
$\Rightarrow \frac{1}{2} \cdot \frac{d v}{\frac{1}{2}-v^{2}}=\frac{d x}{x}$
$\Rightarrow \frac{1}{2} \cdot\left[\frac{d v}{\left(\frac{1}{\sqrt{2}}\right)^{2}-v^{2}}\right]=\frac{d x}{x}$
Integrating both sides, we get:

$$
\begin{aligned}
& \frac{1}{2} \cdot \frac{1}{2 \times \frac{1}{\sqrt{2}}} \log \left|\frac{\frac{1}{\sqrt{2}}+v}{\frac{1}{\sqrt{2}}-v}\right|=\log |x|+\mathrm{C} \\
& \Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{\frac{1}{\sqrt{2}}+\frac{y}{x}}{\frac{1}{\sqrt{2}}-\frac{y}{x}}\right|=\log |x|+\mathrm{C} \\
& \Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{x+\sqrt{2} y}{x-\sqrt{2} y}\right|=\log |x|+\mathrm{C}
\end{aligned}
$$

This is the required solution for the given differential equation.

## Question 6:

$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
Answer
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
$\Rightarrow x d y=\left[y+\sqrt{x^{2}+y^{2}}\right] d x$
$\frac{d y}{d x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}$
Let $F(x, y)=\frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda x+\sqrt{(\lambda x)^{2}+(\lambda y)^{2}}}{\lambda x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Substituting the values of $v$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{v x+\sqrt{x^{2}+(v x)^{2}}}{x}$
$\Rightarrow v+x \frac{d v}{d x}=v+\sqrt{1+v^{2}}$
$\Rightarrow \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}$
Integrating both sides, we get:
$\log \left|v+\sqrt{1+v^{2}}\right|=\log |x|+\log \mathrm{C}$
$\Rightarrow \log \left|\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right|=\log |\mathrm{C} x|$
$\Rightarrow \log \left|\frac{y+\sqrt{x^{2}+y^{2}}}{x}\right|=\log |\mathrm{C} x|$
$\Rightarrow y+\sqrt{x^{2}+y^{2}}=\mathrm{C} x^{2}$
This is the required solution of the given differential equation.

## Question 7:

$\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y$
Answer
The given differential equation is:

$$
\begin{align*}
& \left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x}
\end{aligned}  \tag{1}\\
& \text { Let } F(x, y)=\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x} \\
& \begin{aligned}
\therefore F(\lambda x, \lambda y) & =\frac{\left\{\lambda x \cos \left(\frac{\lambda y}{\lambda x}\right)+\lambda y \sin \left(\frac{\lambda y}{\lambda x}\right)\right\} \lambda y}{\left\{\lambda y \sin \left(\frac{\lambda y}{\lambda x}\right)-\lambda x \sin \left(\frac{\lambda y}{\lambda x}\right)\right\} \lambda x} \\
& =\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x} \\
& =\lambda^{0} \cdot F(x, y)
\end{aligned}
\end{align*}
$$

Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d y}{d x}=v+x=\frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{(x \cos v+v x \sin v) \cdot v x}{(v x \sin v-x \cos v) \cdot x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v-v^{2} \sin v+v \cos v}{v \sin v-\cos v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{2 v \cos v}{v \sin v-\cos v} \\
& \Rightarrow\left[\frac{v \sin v-\cos v}{v \cos v}\right] d v=\frac{2 d x}{x} \\
& \Rightarrow\left(\tan v-\frac{1}{v}\right) d v=\frac{2 d x}{x}
\end{aligned}
$$

Integrating both sides, we get:
$\log (\sec v)-\log v=2 \log x+\log C$
$\Rightarrow \log \left(\frac{\sec v}{v}\right)=\log \left(\mathrm{C} x^{2}\right)$
$\Rightarrow\left(\frac{\sec v}{v}\right)=\mathrm{Cx}^{2}$
$\Rightarrow \sec v=\mathrm{Cx}^{2} v$
$\Rightarrow \sec \left(\frac{y}{x}\right)=\mathrm{C} \cdot x^{2} \cdot \frac{y}{x}$
$\Rightarrow \sec \left(\frac{y}{x}\right)=$ C $x y$
$\Rightarrow \cos \left(\frac{y}{x}\right)=\frac{1}{\mathrm{C} x y}=\frac{1}{\mathrm{C}} \cdot \frac{1}{x y}$
$\Rightarrow x y \cos \left(\frac{y}{x}\right)=k \quad\left(k=\frac{1}{\mathrm{C}}\right)$
This is the required solution of the given differential equation.

Question 8:
$x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
Answer
$x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
$\Rightarrow x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}$
Let $F(x, y)=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda y-\lambda x \sin \left(\frac{\lambda y}{\lambda x}\right)}{\lambda x}=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{v x-x \sin v}{x}$
$\Rightarrow v+x \frac{d v}{d x}=v-\sin v$
$\Rightarrow-\frac{d v}{\sin v}=\frac{d x}{x}$
$\Rightarrow \operatorname{cosec} v d v=-\frac{d x}{x}$

Integrating both sides, we get:
$\log |\operatorname{cosec} v-\cot v|=-\log x+\log C=\log \frac{C}{x}$
$\Rightarrow \operatorname{cosec}\left(\frac{y}{x}\right)-\cot \left(\frac{y}{x}\right)=\frac{\mathrm{C}}{x}$
$\Rightarrow \frac{1}{\sin \left(\frac{y}{x}\right)}-\frac{\cos \left(\frac{y}{x}\right)}{\sin \left(\frac{y}{x}\right)}=\frac{\mathrm{C}}{x}$
$\Rightarrow x\left[1-\cos \left(\frac{y}{x}\right)\right]=\mathrm{C} \sin \left(\frac{y}{x}\right)$
This is the required solution of the given differential equation.

## Question 9:

$y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

## Answer

$$
\begin{align*}
& y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0 \\
& \Rightarrow y d x=\left[2 x-x \log \left(\frac{y}{x}\right)\right] d y \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{2 x-x \log \left(\frac{y}{x}\right)} \tag{1}
\end{align*}
$$

Let $F(x, y)=\frac{y}{2 x-x \log \left(\frac{y}{x}\right)}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda y}{2(\lambda x)-(\lambda x) \log \left(\frac{\lambda y}{\lambda x}\right)}=\frac{y}{2 x-\log \left(\frac{y}{x}\right)}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{v x}{2 x-x \log v}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v}{2-\log v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v}{2-\log v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{v-2 v+v \log v}{2-\log v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v \log v-v}{2-\log v}$
$\Rightarrow \frac{2-\log v}{v(\log v-1)} d v=\frac{d x}{x}$
$\Rightarrow\left[\frac{1+(1-\log v)}{v(\log v-1)}\right] d v=\frac{d x}{x}$
$\Rightarrow\left[\frac{1}{v(\log v-1)}-\frac{1}{v}\right] d v=\frac{d x}{x}$
Integrating both sides, we get:
$\int \frac{1}{v(\log v-1)} d v-\int \frac{1}{v} d v=\int \frac{1}{x} d x$
$\Rightarrow \int \frac{d v}{v(\log v-1)}-\log v=\log x+\log \mathrm{C}$

$$
\begin{aligned}
& \Rightarrow \text { Let } \log v-1=t \\
& \Rightarrow \frac{d}{d v}(\log v-1)=\frac{d t}{d v} \\
& \Rightarrow \frac{1}{v}=\frac{d t}{d v} \\
& \Rightarrow \frac{d v}{v}=d t
\end{aligned}
$$

Therefore, equation (1) becomes:

$$
\begin{aligned}
& \Rightarrow \int \frac{d t}{t}-\log v=\log x+\log \mathrm{C} \\
& \Rightarrow \log t-\log \left(\frac{y}{x}\right)=\log (\mathrm{C} x) \\
& \Rightarrow \log \left[\log \left(\frac{y}{x}\right)-1\right]-\log \left(\frac{y}{x}\right)=\log (\mathrm{C} x) \\
& \Rightarrow \log \left[\frac{\log \left(\frac{y}{x}\right)-1}{\frac{y}{x}}\right]=\log (\mathrm{C} x) \\
& \Rightarrow \frac{x}{y}\left[\log \left(\frac{y}{x}\right)-1\right]=\mathrm{Cx} \\
& \Rightarrow \log \left(\frac{y}{x}\right)-1=\mathrm{C} y
\end{aligned}
$$

This is the required solution of the given differential equation.

## Question 10:

$\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$
Answer

$$
\begin{aligned}
& \left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0 \\
& \Rightarrow\left(1+e^{\frac{x}{y}}\right) d x=-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y
\end{aligned}
$$

$\Rightarrow \frac{d x}{d y}=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}}$
Let $F(x, y)=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}}$.
$\therefore F(\lambda x, \lambda y)=\frac{-e^{\frac{\lambda x}{\lambda y}}\left(1-\frac{\lambda x}{\lambda y}\right)}{1+e^{\frac{\lambda x}{\lambda y}}}=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$x=v y$
$\Rightarrow \frac{d}{d y}(x)=\frac{d}{d y}(v y)$
$\Rightarrow \frac{d x}{d y}=v+y \frac{d v}{d y}$
Substituting the values of $x$ and $\frac{d x}{d y}$ in equation (1), we get:
$v+y \frac{d v}{d y}=\frac{-e^{v}(1-v)}{1+e^{v}}$
$\Rightarrow y \frac{d v}{d y}=\frac{-e^{v}+v e^{v}}{1+e^{v}}-v$
$\Rightarrow y \frac{d v}{d y}=\frac{-e^{v}+v e^{v}-v-v e^{v}}{1+e^{v}}$
$\Rightarrow y \frac{d v}{d y}=-\left[\frac{v+e^{v}}{1+e^{v}}\right]$
$\Rightarrow\left[\frac{1+e^{v}}{v+e^{v}}\right] d v=-\frac{d y}{y}$
Integrating both sides, we get:
$\Rightarrow \log \left(v+e^{v}\right)=-\log y+\log \mathrm{C}=\log \left(\frac{\mathrm{C}}{y}\right)$
$\Rightarrow\left[\frac{x}{y}+e^{\frac{x}{y}}\right]=\frac{\mathrm{C}}{y}$
$\Rightarrow x+y e^{\frac{x}{y}}=\mathrm{C}$
This is the required solution of the given differential equation.

## Question 11:

$(x+y) d y+(x-y) d y=0 ; y=1$ when $x=1$

## Answer

$(x+y) d y+(x-y) d x=0$
$\Rightarrow(x+y) d y=-(x-y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-(x-y)}{x+y}$
Let $F(x, y)=\frac{-(x-y)}{x+y}$.
$\therefore F(\lambda x, \lambda y)=\frac{-(\lambda x-\lambda y)}{\lambda x-\lambda y}=\frac{-(x-y)}{x+y}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{-(x-v x)}{x+v x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{v-1}{v+1} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v-1}{v+1}-v=\frac{v-1-v(v+1)}{v+1} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v-1-v^{2}-v}{v+1}=\frac{-\left(1+v^{2}\right)}{v+1} \\
& \Rightarrow \frac{(v+1)}{1+v^{2}} d v=-\frac{d x}{x} \\
& \Rightarrow\left[\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}\right] d v=-\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:
$\frac{1}{2} \log \left(1+v^{2}\right)+\tan ^{-1} v=-\log x+k$
$\Rightarrow \log \left(1+v^{2}\right)+2 \tan ^{-1} v=-2 \log x+2 k$
$\Rightarrow \log \left[\left(1+v^{2}\right) \cdot x^{2}\right]+2 \tan ^{-1} v=2 k$
$\Rightarrow \log \left[\left(1+\frac{y^{2}}{x^{2}}\right) \cdot x^{2}\right]+2 \tan ^{-1} \frac{y}{x}=2 k$
$\Rightarrow \log \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{x}=2 k$
Now, $y=1$ at $x=1$.
$\Rightarrow \log 2+2 \tan ^{-1} 1=2 k$
$\Rightarrow \log 2+2 \times \frac{\pi}{4}=2 k$
$\Rightarrow \frac{\pi}{2}+\log 2=2 k$
Substituting the value of $2 k$ in equation (2), we get:
$\log \left(x^{2}+y^{2}\right)+2 \tan ^{-1}\left(\frac{y}{x}\right)=\frac{\pi}{2}+\log 2$
This is the required solution of the given differential equation.

## Question 12:

$x^{2} d y+\left(x y+y^{2}\right) d x=0 ; y=1$ when $x=1$

## Answer

$x^{2} d y+\left(x y+y^{2}\right) d x=0$
$\Rightarrow x^{2} d y=-\left(x y+y^{2}\right) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-\left(x y+y^{2}\right)}{x^{2}}$
Let $F(x, y)=\frac{-\left(x y+y^{2}\right)}{x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{\left[\lambda x \cdot \lambda y+(\lambda y)^{2}\right]}{(\lambda x)^{2}}=\frac{-\left(x y+y^{2}\right)}{x^{2}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{-\left[x \cdot v x+(v x)^{2}\right]}{x^{2}}=-v-v^{2} \\
& \Rightarrow x \frac{d v}{d x}=-v^{2}-2 v=-v(v+2) \\
& \Rightarrow \frac{d v}{v(v+2)}=-\frac{d x}{x} \\
& \Rightarrow \frac{1}{2}\left[\frac{(v+2)-v}{v(v+2)}\right] d v=-\frac{d x}{x} \\
& \Rightarrow \frac{1}{2}\left[\frac{1}{v}-\frac{1}{v+2}\right] d v=-\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:
$\frac{1}{2}[\log v-\log (v+2)]=-\log x+\log C$
$\Rightarrow \frac{1}{2} \log \left(\frac{v}{v+2}\right)=\log \frac{\mathrm{C}}{x}$
$\Rightarrow \frac{v}{v+2}=\left(\frac{\mathrm{C}}{x}\right)^{2}$
$\Rightarrow \frac{\frac{y}{x}}{\frac{y}{x}+2}=\left(\frac{\mathrm{C}}{x}\right)^{2}$
$\Rightarrow \frac{y}{y+2 x}=\frac{\mathrm{C}^{2}}{x^{2}}$
$\Rightarrow \frac{x^{2} y}{y+2 x}=\mathrm{C}^{2}$
Now, $y=1$ at $x=1$.
$\Rightarrow \frac{1}{1+2}=\mathrm{C}^{2}$
$\Rightarrow \mathrm{C}^{2}=\frac{1}{3}$

Substituting $\mathrm{C}^{2}=\frac{1}{3}$ in equation (2), we get:
$\frac{x^{2} y}{y+2 x}=\frac{1}{3}$
$\Rightarrow y+2 x=3 x^{2} y$
This is the required solution of the given differential equation.

## Question 13:

$\left[x \sin ^{2}\left(\frac{x}{y}-y\right)\right] d x+x d y=0 ; y \frac{\pi}{4}$ when $x=1$

Answer
$\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]}{x}$
Let $F(x, y)=\frac{-\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]}{x}$.
$\therefore F(\lambda x, \lambda y)=\frac{-\left[\lambda x \cdot \sin ^{2}\left(\frac{\lambda x}{\lambda y}\right)-\lambda y\right]}{\lambda x}=\frac{-\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]}{x}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve this differential equation, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x=\frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{-\left[x \sin ^{2} v-v x\right]}{x}$
$\Rightarrow v+x \frac{d v}{d x}=-\left[\sin ^{2} v-v\right]=v-\sin ^{2} v$
$\Rightarrow x \frac{d v}{d x}=-\sin ^{2} v$
$\Rightarrow \frac{d v}{\sin ^{2} v}=-\frac{d x}{d x}$
$\Rightarrow \operatorname{cosec}^{2} v d v=-\frac{d x}{x}$
Integrating both sides, we get:
$-\cot v=-\log |x|-\mathrm{C}$
$\Rightarrow \cot v=\log |x|+\mathrm{C}$
$\Rightarrow \cot \left(\frac{y}{x}\right)=\log |x|+\log \mathrm{C}$
$\Rightarrow \cot \left(\frac{y}{x}\right)=\log |C x|$
Now, $y=\frac{\pi}{4}$ at $x=1$.
$\Rightarrow \cot \left(\frac{\pi}{4}\right)=\log |\mathrm{C}|$
$\Rightarrow 1=\log \mathrm{C}$
$\Rightarrow \mathrm{C}=e^{1}=e$
Substituting $\mathrm{C}=e$ in equation (2), we get:
$\cot \left(\frac{y}{x}\right)=\log |e x|$
This is the required solution of the given differential equation.

## Question 14:

$\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 ; y=0$ when $x=1$
Answer
$\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)$
Let $F(x, y)=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda y}{\lambda x}-\operatorname{cosec}\left(\frac{\lambda y}{\lambda x}\right)$
$\Rightarrow F(\lambda x, \lambda y)=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)=F(x, y)=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.

To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=v-\operatorname{cosec} v$
$\Rightarrow-\frac{d v}{\operatorname{cosec} v}=-\frac{d x}{x}$
$\Rightarrow-\sin v d v=\frac{d x}{x}$
Integrating both sides, we get:
$\cos v=\log x+\log C=\log |C x|$
$\Rightarrow \cos \left(\frac{y}{x}\right)=\log |C x|$
This is the required solution of the given differential equation.
Now, $y=0$ at $x=1$.
$\Rightarrow \cos (0)=\log \mathrm{C}$
$\Rightarrow 1=\log C$
$\Rightarrow \mathrm{C}=e^{1}=e$
Substituting $C=e$ in equation (2), we get:
$\cos \left(\frac{y}{x}\right)=\log |(e x)|$
This is the required solution of the given differential equation.

## Question 15:

$2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0 ; y=2$ when $x=1$
Answer
$2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0$
$\Rightarrow 2 x^{2} \frac{d y}{d x}=2 x y+y^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}$
Let $F(x, y)=\frac{2 x y+y^{2}}{2 x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{2(\lambda x)(\lambda y)+(\lambda y)^{2}}{2(\lambda x)^{2}}=\frac{2 x y+y^{2}}{2 x^{2}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Substituting the value of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{2 x(v x)+(v x)^{2}}{2 x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{2 v+v^{2}}{2}$
$\Rightarrow v+x \frac{d v}{d x}=v+\frac{v^{2}}{2}$
$\Rightarrow \frac{2}{v^{2}} d v=\frac{d x}{x}$
Integrating both sides, we get:
$2 \cdot \frac{v^{-2+1}}{-2+1}=\log |x|+\mathrm{C}$
$\Rightarrow-\frac{2}{v}=\log |x|+\mathrm{C}$
$\Rightarrow-\frac{2}{\frac{y}{x}}=\log |x|+\mathrm{C}$
$\Rightarrow-\frac{2 x}{y}=\log |x|+\mathrm{C}$
Now, $y=2$ at $x=1$.
$\Rightarrow-1=\log (1)+C$
$\Rightarrow \mathrm{C}=-1$
Substituting $C=-1$ in equation (2), we get:
$-\frac{2 x}{y}=\log |x|-1$
$\Rightarrow \frac{2 x}{y}=1-\log |x|$
$\Rightarrow y=\frac{2 x}{1-\log |x|},(x \neq 0, x \neq e)$
This is the required solution of the given differential equation.

## Question 16:

A homogeneous differential equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the
substitution substitution
A. $y=v x$
B. $v=y x$
C. $x=v y$
D. $x=v$

Answer

For solving the homogeneous equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$, we need to make the substitution as $x=v y$.
Hence, the correct answer is C.

## Question 17:

Which of the following is a homogeneous differential equation?
A. $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
B. $(x y) d x-\left(x^{3}+y^{3}\right) d y=0$
C. $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
D. $y^{2} d x+\left(x^{2}-x y^{2}-y^{2}\right) d y=0$

Answer
Function $\mathrm{F}(x, y)$ is said to be the homogenous function of degree $n$, if $F(\lambda x, \lambda y)=\lambda^{n} F(x, y)$ for any non-zero constant ( $\lambda$ ).
Consider the equation given in alternativeD:
$y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y^{2}}{x^{2}-x y-y^{2}}=\frac{y^{2}}{y^{2}+x y-x^{2}}$
Let $F(x, y)=\frac{y^{2}}{y^{2}+x y-x^{2}}$.

$$
\begin{aligned}
\Rightarrow F(\lambda x, \lambda y) & =\frac{(\lambda y)^{2}}{(\lambda y)^{2}+(\lambda x)(\lambda y)-(\lambda x)^{2}} \\
& =\frac{\lambda^{2} y^{2}}{\lambda^{2}\left(y^{2}+x y-x^{2}\right)} \\
& =\lambda^{0}\left(\frac{y^{2}}{y^{2}+x y-x^{2}}\right) \\
& =\lambda^{0} \cdot F(x, y)
\end{aligned}
$$

Hence, the differential equation given in alternative $\mathbf{D}$ is a homogenous equation.

## Class XII : Maths

## Chapter 9 : Differential Equations

## Questions and Solutions | Exercise 9.5 - NCERT Books

## Question 1:

$$
\frac{d y}{d x}+2 y=\sin x
$$

Answer

The given differential equation is $\frac{d y}{d x}+2 y=\sin x$.
This is in the form of $\frac{d y}{d x}+p y=Q$ (where $p=2$ and $\left.Q=\sin x\right)$.
Now, I.F $=e^{\int p d x}=e^{\int 2 d x}=e^{2 x}$.
The solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y e^{2 x}=\int \sin x \cdot e^{2 x} d x+\mathrm{C}$
Let $I=\int \sin x \cdot e^{2 x}$.
$\Rightarrow I=\sin x \cdot \int e^{2 x} d x-\int\left(\frac{d}{d x}(\sin x) \cdot \int e^{2 x} d x\right) d x$
$\Rightarrow I=\sin x \cdot \frac{e^{2 x}}{2}-\int\left(\cos x \cdot \frac{e^{2 x}}{2}\right) d x$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \int e^{2 x}-\int\left(\frac{d}{d x}(\cos x) \cdot \int e^{2 x} d x\right) d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \frac{e^{2 x}}{2}-\int\left[(-\sin x) \cdot \frac{e^{2 x}}{2}\right] d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} \int\left(\sin x \cdot e^{2 x}\right) d x$
$\Rightarrow I=\frac{e^{2 x}}{4}(2 \sin x-\cos x)-\frac{1}{4} I$
$\Rightarrow \frac{5}{4} I=\frac{e^{2 x}}{4}(2 \sin x-\cos x)$
$\Rightarrow I=\frac{e^{2 x}}{5}(2 \sin x-\cos x)$

Therefore, equation (1) becomes:
$y e^{2 x}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+\mathrm{C}$
$\Rightarrow y=\frac{1}{5}(2 \sin x-\cos x)+\mathrm{C} e^{-2 x}$
This is the required general solution of the given differential equation.

## Question 2:

$\frac{d y}{d x}+3 y=e^{-2 x}$
Answer

The given differential equation is $\frac{d y}{d x}+p y=Q$ (where $p=3$ and $Q=e^{-2 x}$ ).
Now, I.F $=e^{\int p d x}=e^{\int 3 d x}=e^{3 x}$.
The solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y e^{3 x}=\int\left(e^{-2 x} \times e^{3 x}\right)+\mathrm{C}$
$\Rightarrow y e^{3 x}=\int e^{x} d x+\mathrm{C}$
$\Rightarrow y e^{3 x}=e^{x}+\mathrm{C}$
$\Rightarrow y=e^{-2 x}+\mathrm{C} e^{-3 x}$
This is the required general solution of the given differential equation.

## Question 3:

$\frac{d y}{d x}+\frac{y}{x}=x^{2}$

## Answer

The given differential equation is:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=\frac{1}{x}$ and $\left.Q=x^{2}\right)$
Now, I.F $=e^{\int p d x}=e^{\int_{-}^{1} d x}=e^{\log x}=x$.

The solution of the given differential equation is given by the relation, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y(x)=\int\left(x^{2} \cdot x\right) d x+\mathrm{C}$
$\Rightarrow x y=\int x^{3} d x+\mathrm{C}$
$\Rightarrow x y=\frac{x^{4}}{4}+\mathrm{C}$
This is the required general solution of the given differential equation.

## Question 4:

$\frac{d y}{d x}+\sec x y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$

## Answer

The given differential equation is:

$$
\frac{d y}{d x}+p y=Q(\text { where } p=\sec x \text { and } Q=\tan x)
$$

Now, I.F $=e^{\int \rho d x}=e^{\int \sec x d x}=e^{\log (\sec x+\tan x)}=\sec x+\tan x$.
The general solution of the given differential equation is given by the relation, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y(\sec x+\tan x)=\int \tan x(\sec x+\tan x) d x+\mathrm{C}$
$\Rightarrow y(\sec x+\tan x)=\int \sec x \tan x d x+\int \tan ^{2} x d x+\mathrm{C}$
$\Rightarrow y(\sec x+\tan x)=\sec x+\int\left(\sec ^{2} x-1\right) d x+\mathrm{C}$
$\Rightarrow y(\sec x+\tan x)=\sec x+\tan x-x+\mathrm{C}$

## Question 5:

For the given differential equation, find the general solution:

$$
\cos ^{2} x \frac{d y}{d x}+y=\tan x \quad\left(0 \leq x<\frac{\pi}{2}\right)
$$

Answer 5:
The given differential equation: $\cos ^{2} x \frac{d y}{d x}+y=\tan x \Rightarrow \frac{d y}{d x}+y \sec ^{2} x=\tan x \sec ^{2} x$
The given equation is in the form $\frac{d y}{d x}+p y=Q$ (where $p=\sec ^{2} x$ and $Q=\tan x \sec ^{2} x$ )
Now I.F. $=e^{\int p d x}=e^{\int \sec ^{2} x d x}=e^{\tan x}$
The general solution of the given differential equation is given by the relation,

$$
y(I . F)=\int(Q \times I . F) d x+C \Rightarrow y e^{\tan x}=\int \tan x \sec ^{2} x e^{\tan x} d x+C
$$

Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
Therefore, the solution of differential become

$$
\begin{aligned}
& y e^{t}=\int t e^{t} d t+C \\
\Rightarrow & y e^{t}=t \cdot e^{t}-\int e^{t} d t+C \quad \text { [Using Integration by part] } \\
\Rightarrow & y e^{t}=t \cdot e^{t}+e^{t}+C \\
\Rightarrow & y e^{\tan x}=\tan x \cdot e^{\tan x}-e^{\tan x}+C \\
\Rightarrow & y=\tan x+1+C e^{-\tan x}
\end{aligned}
$$

## [Using Integration by part]

This is the required general solution of the given differential equation.

Question 6:
$x \frac{d y}{d x}+2 y=x^{2} \log x$
Answer
The given differential equation is:
$x \frac{d y}{d x}+2 y=x^{2} \log x$
$\Rightarrow \frac{d y}{d x}+\frac{2}{x} y=x \log x$
This equation is in the form of a linear differential equation as:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=\frac{2}{x}$ and $\left.Q=x \log x\right)$
Now, I.F $=e^{\int p d x}=e^{\int_{-}^{2} d x}=e^{2 \log x}=e^{\log x^{2}}=x^{2}$.
The general solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y \cdot x^{2}=\int\left(x \log x \cdot x^{2}\right) d x+\mathrm{C}$
$\Rightarrow x^{2} y=\int\left(x^{3} \log x\right) d x+\mathrm{C}$
$\Rightarrow x^{2} y=\log x \cdot \int x^{3} d x-\int\left[\frac{d}{d x}(\log x) \cdot \int x^{3} d x\right] d x+\mathrm{C}$
$\Rightarrow x^{2} y=\log x \cdot \frac{x^{4}}{4}-\int\left(\frac{1}{x} \cdot \frac{x^{4}}{4}\right) d x+\mathrm{C}$
$\Rightarrow x^{2} y=\frac{x^{4} \log x}{4}-\frac{1}{4} \int x^{3} d x+\mathrm{C}$
$\Rightarrow x^{2} y=\frac{x^{4} \log x}{4}-\frac{1}{4} \cdot \frac{x^{4}}{4}+C$
$\Rightarrow x^{2} y=\frac{1}{16} x^{4}(4 \log x-1)+\mathrm{C}$
$\Rightarrow y=\frac{1}{16} x^{2}(4 \log x-1)+\mathrm{Cx}^{-2}$

## Question 7:

$x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$

## Answer

The given differential equation is:
$x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
$\Rightarrow \frac{d y}{d x}+\frac{y}{x \log x}=\frac{2}{x^{2}}$
This equation is the form of a linear differential equation as:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=\frac{1}{x \log x}$ and $Q=\frac{2}{x^{2}}$ )
Now, I.F $=e^{\int \rho d x}=e^{\int \frac{1}{x \log d x}}=e^{\log (\log x)}=\log x$.
The general solution of the given differential equation is given by the relation,

$$
\begin{align*}
& y(\text { I.F. })=\int(\mathrm{Q} \times \text { I.F. }) d x+\mathrm{C} \\
& \Rightarrow y \log x=\int\left(\frac{2}{x^{2}} \log x\right) d x+\mathrm{C} \tag{1}
\end{align*}
$$

Now, $\int\left(\frac{2}{x^{2}} \log x\right) d x=2 \int\left(\log x \cdot \frac{1}{x^{2}}\right) d x$.

$$
\begin{aligned}
& =2\left[\log x \cdot \int \frac{1}{x^{2}} d x-\int\left\{\frac{d}{d x}(\log x) \cdot \int \frac{1}{x^{2}} d x\right\} d x\right] \\
& =2\left[\log x\left(-\frac{1}{x}\right)-\int\left(\frac{1}{x} \cdot\left(-\frac{1}{x}\right)\right) d x\right] \\
& =2\left[-\frac{\log x}{x}+\int \frac{1}{x^{2}} d x\right] \\
& =2\left[-\frac{\log x}{x}-\frac{1}{x}\right] \\
& =-\frac{2}{x}(1+\log x)
\end{aligned}
$$

Substituting the value of $\int\left(\frac{2}{x^{2}} \log x\right) d x$ in equation (1), we get:
$y \log x=-\frac{2}{x}(1+\log x)+\mathrm{C}$
This is the required general solution of the given differential equation.

## Question 8:

$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$

## Answer

$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x$
$\Rightarrow \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{\cot x}{1+x^{2}}$
This equation is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=\frac{2 x}{1+x^{2}}$ and $\left.Q=\frac{\cot x}{1+x^{2}}\right)$
Now, I.F $=e^{\int p d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2}$.

The general solution of the given differential equation is given by the relation, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y\left(1+x^{2}\right)=\int\left[\frac{\cot x}{1+x^{2}} \times\left(1+x^{2}\right)\right] d x+\mathrm{C}$
$\Rightarrow y\left(1+x^{2}\right)=\int \cot x d x+\mathrm{C}$
$\Rightarrow y\left(1+x^{2}\right)=\log |\sin x|+\mathrm{C}$

## Question 9:

$x \frac{d y}{d x}+y-x+x y \cot x=0(x \neq 0)$
Answer
$x \frac{d y}{d x}+y-x+x y \cot x=0$
$\Rightarrow x \frac{d y}{d x}+y(1+x \cot x)=x$
$\Rightarrow \frac{d y}{d x}+\left(\frac{1}{x}+\cot x\right) y=1$
This equation is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=\frac{1}{x}+\cot x$ and $\left.Q=1\right)$
Now, I.F $=e^{\int \rho d x}=e^{\int\left(\frac{1}{x} \cot x\right) d x}=e^{\log x+\log (\sin x)}=e^{\log (x \sin x)}=x \sin x$.
The general solution of the given differential equation is given by the relation,

$$
\begin{aligned}
& y(\text { I.F. })=\int(\mathrm{Q} \times \text { I.F. }) d x+\mathrm{C} \\
& \Rightarrow y(x \sin x)=\int(1 \times x \sin x) d x+\mathrm{C} \\
& \Rightarrow y(x \sin x)=\int(x \sin x) d x+\mathrm{C} \\
& \Rightarrow y(x \sin x)=x \int \sin x d x-\int\left[\frac{d}{d x}(x) \cdot \int \sin x d x\right]+\mathrm{C} \\
& \Rightarrow y(x \sin x)=x(-\cos x)-\int 1 \cdot(-\cos x) d x+\mathrm{C} \\
& \Rightarrow y(x \sin x)=-x \cos x+\sin x+\mathrm{C} \\
& \Rightarrow y=\frac{-x \cos x}{x \sin x}+\frac{\sin x}{x \sin x}+\frac{\mathrm{C}}{x \sin x} \\
& \Rightarrow y=-\cot \cdot x+\frac{1}{x}+\frac{\mathrm{C}}{x \sin x}
\end{aligned}
$$

## Question 10:

$(x+y) \frac{d y}{d x}=1$
Answer
$(x+y) \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+y}$
$\Rightarrow \frac{d x}{d y}=x+y$
$\Rightarrow \frac{d x}{d y}-x=y$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p x=Q($ where $p=-1$ and $Q=y)$
Now, I.F $=e^{\int p d y}=e^{\int-d y}=e^{-y}$.
The general solution of the given differential equation is given by the relation,
$x($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d y+\mathrm{C}$
$\Rightarrow x e^{-y}=\int\left(y \cdot e^{-y}\right) d y+\mathrm{C}$
$\Rightarrow x e^{-y}=y \cdot \int e^{-y} d y-\int\left[\frac{d}{d y}(y) \int e^{-y} d y\right] d y+\mathrm{C}$
$\Rightarrow x e^{-y}=y\left(-e^{-y}\right)-\int\left(-e^{-y}\right) d y+\mathrm{C}$
$\Rightarrow x e^{-y}=-y e^{-y}+\int e^{-y} d y+\mathrm{C}$
$\Rightarrow x e^{-y}=-y e^{-y}-e^{-y}+\mathrm{C}$
$\Rightarrow x=-y-1+\mathrm{C} e^{y}$
$\Rightarrow x+y+1=\mathrm{C} e^{y}$

## Question 11:

$y d x+\left(x-y^{2}\right) d y=0$

## Answer

$y d x+\left(x-y^{2}\right) d y=0$
$\Rightarrow y d x=\left(y^{2}-x\right) d y$
$\Rightarrow \frac{d x}{d y}=\frac{y^{2}-x}{y}=y-\frac{x}{y}$
$\Rightarrow \frac{d x}{d y}+\frac{x}{y}=y$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p x=Q\left(\right.$ where $p=\frac{1}{y}$ and $\left.Q=y\right)$
Now, I.F $=e^{\int p d y}=e^{\int_{y}^{1} d y}=e^{\log y}=y$.
The general solution of the given differential equation is given by the relation,
$x($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d y+\mathrm{C}$
$\Rightarrow x y=\int(y \cdot y) d y+\mathrm{C}$
$\Rightarrow x y=\int y^{2} d y+\mathrm{C}$
$\Rightarrow x y=\frac{y^{3}}{3}+\mathrm{C}$
$\Rightarrow x=\frac{y^{2}}{3}+\frac{\mathrm{C}}{y}$

## Question 12:

$\left(x+3 y^{2}\right) \frac{d y}{d x}=y(y>0)$
Answer
$\left(x+3 y^{2}\right) \frac{d y}{d x}=y$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x+3 y^{2}}$
$\Rightarrow \frac{d x}{d y}=\frac{x+3 y^{2}}{y}=\frac{x}{y}+3 y$
$\Rightarrow \frac{d x}{d y}-\frac{x}{y}=3 y$
This is a linear differential equation of the form:
$\frac{d x}{d y}+p x=Q\left(\right.$ where $p=-\frac{1}{y}$ and $\left.Q=3 y\right)$
Now, I.F $=e^{\int p d y}=e^{-\int \frac{d y}{y}}=e^{-\log y}=e^{\log \left(\frac{1}{y}\right)}=\frac{1}{y}$.
The general solution of the given differential equation is given by the relation,
$x($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d y+\mathrm{C}$
$\Rightarrow x \times \frac{1}{y}=\int\left(3 y \times \frac{1}{y}\right) d y+\mathrm{C}$
$\Rightarrow \frac{x}{y}=3 y+\mathrm{C}$
$\Rightarrow x=3 y^{2}+\mathrm{C} y$

## Question 13:

$\frac{d y}{d x}+2 y \tan x=\sin x ; y=0$ when $x=\frac{\pi}{3}$

## Answer

The given differential equation is $\frac{d y}{d x}+2 y \tan x=\sin x$.
This is a linear equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=2 \tan x$ and $Q=\sin x)$
Now, I.F $=e^{\int p d x}=e^{\int 2 \operatorname{lan} x d x}=e^{2 \log |\operatorname{sex} x|}=e^{\log \left\{\sec ^{2} x\right)}=\sec ^{2} x$.
The general solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y\left(\sec ^{2} x\right)=\int\left(\sin x \cdot \sec ^{2} x\right) d x+\mathrm{C}$
$\Rightarrow y \sec ^{2} x=\int(\sec x \cdot \tan x) d x+\mathrm{C}$
$\Rightarrow y \sec ^{2} x=\sec x+\mathrm{C}$
Now, $\quad y=0$ at $x=\frac{\pi}{3}$.
Therefore,
$0 \times \sec ^{2} \frac{\pi}{3}=\sec \frac{\pi}{3}+C$
$\Rightarrow 0=2+\mathrm{C}$
$\Rightarrow \mathrm{C}=-2$
Substituting $C=-2$ in equation (1), we get:
$y \sec ^{2} x=\sec x-2$
$\Rightarrow y=\cos x-2 \cos ^{2} x$
Hence, the required solution of the given differential equation is $y=\cos x-2 \cos ^{2} x$.

Question 14:
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} ; y=0$ when $x=1$
Answer
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$
$\Rightarrow \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{1}{\left(1+x^{2}\right)^{2}}$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=\frac{2 x}{1+x^{2}}$ and $\left.Q=\frac{1}{\left(1+x^{2}\right)^{2}}\right)$
Now, I.F $=e^{\int p d x}=e^{\int_{1+x^{2}}^{2 x d x}}=e^{\log \left(1+x^{2}\right)}=1+x^{2}$.
The general solution of the given differential equation is given by the relation, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y\left(1+x^{2}\right)=\int\left[\frac{1}{\left(1+x^{2}\right)^{2}} \cdot\left(1+x^{2}\right)\right] d x+\mathrm{C}$
$\Rightarrow y\left(1+x^{2}\right)=\int \frac{1}{1+x^{2}} d x+\mathrm{C}$
$\Rightarrow y\left(1+x^{2}\right)=\tan ^{-1} x+\mathrm{C}$
Now, $y=0$ at $x=1$.
Therefore,
$0=\tan ^{-1} 1+C$
$\Rightarrow \mathrm{C}=-\frac{\pi}{4}$

Substituting $C=-\frac{\pi}{4}$ in equation (1), we get:
$y\left(1+x^{2}\right)=\tan ^{-1} x-\frac{\pi}{4}$
This is the required general solution of the given differential equation.

Question 15:
$\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2$ when $x=\frac{\pi}{2}$
Answer
The given differential equation is $\frac{d y}{d x}-3 y \cot x=\sin 2 x$.
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=-3 \cot x$ and $Q=\sin 2 x)$
Now, I.F $=e^{\int p d x}=e^{-3 \int \cot x d x}=e^{-3 \log |\sin x|}=e^{\log \left|\frac{1}{\sin x}\right|}=\frac{1}{\sin ^{3} x}$.
The general solution of the given differential equation is given by the relation, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y \cdot \frac{1}{\sin ^{3} x}=\int\left[\sin 2 x \cdot \frac{1}{\sin ^{3} x}\right] d x+\mathrm{C}$
$\Rightarrow y \operatorname{cosec}^{3} x=2 \int(\cot x \operatorname{cosec} x) d x+\mathrm{C}$
$\Rightarrow y \operatorname{cosec}^{3} x=2 \operatorname{cosec} x+\mathrm{C}$
$\Rightarrow y=-\frac{2}{\operatorname{cosec}^{2} x}+\frac{3}{\operatorname{cosec}^{3} x}$
$\Rightarrow y=-2 \sin ^{2} x+C \sin ^{3} x$
Now, $y=2$ at $x=\frac{\pi}{2}$.
Therefore, we get:
$2=-2+C$
$\Rightarrow \mathrm{C}=4$

Substituting $C=4$ in equation (1), we get:
$y=-2 \sin ^{2} x+4 \sin ^{3} x$
$\Rightarrow y=4 \sin ^{3} x-2 \sin ^{2} x$
This is the required particular solution of the given differential equation.

## Question 16:

Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point $(x, y)$ is equal to the sum of the coordinates of the point.

Answer
Let $F(x, y)$ be the curve passing through the origin.
At point $(x, y)$, the slope of the curve will be $\frac{d y}{d x}$.
According to the given information:
$\frac{d y}{d x}=x+y$
$\Rightarrow \frac{d y}{d x}-y=x$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=-1$ and $Q=x)$
Now, I.F $=e^{\int p d x}=e^{\int(-1) d x}=e^{-x}$.
The general solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y e^{-x}=\int x e^{-x} d x+\mathrm{C}$
Now, $\int x e^{-x} d x=x \int e^{-x} d x-\int\left[\frac{d}{d x}(x) \cdot \int e^{-x} d x\right] d x$.
$=-x e^{-x}-\int-e^{-x} d x$
$=-x e^{-x}+\left(-e^{-x}\right)$
$=-e^{-x}(x+1)$

Substituting in equation (1), we get:
$y e^{-x}=-e^{-x}(x+1)+\mathrm{C}$
$\Rightarrow y=-(x+1)+\mathrm{C} e^{x}$
$\Rightarrow x+y+1=\mathrm{C} e^{x}$
The curve passes through the origin.
Therefore, equation (2) becomes:
$1=C$
$\Rightarrow C=1$

Substituting $\mathrm{C}=1$ in equation (2), we get:
$x+y+1=e^{x}$
Hence, the required equation of curve passing through the origin is $x+y+1=e^{x}$.

## Question 17:

Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .
Answer
Let $F(x, y)$ be the curve and let $(x, y)$ be a point on the curve. The slope of the tangent
to the curve at $(x, y)$ is $\frac{d y}{d x}$.
According to the given information:
$\frac{d y}{d x}+5=x+y$
$\Rightarrow \frac{d y}{d x}-y=x-5$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=-1$ and $Q=x-5)$
Now, I.F $=e^{\int \rho d x}=e^{\int(-1) d x}=e^{-x}$.
The general equation of the curve is given by the relation, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y \cdot e^{-x}=\int(x-5) e^{-x} d x+\mathrm{C}$
Now, $\int(x-5) e^{-x} d x=(x-5) \int e^{-x} d x-\int\left[\frac{d}{d x}(x-5) \cdot \int e^{-x} d x\right] d x$.

$$
\begin{aligned}
& =(x-5)\left(-e^{-x}\right)-\int\left(-e^{-x}\right) d x \\
& =(5-x) e^{-x}+\left(-e^{-x}\right) \\
& =(4-x) e^{-x}
\end{aligned}
$$

Therefore, equation (1) becomes:
$y e^{-x}=(4-x) e^{-x}+\mathrm{C}$
$\Rightarrow y=4-x+\mathrm{C} e^{x}$
$\Rightarrow x+y-4=\mathrm{C} e^{x}$
The curve passes through point $(0,2)$.
Therefore, equation (2) becomes:
$0+2-4=\mathrm{Ce}^{0}$
$\Rightarrow-2=C$
$\Rightarrow C=-2$
Substituting $\mathrm{C}=-2$ in equation (2), we get:
$x+y-4=-2 e^{x}$
$\Rightarrow y=4-x-2 e^{x}$
This is the required equation of the curve.

## Question 18:

The integrating factor of the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is
A. $e^{-x}$
B. $e^{-y}$
C. $\frac{1}{x}$
D. $x$

Answer
The given differential equation is:
$x \frac{d y}{d x}-y=2 x^{2}$
$\Rightarrow \frac{d y}{d x}-\frac{y}{x}=2 x$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q\left(\right.$ where $p=-\frac{1}{x}$ and $\left.Q=2 x\right)$
The integrating factor (I.F) is given by the relation,
$e^{\int p d x}$
$\therefore$ I.F $=e^{\int-\frac{1}{x} d x}=e^{-\log x}=e^{\log \left(x^{-1}\right)}=x^{-1}=\frac{1}{x}$
Hence, the correct answer is $C$.

## Question 19:

The integrating factor of the differential equation.
$\left(1-y^{2}\right) \frac{d x}{d y}+y x=a y(-1<y<1)$
A. $\frac{1}{y^{2}-1}$
B. $\frac{1}{\sqrt{y^{2}-1}}$
C. $\frac{1}{1-y^{2}}$
D. $\frac{1}{\sqrt{1-y^{2}}}$

Answer
The given differential equation is:
$\left(1-y^{2}\right) \frac{d x}{d y}+y x=a y$
$\Rightarrow \frac{d y}{d x}+\frac{y x}{1-y^{2}}=\frac{a y}{1-y^{2}}$
This is a linear differential equation of the form:
$\frac{d x}{d y}+p y=Q\left(\right.$ where $p=\frac{y}{1-y^{2}}$ and $\left.Q=\frac{a y}{1-y^{2}}\right)$
The integrating factor (I.F) is given by the relation,
$e^{\int \rho d x}$
$\therefore$ I.F $=e^{\int \mu d y}=e^{\int \frac{y}{1-y^{2}} d y}=e^{-\frac{1}{2} \log \left(1-y^{2}\right)}=e^{\log \left[\frac{1}{\left.\sqrt{1-y^{2}}\right]}\right.}=\frac{1}{\sqrt{1-y^{2}}}$
Hence, the correct answer is D.

Class XII : Maths
Chapter 9 : Differential Equations

## Questions and Solutions | Miscellaneous Exercise 9 - NCERT Books

## Question 1:

For each of the differential equations given below, indicate its order and degree (if defined).
(i) $\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{2}-6 y=\log x$
(ii) $\left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x$
(iii) $\frac{d^{4} y}{d x^{4}}-\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$

Answer
(i) The differential equation is given as:
$\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{2}-6 y=\log x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{2}-6 y-\log x=0$
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$. Thus, its order is
two. The highest power raised to $\frac{d^{2} y}{d x^{2}}$ is one. Hence, its degree is one.
(ii) The differential equation is given as:

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x \\
& \Rightarrow\left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y-\sin x=0
\end{aligned}
$$

The highest order derivative present in the differential equation is $\frac{d y}{d x}$. Thus, its order is one. The highest power raised to $\frac{d y}{d x}$ is three. Hence, its degree is three.
(iii) The differential equation is given as:
$\frac{d^{4} y}{d x^{4}}-\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$
The highest order derivative present in the differential equation is $\frac{d^{4} y}{d x^{4}}$. Thus, its order is four.

However, the given differential equation is not a polynomial equation. Hence, its degree is not defined.

## Question 2:

For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.
(i)

$$
y=a e^{x}+b e^{-x}+x^{2} \quad: \quad x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y+x^{2}-2=0
$$

(ii)

$$
y=e^{x}(a \cos x+b \sin x) \quad: \quad \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0
$$

(iii)

$$
y=x \sin 3 x
$$

$$
: \quad \frac{d^{2} y}{d x^{2}}+9 y-6 \cos 3 x=0
$$

(iv) $x^{2}=2 y^{2} \log y \quad: \quad\left(x^{2}+y^{2}\right) \frac{d y}{d x}-x y=0$

Answer
(i) $y=a e^{x}+b e^{-x}+x^{2}$

Differentiating both sides with respect to $x$, we get:

$$
\begin{aligned}
& \frac{d y}{d x}=a \frac{d}{d x}\left(e^{x}\right)+b \frac{d}{d x}\left(e^{-x}\right)+\frac{d}{d x}\left(x^{2}\right) \\
& \Rightarrow \frac{d y}{d x}=a e^{x}-b e^{-x}+2 x
\end{aligned}
$$

Again, differentiating both sides with respect to $x$, we get:
$\frac{d^{2} y}{d x^{2}}=a e^{x}+b e^{-x}+2$
Now, on substituting the values of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in the differential equation, we get:
L.H.S.
$x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y+x^{2}-2$
$=x\left(a e^{x}+b e^{-x}+2\right)+2\left(a e^{x}-b e^{-x}+2 x\right)-x\left(a e^{x}+b e^{-x}+x^{2}\right)+x^{2}-2$
$=\left(a x e^{x}+b x e^{-x}+2 x\right)+\left(2 a e^{x}-2 b e^{-x}+4 x\right)-\left(a x e^{x}+b x e^{-x}+x^{3}\right)+x^{2}-2$
$=2 a e^{x}-2 b e^{-x}+x^{2}+6 x-2$
$\neq 0$
$\Rightarrow$ L.H.S. $\neq$ R.H.S.

Hence, the given function is not a solution of the corresponding differential equation.
(ii) $y=e^{x}(a \cos x+b \sin x)=a e^{x} \cos x+b e^{x} \sin x$

Differentiating both sides with respect to $x$, we get:
$\frac{d y}{d x}=a \cdot \frac{d}{d x}\left(e^{x} \cos x\right)+b \cdot \frac{d}{d x}\left(e^{x} \sin x\right)$
$\Rightarrow \frac{d y}{d x}=a\left(e^{x} \cos x-e^{x} \sin x\right)+b \cdot\left(e^{x} \sin x+e^{x} \cos x\right)$
$\Rightarrow \frac{d y}{d x}=(a+b) e^{x} \cos x+(b-a) e^{x} \sin x$
Again, differentiating both sides with respect to $x$, we get:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=(a+b) \cdot \frac{d}{d x}\left(e^{x} \cos x\right)+(b-a) \frac{d}{d x}\left(e^{x} \sin x\right) \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=(a+b) \cdot\left[e^{x} \cos x-e^{x} \sin x\right]+(b-a)\left[e^{x} \sin x+e^{x} \cos x\right] \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=e^{x}[(a+b)(\cos x-\sin x)+(b-a)(\sin x+\cos x)] \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=e^{x}[a \cos x-a \sin x+b \cos x-b \sin x+b \sin x+b \cos x-a \sin x-a \cos x] \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=\left[2 e^{x}(b \cos x-a \sin x)\right]
\end{aligned}
$$

Now, on substituting the values of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d y}{d x}$ in the L.H.S. of the given differential equation, we get:
$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y$
$=2 e^{x}(b \cos x-a \sin x)-2 e^{x}[(a+b) \cos x+(b-a) \sin x]+2 e^{x}(a \cos x+b \sin x)$
$=e^{x}\left[\begin{array}{l}(2 b \cos x-2 a \sin x)-(2 a \cos x+2 b \cos x) \\ -(2 b \sin x-2 a \sin x)+(2 a \cos x+2 b \sin x)\end{array}\right]$
$=e^{x}[(2 b-2 a-2 b+2 a) \cos x]+e^{x}[(-2 a-2 b+2 a+2 b) \sin x]$
$=0$
Hence, the given function is a solution of the corresponding differential equation.
(iii) $y=x \sin 3 x$

Differentiating both sides with respect to $x$, we get:
$\frac{d y}{d x}=\frac{d}{d x}(x \sin 3 x)=\sin 3 x+x \cdot \cos 3 x \cdot 3$
$\Rightarrow \frac{d y}{d x}=\sin 3 x+3 x \cos 3 x$
Again, differentiating both sides with respect to $x$, we get:
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}(\sin 3 x)+3 \frac{d}{d x}(x \cos 3 x)$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=3 \cos 3 x+3[\cos 3 x+x(-\sin 3 x) \cdot 3]$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=6 \cos 3 x-9 x \sin 3 x$
Substituting the value of $\frac{d^{2} y}{d x^{2}}$ in the L.H.S. of the given differential equation, we get:
$\frac{d^{2} y}{d x^{2}}+9 y-6 \cos 3 x$
$=(6 \cdot \cos 3 x-9 x \sin 3 x)+9 x \sin 3 x-6 \cos 3 x$
$=0$
Hence, the given function is a solution of the corresponding differential equation.
(iv) $x^{2}=2 y^{2} \log y$

Differentiating both sides with respect to $x$, we get:

$$
\begin{aligned}
& 2 x=2 \cdot \frac{d}{d x}=\left[y^{2} \log y\right] \\
& \Rightarrow x=\left[2 y \cdot \log y \cdot \frac{d y}{d x}+y^{2} \cdot \frac{1}{y} \cdot \frac{d y}{d x}\right] \\
& \Rightarrow x=\frac{d y}{d x}(2 y \log y+y) \\
& \Rightarrow \frac{d y}{d x}=\frac{x}{y(1+2 \log y)}
\end{aligned}
$$

Substituting the value of $\frac{d y}{d x}$ in the L.H.S. of the given differential equation, we get:
$\left(x^{2}+y^{2}\right) \frac{d y}{d x}-x y$
$=\left(2 y^{2} \log y+y^{2}\right) \cdot \frac{x}{y(1+2 \log y)}-x y$
$=y^{2}(1+2 \log y) \cdot \frac{x}{y(1+2 \log y)}-x y$
$=x y-x y$
$=0$
Hence, the given function is a solution of the corresponding differential equation.

## Question 3:

Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of differential equation $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$, where $c$ is a parameter.
Answer
$\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$
$\Rightarrow \frac{d y}{d x}=\frac{x^{3}-3 x y^{2}}{y^{3}-3 x^{2} y}$
This is a homogeneous equation. To simplify it, we need to make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d v}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x^{3}-3 x(v x)^{2}}{(v x)^{3}-3 x^{2}(v x)}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{1-3 v^{2}}{v^{3}-3 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1-3 v^{2}}{v^{3}-3 v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{1-3 v^{2}-v\left(v^{3}-3 v\right)}{v^{3}-3 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1-v^{4}}{v^{3}-3 v}$
$\Rightarrow\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=\frac{d x}{x}$

Integrating both sides, we get:
$\int\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=\log x+\log \mathrm{C}^{\prime}$
Now, $\int\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=\int \frac{v^{3} d v}{1-v^{4}}-3 \int \frac{v d v}{1-v^{4}}$
$\Rightarrow \int\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=I_{1}-3 I_{2}$, where $I_{1}=\int \frac{v^{3} d v}{1-v^{4}}$ and $I_{2}=\int \frac{v d v}{1-v^{4}}$

Let $1-v^{4}=t$.
$\therefore \frac{d}{d v}\left(1-v^{4}\right)=\frac{d t}{d v}$
$\Rightarrow-4 v^{3}=\frac{d t}{d v}$
$\Rightarrow v^{3} d v=-\frac{d t}{4}$
Now, $I_{1}=\int \frac{-d t}{4 t}=-\frac{1}{4} \log t=-\frac{1}{4} \log \left(1-v^{4}\right)$
And, $I_{2}=\int \frac{v d v}{1-v^{4}}=\int \frac{v d v}{1-\left(v^{2}\right)^{2}}$
Let $v^{2}=p$.
$\therefore \frac{d}{d v}\left(v^{2}\right)=\frac{d p}{d v}$
$\Rightarrow 2 v=\frac{d p}{d v}$
$\Rightarrow v d v=\frac{d p}{2}$
$\Rightarrow I_{2}=\frac{1}{2} \int \frac{d p}{1-p^{2}}=\frac{1}{2 \times 2} \log \left|\frac{1+p}{1-p}\right|=\frac{1}{4} \log \left|\frac{1+v^{2}}{1-v^{2}}\right|$
Substituting the values of $I_{1}$ and $I_{2}$ in equation (3), we get:
$\int\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=-\frac{1}{4} \log \left(1-v^{4}\right)-\frac{3}{4} \log \left|\frac{1-v^{2}}{1+v^{2}}\right|$
Therefore, equation (2) becomes:

$$
\begin{aligned}
& \frac{1}{4} \log \left(1-v^{4}\right)-\frac{3}{4} \log \left|\frac{1+v^{2}}{1-v^{2}}\right|=\log x+\log \mathrm{C}^{\prime} \\
& \Rightarrow-\frac{1}{4} \log \left[\left(1-v^{4}\right)\left(\frac{1+v^{2}}{1-v^{2}}\right)^{3}\right]=\log \mathrm{C}^{\prime} x \\
& \Rightarrow \frac{\left(1+v^{2}\right)^{4}}{\left(1-v^{2}\right)^{2}}=\left(\mathrm{C}^{\prime} x\right)^{-4} \\
& \Rightarrow \frac{\left(1+\frac{y^{2}}{x^{2}}\right)^{4}}{\left(1-\frac{y^{2}}{x^{2}}\right)^{2}}=\frac{1}{\mathrm{C}^{\prime 4} x^{4}} \\
& \Rightarrow \frac{\left(x^{2}+y^{2}\right)^{4}}{x^{4}\left(x^{2}-y^{2}\right)^{2}}=\frac{1}{\mathrm{C}^{\prime 4} x^{4}} \\
& \Rightarrow\left(x^{2}-y^{2}\right)^{2}=\mathrm{C}^{\prime 4}\left(x^{2}+y^{2}\right)^{4} \\
& \Rightarrow\left(x^{2}-y^{2}\right)=\mathrm{C}^{\prime 2}\left(x^{2}+y^{2}\right)^{2} \\
& \Rightarrow x^{2}-y^{2}=\mathrm{C}\left(x^{2}+y^{2}\right)^{2}, \text { where } \mathrm{C}=\mathrm{C}^{\prime 2}
\end{aligned}
$$

Hence, the given result is proved.

## Question 4:

Find the general solution of the differential equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$
Answer
$\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{\sqrt{1-y^{2}}}=\frac{-d x}{\sqrt{1-x^{2}}}$
Integrating both sides, we get:
$\sin ^{-1} y=-\sin ^{-1} x+C$
$\Rightarrow \sin ^{-1} x+\sin ^{-1} y=\mathrm{C}$

## Question 5:

Show that the general solution of the differential equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ is given by $(x+y+1)=A(1-x-y-2 x y)$, where $A$ is parameter
Answer

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0 \\
& \Rightarrow \frac{d y}{d x}=-\frac{\left(y^{2}+y+1\right)}{x^{2}+x+1} \\
& \Rightarrow \frac{d y}{y^{2}+y+1}=\frac{-d x}{x^{2}+x+1} \\
& \Rightarrow \frac{d y}{y^{2}+y+1}+\frac{d x}{x^{2}+x+1}=0
\end{aligned}
$$

Integrating both sides, we get:

$$
\begin{aligned}
& \int \frac{d y}{y^{2}+y+1}+\int \frac{d x}{x^{2}+x+1}=\mathrm{C} \\
& \Rightarrow \int \frac{d y}{\left(y+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\int \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\mathrm{C} \\
& \Rightarrow \frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{y+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]+\frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]=\mathrm{C} \\
& \Rightarrow \tan ^{-1}\left[\frac{2 y+1}{\sqrt{3}}\right]+\tan ^{-1}\left[\frac{2 x+1}{\sqrt{3}}\right]=\frac{\sqrt{3} \mathrm{C}}{2} \\
& \Rightarrow \tan ^{-1}\left[\frac{\frac{2 y+1}{\sqrt{3}}+\frac{2 x+1}{\sqrt{3}}}{\left.1-\frac{(2 y+1)}{\sqrt{3}} \cdot \frac{(2 x+1)}{\sqrt{3}}\right]=\frac{\sqrt{3} \mathrm{C}}{2}}\right. \\
& \Rightarrow \tan ^{-1}\left[\frac{\frac{2 x+2 y+2}{\sqrt{3}}}{1-\left(\frac{4 x y+2 x+2 y+1}{3}\right)}\right]=\frac{\sqrt{3} \mathrm{C}}{2} \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{3-4 x y-2 x-2 y-1}\right]=\frac{\sqrt{3} \mathrm{C}}{2} \\
& \Rightarrow \tan ^{-1}\left[\frac{\sqrt{3}(x+y+1)}{2(1-x-y-2 x y)}\right]=\frac{\sqrt{3} \mathrm{C}}{2} \\
& \Rightarrow \frac{\sqrt{3}(x+y+1)}{2(1-x-y-2 x y)}=\tan \left(\frac{\sqrt{3} \mathrm{C}}{2}\right)=B, \text { where } B=\tan \left(\frac{\sqrt{3} \mathrm{C}}{2}\right) \\
& \Rightarrow x+y+1=\frac{2 B}{\sqrt{3}}(1-x y-2 x y) \\
& \Rightarrow x+y+1=A(1-x-y-2 x y), \text { where } A=\frac{2 B}{\sqrt{3}}
\end{aligned}
$$

Hence, the given result is proved.

## Question 6:

Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right)$ whose differential equation is, $\sin x \cos y d x+\cos x \sin y d y=0$

Answer
The differential equation of the given curve is:
$\sin x \cos y d x+\cos x \sin y d y=0$
$\Rightarrow \frac{\sin x \cos y d x+\cos x \sin y d y}{\cos x \cos y}=0$
$\Rightarrow \tan x d x+\tan y d y=0$
Integrating both sides, we get:
$\log (\sec x)+\log (\sec y)=\log C$
$\log (\sec x \cdot \sec y)=\log C$
$\Rightarrow \sec x \cdot \sec y=\mathrm{C}$
The curve passes through point $\left(0, \frac{\pi}{4}\right)$.
$\therefore 1 \times \sqrt{2}=C$
$\Rightarrow \mathrm{C}=\sqrt{2}$

On substituting in equation (1), we get:
$\sec x \cdot \sec y=\sqrt{2}$
$\Rightarrow \sec x \cdot \frac{1}{\cos y}=\sqrt{2}$
$\Rightarrow \cos y=\frac{\sec x}{\sqrt{2}}$
Hence, the required equation of the curve is $\cos y=\frac{\sec x}{\sqrt{2}}$.

## Question 7:

Find the particular solution of the differential equation
$\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$, given that $y=1$ when $x=0$
Answer
$\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$
$\Rightarrow \frac{d y}{1+y^{2}}+\frac{e^{x} d x}{1+e^{2 x}}=0$
Integrating both sides, we get:
$\tan ^{-1} y+\int \frac{e^{x} d x}{1+e^{2 x}}=\mathrm{C}$
Let $e^{x}=t \Rightarrow e^{2 x}=t^{2}$.
$\Rightarrow \frac{d}{d x}\left(e^{x}\right)=\frac{d t}{d x}$
$\Rightarrow e^{x}=\frac{d t}{d x}$
$\Rightarrow e^{x} d x=d t$
Substituting these values in equation (1), we get:
$\tan ^{-1} y+\int \frac{d t}{1+t^{2}}=\mathrm{C}$
$\Rightarrow \tan ^{-1} y+\tan ^{-1} t=\mathrm{C}$
$\Rightarrow \tan ^{-1} y+\tan ^{-1}\left(e^{x}\right)=\mathrm{C}$
Now, $y=1$ at $x=0$.
Therefore, equation (2) becomes:
$\tan ^{-1} 1+\tan ^{-1} 1=C$
$\Rightarrow \frac{\pi}{4}+\frac{\pi}{4}=\mathrm{C}$
$\Rightarrow \mathrm{C}=\frac{\pi}{2}$
Substituting $C=\frac{\pi}{2}$ in equation (2), we get:
$\tan ^{-1} y+\tan ^{-1}\left(e^{x}\right)=\frac{\pi}{2}$
This is the required particular solution of the given differential equation.

## Question 8:

Solve the differential equation $y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y^{2}\right) d y(y \neq 0)$
Answer
$y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y^{2}\right) d y$
$\Rightarrow y e^{\frac{x}{y}} \frac{d x}{d y}=x e^{\frac{x}{y}}+y^{2}$
$\Rightarrow e^{\frac{x}{y}}\left[y \cdot \frac{d x}{d y}-x\right]=y^{2}$
$\Rightarrow e^{\frac{x}{y}} \cdot \frac{\left[y \cdot \frac{d x}{d y}-x\right]}{y^{2}}=1$
Let $e^{\frac{x}{y}}=z$.
Differentiating it with respect to $y$, we get:
$\frac{d}{d y}\left(e^{\frac{x}{y}}\right)=\frac{d z}{d y}$
$\Rightarrow e^{\frac{x}{y}} \cdot \frac{d}{d y}\left(\frac{x}{y}\right)=\frac{d z}{d y}$
$\Rightarrow e^{\frac{x}{y}} \cdot\left[\frac{y \cdot \frac{d x}{d y}-x}{y^{2}}\right]=\frac{d z}{d y}$
From equation (1) and equation (2), we get:
$\frac{d z}{d y}=1$
$\Rightarrow d z=d y$
Integrating both sides, we get:
$z=y+\mathrm{C}$
$\Rightarrow e^{\frac{x}{y}}=y+\mathrm{C}$

## Question 9:

Find a particular solution of the differential equation $(x-y)(d x+d y)=d x-d y$, given that $y=-1$, when $x=0$ (Hint: put $x-y=t$ )
Answer
$(x-y)(d x+d y)=d x-d y$
$\Rightarrow(x-y+1) d y=(1-x+y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{1-x+y}{x-y+1}$
$\Rightarrow \frac{d y}{d x}=\frac{1-(x-y)}{1+(x-y)}$
Let $x-y=t$.
$\Rightarrow \frac{d}{d x}(x-y)=\frac{d t}{d x}$
$\Rightarrow 1-\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow 1-\frac{d t}{d x}=\frac{d y}{d x}$
Substituting the values of $x-y$ and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{align*}
& 1-\frac{d t}{d x}=\frac{1-t}{1+t} \\
& \Rightarrow \frac{d t}{d x}=1-\left(\frac{1-t}{1+t}\right) \\
& \Rightarrow \frac{d t}{d x}=\frac{(1+t)-(1-t)}{1+t} \\
& \Rightarrow \frac{d t}{d x}=\frac{2 t}{1+t} \\
& \Rightarrow\left(\frac{1+t}{t}\right) d t=2 d x \\
& \Rightarrow\left(1+\frac{1}{t}\right) d t=2 d x \tag{2}
\end{align*}
$$

Integrating both sides, we get:
$t+\log |t|=2 x+\mathrm{C}$
$\Rightarrow(x-y)+\log |x-y|=2 x+\mathrm{C}$
$\Rightarrow \log |x-y|=x+y+\mathrm{C}$
Now, $y=-1$ at $x=0$.
Therefore, equation (3) becomes:
$\log 1=0-1+C$
$\Rightarrow C=1$
Substituting $C=1$ in equation (3) we get:
$\log |x-y|=x+y+1$
This is the required particular solution of the given differential equation.

## Question 10:

Solve the differential equation $\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d x}{d y}=1(x \neq 0)$
Answer
$\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d x}{d y}=1$
$\Rightarrow \frac{d y}{d x}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}$
$\Rightarrow \frac{d y}{d x}+\frac{y}{\sqrt{x}}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}$
This equation is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$, where $P=\frac{1}{\sqrt{x}}$ and $Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}$.
Now, I.F $=e^{\int P d x}=e^{\int \frac{1}{\sqrt{x}} d x}=e^{2 \sqrt{x}}$
The general solution of the given differential equation is given by,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y e^{2 \sqrt{x}}=\int\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \times e^{2 \sqrt{x}}\right) d x+\mathrm{C}$
$\Rightarrow y e^{2 \sqrt{x}}=\int \frac{1}{\sqrt{x}} d x+\mathrm{C}$
$\Rightarrow y e^{2 \sqrt{x}}=2 \sqrt{x}+\mathrm{C}$

## Question 11:

Find a particular solution of the differential equation $\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x(x \neq 0)$,
given that $y=0$ when $x=\frac{\pi}{2}$
Answer
The given differential equation is:
$\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x$
This equation is a linear differential equation of the form
$\frac{d y}{d x}+p y=Q$, where $p=\cot x$ and $Q=4 x \operatorname{cosec} x$.
Now, I.F $=e^{\int p \operatorname{pdx}}=e^{\int \cot x d x}=e^{\log |\sin x|}=\sin x$
The general solution of the given differential equation is given by, $y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y \sin x=\int(4 x \operatorname{cosec} x \cdot \sin x) d x+\mathrm{C}$
$\Rightarrow y \sin x=4 \int x d x+\mathrm{C}$
$\Rightarrow y \sin x=4 \cdot \frac{x^{2}}{2}+\mathrm{C}$
$\Rightarrow y \sin x=2 x^{2}+\mathrm{C}$
Now, $\quad y=0$ at $x=\frac{\pi}{2}$.
Therefore, equation (1) becomes:
$0=2 \times \frac{\pi^{2}}{4}+C$
$\Rightarrow \mathrm{C}=-\frac{\pi^{2}}{2}$
Substituting $C=-\frac{\pi^{2}}{2}$ in equation (1), we get:
$y \sin x=2 x^{2}-\frac{\pi^{2}}{2}$
This is the required particular solution of the given differential equation.

## Question 12:

Find a particular solution of the differential equation $(x+1) \frac{d y}{d x}=2 e^{-y}-1$, given that $y=0$ when $x=0$

Answer
$(x+1) \frac{d y}{d x}=2 e^{-y}-1$
$\Rightarrow \frac{d y}{2 e^{-y}-1}=\frac{d x}{x+1}$
$\Rightarrow \frac{e^{y} d y}{2-e^{y}}=\frac{d x}{x+1}$
Integrating both sides, we get:

$$
\begin{equation*}
\int \frac{e^{y} d y}{2-e^{y}}=\log |x+1|+\log \mathrm{C} \tag{1}
\end{equation*}
$$

Let $2-e^{y}=t$.
$\therefore \frac{d}{d y}\left(2-e^{y}\right)=\frac{d t}{d y}$
$\Rightarrow-e^{y}=\frac{d t}{d y}$
$\Rightarrow e^{y} d t=-d t$
Substituting this value in equation (1), we get:

$$
\begin{align*}
& \int \frac{-d t}{t}=\log |x+1|+\log \mathrm{C} \\
& \Rightarrow-\log |t|=\log |\mathrm{C}(x+1)| \\
& \Rightarrow-\log \left|2-e^{y}\right|=\log |\mathrm{C}(x+1)| \\
& \Rightarrow \frac{1}{2-e^{y}}=\mathrm{C}(x+1) \\
& \Rightarrow 2-e^{y}=\frac{1}{\mathrm{C}(x+1)} \tag{2}
\end{align*}
$$

Now, at $x=0$ and $y=0$, equation (2) becomes:
$\Rightarrow 2-1=\frac{1}{\mathrm{C}}$
$\Rightarrow \mathrm{C}=1$
Substituting $C=1$ in equation (2), we get:

$$
\begin{aligned}
& 2-e^{y}=\frac{1}{x+1} \\
& \Rightarrow e^{y}=2-\frac{1}{x+1} \\
& \Rightarrow e^{y}=\frac{2 x+2-1}{x+1} \\
& \Rightarrow e^{y}=\frac{2 x+1}{x+1} \\
& \Rightarrow y=\log \left|\frac{2 x+1}{x+1}\right|,(x \neq-1)
\end{aligned}
$$

This is the required particular solution of the given differential equation.

## Question 13:

The general solution of the differential equation $\frac{y d x-x d y}{y}=0$ is
A. $x y=\mathrm{C}$
B. $x=C y^{2}$
C. $y=\mathrm{C} x$
D. $y=\mathrm{C} x^{2}$

Answer
The given differential equation is:

$$
\begin{aligned}
& \frac{y d x-x d y}{y}=0 \\
& \Rightarrow \frac{y d x-x d y}{x y}=0 \\
& \Rightarrow \frac{1}{x} d x-\frac{1}{y} d y=0
\end{aligned}
$$

Integrating both sides, we get:
$\log |x|-\log |y|=\log k$
$\Rightarrow \log \left|\frac{x}{y}\right|=\log k$
$\Rightarrow \frac{x}{y}=k$
$\Rightarrow y=\frac{1}{k} x$
$\Rightarrow y=\mathrm{C} x$ where $\mathrm{C}=\frac{1}{k}$
Hence, the correct answer is C.

## Question 14:

The general solution of a differential equation of the type $\frac{d x}{d y}+\mathrm{P}_{1} x=\mathrm{Q}_{1}$ is
A. $y e^{\int \mathrm{P}_{1} d y}=\int\left(\mathrm{Q}_{1} e^{\int \mathrm{P}_{1} d y}\right) d y+\mathrm{C}$
B. $y \cdot e^{\int \mathrm{P}_{\mathrm{P}} d x}=\int\left(\mathrm{Q}_{1} e^{\int \mathrm{P}_{\mathrm{P}} d x}\right) d x+\mathrm{C}$
C. $x e^{\int \mathrm{P}_{1} d y}=\int\left(\mathrm{Q}_{1} e^{\int \mathrm{P}_{1} d y}\right) d y+\mathrm{C}$
D. $x e^{\int \mathrm{P}_{1} d x}=\int\left(\mathrm{Q}_{1} e^{\int \mathrm{P}_{1} d x}\right) d x+\mathrm{C}$

Answer
The integrating factor of the given differential equation $\frac{d x}{d y}+\mathrm{P}_{1} x=\mathrm{Q}_{1}$ is $e^{\int P_{1} d y}$.
The general solution of the differential equation is given by,
$x($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d y+\mathrm{C}$
$\Rightarrow x \cdot e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+\mathrm{C}$
Hence, the correct answer is C.

## Question 15:

The general solution of the differential equation $e^{x} d y+\left(y e^{x}+2 x\right) d x=0$ is
A. $x e^{y}+x^{2}=\mathrm{C}$
B. $x e^{y}+y^{2}=C$
C. $y e^{x}+x^{2}=C$
D. $y e^{y}+x^{2}=\mathrm{C}$

Answer
The given differential equation is:
$e^{x} d y+\left(y e^{x}+2 x\right) d x=0$
$\Rightarrow e^{x} \frac{d y}{d x}+y e^{x}+2 x=0$
$\Rightarrow \frac{d y}{d x}+y=-2 x e^{-x}$
This is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$, where $P=1$ and $Q=-2 x e^{-x}$.
Now, I.F $=e^{\int P d x}=e^{\int d x}=e^{x}$
The general solution of the given differential equation is given by,
$y($ I.F. $)=\int(\mathrm{Q} \times$ I.F. $) d x+\mathrm{C}$
$\Rightarrow y e^{x}=\int\left(-2 x e^{-x} \cdot e^{x}\right) d x+\mathrm{C}$
$\Rightarrow y e^{x}=-\int 2 x d x+\mathrm{C}$
$\Rightarrow y e^{x}=-x^{2}+\mathrm{C}$
$\Rightarrow y e^{x}+x^{2}=\mathrm{C}$
Hence, the correct answer is $C$.

