Class XII : Maths

Chapter 11: Three Dimensional Geometry

Questions and Solutions | Exercise 11.1 - NCERT Books

Question 1:

If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with x, y and z-axes respectively, find its direction cosines.

Answer
Let direction cosines of the line be l, m, and n.
$l=\cos 90^{\circ}=0$
$m=\cos 135^{\circ}=-\frac{1}{\sqrt{2}}$
$n=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
Therefore, the direction cosines of the line are $0,-\frac{1}{\sqrt{2}}$, and $\frac{1}{\sqrt{2}}$.

Question 2:

Find the direction cosines of a line which makes equal angles with the coordinate axes.
Answer
Let the direction cosines of the line make an angle a with each of the coordinate axes.
$\therefore I=\cos a, m=\cos a, n=\cos a$
$l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$
$\Rightarrow 3 \cos ^{2} \alpha=1$
$\Rightarrow \cos ^{2} \alpha=\frac{1}{3}$
$\Rightarrow \cos \alpha= \pm \frac{1}{\sqrt{3}}$

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes, are $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$, and $\pm \frac{1}{\sqrt{3}}$.

Question 3:

If a line has the direction ratios $-18,12,-4$, then what are its direction cosines?

Answer

If a line has direction ratios of $-18,12$, and -4 , then its direction cosines are

$$
\frac{-18}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}, \frac{12}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}, \frac{-4}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}
$$

i.e., $\frac{-18}{22}, \frac{12}{22}, \frac{-4}{22}$
$\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$
Thus, the direction cosines are $-\frac{9}{11}, \frac{6}{11}$, and $\frac{-2}{11}$.

Question 4:

Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.
Answer
The given points are $A(2,3,4), B(-1,-2,1)$, and $C(5,8,7)$.
It is known that the direction ratios of line joining the points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, are given by, $x_{2}-x_{1}, y_{2}-y_{1}$, and $z_{2}-z_{1}$.
The direction ratios of $A B$ are $(-1-2),(-2-3)$, and $(1-4)$ i.e., $-3,-5$, and -3 .
The direction ratios of $B C$ are $(5-(-1)),(8-(-2))$, and $(7-1)$ i.e., 6,10 , and 6. It can be seen that the direction ratios of $B C$ are -2 times that of $A B$ i.e., they are proportional.
Therefore, $A B$ is parallel to $B C$. Since point B is common to both $A B$ and $B C$, points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are (3,5, -4), ($1,1,2$) and (-5, -5, - 2)

Answer

The vertices of $\triangle A B C$ are $A(3,5,-4), B(-1,1,2)$, and $C(-5,-5,-2)$.

The direction ratios of side $A B$ are $(-1-3),(1-5)$, and $(2-(-4))$ i.e., $-4,-4$, and 6 .
Then, $\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}=\sqrt{16+16+36}$

$$
\begin{aligned}
& =\sqrt{68} \\
& =2 \sqrt{17}
\end{aligned}
$$

Therefore, the direction cosines of $A B$ are

$$
\begin{aligned}
& \frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}, \frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}, \frac{6}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}} \\
& \frac{-4}{2 \sqrt{17}},-\frac{4}{2 \sqrt{17}}, \frac{6}{2 \sqrt{17}} \\
& \frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}
\end{aligned}
$$

The direction ratios of $B C$ are $(-5-(-1)),(-5-1)$, and $(-2-2)$ i.e., $-4,-6$, and -4 . Therefore, the direction cosines of $B C$ are

$$
\begin{aligned}
& \frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}, \frac{-6}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}, \frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}} \\
& \frac{-4}{2 \sqrt{17}}, \frac{-6}{2 \sqrt{17}}, \frac{-4}{2 \sqrt{17}}
\end{aligned}
$$

The direction ratios of CA are $(-5-3),(-5-5)$, and $(-2-(-4))$ i.e., $-8,-10$, and 2 .
Therefore, the direction cosines of AC are

$$
\begin{aligned}
& \frac{-8}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}, \frac{-5}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}, \frac{2}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}} \\
& \frac{-8}{2 \sqrt{42}}, \frac{-10}{2 \sqrt{42}}, \frac{2}{2 \sqrt{42}}
\end{aligned}
$$

Class XII : Maths

Chapter 11: Three Dimensional Geometry

Questions and Solutions | Exercise 11.2-NCERT Books

Question 1:

Show that the three lines with direction cosines
$\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

Answer

Two lines with direction cosines, I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2}, are perpendicular to each other, if $I_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
(i) For the lines with direction cosines, $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$ and $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$, we obtain
$l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=\frac{12}{13} \times \frac{4}{13}+\left(\frac{-3}{13}\right) \times \frac{12}{13}+\left(\frac{-4}{13}\right) \times \frac{3}{13}$

$$
=\frac{48}{169}-\frac{36}{169}-\frac{12}{169}
$$

$$
=0
$$

Therefore, the lines are perpendicular.
(ii) For the lines with direction cosines, $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$ and $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$, we obtain

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\frac{4}{13} \times \frac{3}{13}+\frac{12}{13} \times\left(\frac{-4}{13}\right)+\frac{3}{13} \times \frac{12}{13} \\
& =\frac{12}{169}-\frac{48}{169}+\frac{36}{169} \\
& =0
\end{aligned}
$$

Therefore, the lines are perpendicular.
(iii) For the lines with direction cosines, $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ and $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$, we obtain

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\left(\frac{3}{13}\right) \times\left(\frac{12}{13}\right)+\left(\frac{-4}{13}\right) \times\left(\frac{-3}{13}\right)+\left(\frac{12}{13}\right) \times\left(\frac{-4}{13}\right) \\
& =\frac{36}{169}+\frac{12}{169}-\frac{48}{169} \\
& =0
\end{aligned}
$$

Therefore, the lines are perpendicular.
Thus, all the lines are mutually perpendicular.

Question 2:

Show that the line through the points $(1,-1,2)(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
Answer
Let $A B$ be the line joining the points, $(1,-1,2)$ and $(3,4,-2)$, and $C D$ be the line joining the points, $(0,3,2)$ and $(3,5,6)$.
The direction ratios, a_{1}, b_{1}, c_{1}, of AB are $(3-1),(4-(-1))$, and $(-2-2)$ i.e., 2,5 , and -4 .

The direction ratios, a_{2}, b_{2}, c_{2}, of CD are (3-0), (5-3), and (6-2) i.e., 3,2 , and 4.
AB and CD will be perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 3+5 \times 2+(-4) \times 4$
$=6+10-16$
= 0
Therefore, $A B$ and $C D$ are perpendicular to each other.

Question 3:

Show that the line through the points $(4,7,8)(2,3,4)$ is parallel to the line through the points ($-1,-2,1$), ($1,2,5$).
Answer
Let $A B$ be the line through the points, $(4,7,8)$ and $(2,3,4)$, and $C D$ be the line through the points, $(-1,-2,1)$ and $(1,2,5)$.
The directions ratios, a_{1}, b_{1}, c_{1}, of $A B$ are $(2-4),(3-7)$, and $(4-8)$ i.e., $-2,-4$, and -4.

The direction ratios, a_{2}, b_{2}, c_{2}, of CD are (1-(-1)), (2-(-2)), and (5-1) i.e., 2, 4, and 4.

AB will be parallel to CD, if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{a_{1}}{a_{2}}=\frac{-2}{2}=-1$
$\frac{b_{1}}{b_{2}}=\frac{-4}{4}=-1$
$\frac{c_{1}}{c_{2}}=\frac{-4}{4}=-1$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Thus, $A B$ is parallel to $C D$.

Question 4:

Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.
Answer
It is given that the line passes through the point $A(1,2,3)$. Therefore, the position vector through A is $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$
$\vec{b}=3 \hat{i}+2 \hat{j}-2 \hat{k}$
It is known that the line which passes through point A and parallel to $\vec{b}_{\text {is given by }}$ $\vec{r}=\vec{a}+\lambda \vec{b}$, where λ is a constant.
$\Rightarrow \vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})$
This is the required equation of the line.

Question 5:

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.
Answer
It is given that the line passes through the point with position vector
$\vec{a}=2 \hat{i}-\hat{j}+4 \hat{k}$
$\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$
It is known that a line through a point with position vector \vec{a} and parallel to \vec{b} is given by the equation, $\vec{r}=\vec{a}+\lambda \vec{b}$
$\Rightarrow \vec{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(\hat{i}+2 \hat{j}-\hat{k})$
This is the required equation of the line in vector form.
$\vec{r}=x \hat{i}-y \hat{j}+z \hat{k}$
$\Rightarrow x \hat{i}-y \hat{j}+z \hat{k}=(\lambda+2) \hat{i}+(2 \lambda-1) \hat{j}+(-\lambda+4) \hat{k}$
Eliminating λ, we obtain the Cartesian form equation as
$\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$
This is the required equation of the given line in Cartesian form.

Question 6:

Find the Cartesian equation of the line which passes through the point
$(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
Answer
It is given that the line passes through the point $(-2,4,-5)$ and is parallel to
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
The direction ratios of the line, $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$, are 3, 5, and 6 .
The required line is parallel to $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
Therefore, its direction ratios are $3 k, 5 k$, and $6 k$, where $k \neq 0$
It is known that the equation of the line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and with direction
ratios, a, b, c, is given by $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

Therefore the equation of the required line is
$\frac{x+2}{3 k}=\frac{y-4}{5 k}=\frac{z+5}{6 k}$
$\Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}=k$

Question 7:

The Cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.
Answer
The Cartesian equation of the line is
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
The given line passes through the point $(5,-4,6)$. The position vector of this point is $\vec{a}=5 \hat{i}-4 \hat{j}+6 \hat{k}$

Also, the direction ratios of the given line are 3, 7, and 2.
This means that the line is in thection of vector, $\vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k}$
It is known that the line through position vector \vec{a} and in the direction of the vector \vec{b} is given by the equation, $\vec{r}=\vec{a}+\lambda \vec{b}, \lambda \in R$

$$
\Rightarrow \vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})
$$

This is the required equation of the given line in vector form.

Question 8:

Find the angle between the following pairs of lines:
(i) $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k})$ and $\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$
(ii) $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

Answer
(i) Let Q be the angle between the given lines.

The angle between the given pairs of lines is given by,

$$
\cos Q=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\left|\vec{b}_{1}\right|\right| \vec{b}_{2} \mid}\right|
$$

The given lines are parallel to the vectors, $\vec{b}_{1}=3 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\vec{b}_{2}=\hat{i}+2 \hat{j}+2 \hat{k}$, respectively.

$$
\begin{aligned}
& \therefore\left|\vec{b}_{1}\right|=\sqrt{3^{2}+2^{2}+6^{2}}=7 \\
& \begin{aligned}
\left|\vec{b}_{2}\right| & =\sqrt{(1)^{2}+(2)^{2}+(2)^{2}}=3 \\
\vec{b}_{1} \cdot \vec{b}_{2} & =(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& =3 \times 1+2 \times 2+6 \times 2 \\
& =3+4+12 \\
& =19
\end{aligned}
\end{aligned}
$$

$\Rightarrow \cos Q=\frac{19}{7 \times 3}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{19}{21}\right)$
(ii) The given lines are parallel to the vectors, $\vec{b}_{1}=\hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}_{2}=3 \hat{i}-5 \hat{j}-4 \hat{k}$, respectively.

$$
\begin{aligned}
& \therefore\left|\vec{b}_{1}\right|=\sqrt{(1)^{2}+(-1)^{2}+(-2)^{2}}=\sqrt{6} \\
& \left|\vec{b}_{2}\right|= \\
& \begin{aligned}
\vec{b}_{1} \cdot \vec{b}_{2} & =(\hat{i}-\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-5 \hat{j}-4 \hat{k}) \\
& =1 \cdot 3-1(-5)-2(-4) \\
& =3+5+8 \\
& =16
\end{aligned}
\end{aligned}
$$

$$
\cos Q=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|
$$

$$
\Rightarrow \cos Q=\frac{16}{\sqrt{6} \cdot 5 \sqrt{2}}=\frac{16}{\sqrt{2} \cdot \sqrt{3} \cdot 5 \sqrt{2}}=\frac{16}{10 \sqrt{3}}
$$

$$
\Rightarrow \cos Q=\frac{8}{5 \sqrt{3}}
$$

$$
\Rightarrow Q=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)
$$

Question 9:

Find the angle between the following pairs of lines:
(i) $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$
i. Answer
ii. Let \vec{b}_{1} and \vec{b}_{2} be the vectors parallel to the pair of lines,

$$
\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \text { and } \frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4} \text {, respectively. }
$$

$\therefore \vec{b}_{1}=2 \hat{i}+5 \hat{j}-3 \hat{k}$ and $\vec{b}_{2}=-\hat{i}+8 \hat{j}+4 \hat{k}$
$\left|\vec{b}_{1}\right|=\sqrt{(2)^{2}+(5)^{2}+(-3)^{2}}=\sqrt{38}$
$\left|\vec{b}_{2}\right|=\sqrt{(-1)^{2}+(8)^{2}+(4)^{2}}=\sqrt{81}=9$
$\vec{b}_{1} \cdot \vec{b}_{2}=(2 \hat{i}+5 \hat{j}-3 \hat{k}) \cdot(-\hat{i}+8 \hat{j}+4 \hat{k})$
$=2(-1)+5 \times 8+(-3) \cdot 4$
$=-2+40-12$
$=26$
The angle, Q , between the given pair of lines is given by the relation,
$\cos Q=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|$
$\Rightarrow \cos Q=\frac{26}{9 \sqrt{38}}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)$
(ii) Let \vec{b}_{1}, \vec{b}_{2} be the vectors parallel to the given pair of lines, $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and
$\frac{x-5}{4}=\frac{y-5}{1}=\frac{z-3}{8}$, respectively.

$$
\begin{aligned}
& \vec{b}_{1}=2 \hat{i}+2 \hat{j}+\hat{k} \\
& \vec{b}_{2}=4 \hat{i}+\hat{j}+8 \hat{k} \\
& \begin{aligned}
\therefore\left|\vec{b}_{1}\right| & =\sqrt{(2)^{2}+(2)^{2}+(1)^{2}}=\sqrt{9}=3 \\
\left|\vec{b}_{2}\right|= & \sqrt{4^{2}+1^{2}+8^{2}}=\sqrt{81}=9 \\
\vec{b}_{1} \cdot \vec{b}_{2} & =(2 \hat{i}+2 \hat{j}+\hat{k}) \cdot(4 \hat{i}+\hat{j}+8 \hat{k}) \\
& =2 \times 4+2 \times 1+1 \times 8 \\
& =8+2+8 \\
& =18
\end{aligned}
\end{aligned}
$$

If Q is the angle between the given pair of lines, then

$$
\cos Q=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|
$$

$\Rightarrow \cos Q=\frac{18}{3 \times 9}=\frac{2}{3}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{2}{3}\right)$

Question 10:

Find the values of p so the line $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
Answer
The given equations can be written in the standard form as
$\frac{x-1}{-3}=\frac{y-2}{\frac{2 p}{7}}=\frac{z-3}{2} \quad \frac{x-1}{\frac{-3 p}{7}}=\frac{y-5}{1}=\frac{z-6}{-5}$
The direction ratios of the lines are $-3, \frac{2 p}{7}, 2$ and $\frac{-3 p}{7}, 1,-5$ respectively.
Two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, are perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore(-3) \cdot\left(\frac{-3 p}{7}\right)+\left(\frac{2 p}{7}\right) \cdot(1)+2 \cdot(-5)=0$
$\Rightarrow \frac{9 p}{7}+\frac{2 p}{7}=10$
$\Rightarrow 11 p=70$
$\Rightarrow p=\frac{70}{11}$
Thus, the value of p is $\frac{70}{11}$.

Question 13:

Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
Answer
The equations of the given lines are $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
The direction ratios of the given lines are $7,-5,1$ and $1,2,3$ respectively.
Two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, are perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore 7 \times 1+(-5) \times 2+1 \times 3$
$=7-10+3$
$=0$
Therefore, the given lines are perpendicular to each other.

Question 14:

Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$

Answer

The equations of the given lines are
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, is given by,
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Comparing the given equations, we obtain
$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}$
$\vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}$
$\vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}$
$\vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$
$\vec{a}_{2}-\vec{a}_{1}=(2 \hat{i}-\hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-3 \hat{j}-2 \hat{k}$
$\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2\end{array}\right|$
$\vec{b}_{1} \times \vec{b}_{2}=(-2-1) \hat{i}-(2-2) \hat{j}+(1+2) \hat{k}=-3 \hat{i}+3 \hat{k}$
$\Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
Substituting all the values in equation (1), we obtain
$d=\left|\frac{(-3 \hat{i}+3 \hat{k}) \cdot(\hat{i}-3 \hat{j}-2 \hat{k})}{3 \sqrt{2}}\right|$
$\Rightarrow d=\left|\frac{-3.1+3(-2)}{3 \sqrt{2}}\right|$
$\Rightarrow d=\left|\frac{-9}{3 \sqrt{2}}\right|$
$\Rightarrow d=\frac{3}{\sqrt{2}}=\frac{3 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=\frac{3 \sqrt{2}}{2}$
Therefore, the shortest distance between the two lines is $\frac{3 \sqrt{2}}{2}$ units.

Question 11:

Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
Answer
The given lines are $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
It is known that the shortest distance between the two lines,
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$, is given by,
$d=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}$
Comparing the given equations, we obtain
$x_{1}=-1, y_{1}=-1, z_{1}=-1$
$a_{1}=7, b_{1}=-6, c_{1}=1$
$x_{2}=3, y_{2}=5, z_{2}=7$
$a_{2}=1, \quad b_{2}=-2, c_{2}=1$
Then, $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=\left|\begin{array}{ccc}4 & 6 & 8 \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|$

$$
=4(-6+2)-6(7-1)+8(-14+6)
$$

$$
=-16-36-64
$$

$$
=-116
$$

$$
\Rightarrow \sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}=\sqrt{(-6+2)^{2}+(1+7)^{2}+(-14+6)^{2}}
$$

$$
=\sqrt{16+36+64}
$$

$$
=\sqrt{116}
$$

$$
=2 \sqrt{29}
$$

Substituting all the values in equation (1), we obtain
$d=\frac{-116}{2 \sqrt{29}}=\frac{-58}{\sqrt{29}}=\frac{-2 \times 29}{\sqrt{29}}=-2 \sqrt{29}$
Since distance is always non-negative, the distance between the given lines is $2 \sqrt{29}$ units.

Question 14:

Find the shortest distance between the lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$
and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
Answer
The given lines are $\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, is given by,
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Comparing the given equations with $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, we obtain
$\vec{a}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$
$\vec{b}_{1}=\hat{i}-3 \hat{j}+2 \hat{k}$
$\vec{a}_{2}=4 \hat{i}+5 \hat{j}+6 \hat{k}$
$\vec{b}_{2}=2 \hat{i}+3 \hat{j}+\hat{k}$
$\vec{a}_{2}-\vec{a}_{1}=(4 \hat{i}+5 \hat{j}+6 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})=3 \hat{i}+3 \hat{j}+3 \hat{k}$
$\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1\end{array}\right|=(-3-6) \hat{i}-(1-4) \hat{j}+(3+6) \hat{k}=-9 \hat{i}+3 \hat{j}+9 \hat{k}$
$\Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-9)^{2}+(3)^{2}+(9)^{2}}=\sqrt{81+9+81}=\sqrt{171}=3 \sqrt{19}$
$\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)=(-9 \hat{i}+3 \hat{j}+9 \hat{k}) \cdot(3 \hat{i}+3 \hat{j}+3 \hat{k})$
$=-9 \times 3+3 \times 3+9 \times 3$
$=9$
Substituting all the values in equation (1), we obtain
$d=\left|\frac{9}{3 \sqrt{19}}\right|=\frac{3}{\sqrt{19}}$

Therefore, the shortest distance between the two given lines is $\frac{3}{\sqrt{19}}$ units.

Question 15:

Find the shortest distance between the lines whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and
$\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$
Answer
The given lines are

$$
\begin{align*}
& \vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \\
& \Rightarrow \vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+t(-\hat{i}+\hat{j}-2 \hat{k}) \tag{1}\\
& \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k} \\
& \Rightarrow \vec{r}=(\hat{i}-\hat{j}+\hat{k})+s(\hat{i}+2 \hat{j}-2 \hat{k}) \tag{2}
\end{align*}
$$

It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, is given by,
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
For the given equations,
$\vec{a}_{1}=\hat{i}-2 \hat{j}+3 \hat{k}$
$\vec{b}_{1}=-\hat{i}+\hat{j}-2 \hat{k}$
$\vec{a}_{2}=\hat{i}-\hat{j}-\hat{k}$
$\vec{b}_{2}=\hat{i}+2 \hat{j}-2 \hat{k}$
$\vec{a}_{2}-\vec{a}_{1}=(\hat{i}-\hat{j}-\hat{k})-(\hat{i}-2 \hat{j}+3 \hat{k})=\hat{j}-4 \hat{k}$
$\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2\end{array}\right|=(-2+4) \hat{i}-(2+2) \hat{j}+(-2-1) \hat{k}=2 \hat{i}-4 \hat{j}-3 \hat{k}$
$\Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(2)^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{4+16+9}=\sqrt{29}$
$\therefore\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)=(2 \hat{i}-4 \hat{j}-3 \hat{k}) \cdot(\hat{j}-4 \hat{k})=-4+12=8$
Substituting all the values in equation (3), we obtain
$d=\left|\frac{8}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}}$
Therefore, the shortest distance between the lines is $\frac{8}{\sqrt{29}}$ units.

Class XII : Maths
Chapter 11 : Three Dimensional Geometry

Questions and Solutions | Miscellaneous Exercise 11 - NCERT Books

Question 1:

Find the angle between the lines whose direction ratios are a, b, c and $b-c$,
$c-a, a-b$.
Answer
The angle Q between the lines with direction cosines, a, b, c and $b-c, c-a$, $a-b$, is given by,

$$
\begin{aligned}
& \cos Q=\left|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}}+\sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right| \\
& \Rightarrow \cos Q=0 \\
& \Rightarrow Q=\cos ^{-1} 0 \\
& \Rightarrow Q=90^{\circ}
\end{aligned}
$$

Thus, the angle between the lines is 90°.

Question 2:

Find the equation of a line parallel to x-axis and passing through the origin.
Answer
The line parallel to x-axis and passing through the origin is x-axis itself.
Let A be a point on x-axis. Therefore, the coordinates of A are given by $(a, 0,0)$, where $a \in \mathrm{R}$.

Direction ratios of OA are $(a-0)=a, 0,0$
The equation of $O A$ is given by,
$\frac{x-0}{a}=\frac{y-0}{0}=\frac{z-0}{0}$
$\Rightarrow \frac{x}{1}=\frac{y}{0}=\frac{z}{0}=a$
Thus, the equation of line parallel to x-axis and passing through origin is
$\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$

Question 3:

If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k.

Answer
The direction of ratios of the lines, $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$, are -3 , $2 k, 2$ and $3 k, 1,-5$ respectively.
It is known that two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, are perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore-3(3 k)+2 k \times 1+2(-5)=0$
$\Rightarrow-9 k+2 k-10=0$
$\Rightarrow 7 k=-10$
$\Rightarrow k=\frac{-10}{7}$
Therefore, for $k=-\frac{10}{7}$, the given lines are perpendicular to each other.

Question 4:

Find the shortest distance between lines $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$
and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$.
Answer
The given lines are
$\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$
$\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$
It is known that the shortest distance between two lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$, is given by
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Comparing $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$ to equations (1) and (2), we obtain
$\vec{a}_{1}=6 \hat{i}+2 \hat{j}+2 \hat{k}$
$\vec{b}_{1}=\hat{i}-2 \hat{j}+2 \hat{k}$
$\vec{a}_{2}=-4 \hat{i}-\hat{k}$
$\vec{b}_{2}=3 \hat{i}-2 \hat{j}-2 \hat{k}$
$\Rightarrow \vec{a}_{2}-\vec{a}_{1}=(-4 \hat{i}-\hat{k})-(6 \hat{i}+2 \hat{j}+2 \hat{k})=-10 \hat{i}-2 \hat{j}-3 \hat{k}$

$$
\begin{aligned}
& \Rightarrow \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 2 \\
3 & -2 & -2
\end{array}\right|=(4+4) \hat{i}-(-2-6) \hat{j}+(-2+6) \hat{k}=8 \hat{i}+8 \hat{j}+4 \hat{k} \\
& \therefore\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(8)^{2}+(8)^{2}+(4)^{2}}=12 \\
& \left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)=(8 \hat{i}+8 \hat{j}+4 \hat{k}) \cdot(-10 \hat{i}-2 \hat{j}-3 \hat{k})=-80-16-12=-108
\end{aligned}
$$

Substituting all the values in equation (1), we obtain
$d=\left|\frac{-108}{12}\right|=9$
Therefore, the shortest distance between the two given lines is 9 units.

Question 5:

Find the vector equation of the line passing through the point $(1,2,-4)$ and
perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
Answer
Let the required line be parallel to the vector \vec{b} given by, $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$

The position vector of the point $(1,2,-4)$ is $\vec{a}=\hat{i}+2 \hat{j}-4 \hat{k}$
The equation of the line passing through $(1,2,-4)$ and parallel to vector \vec{b} is

$$
\begin{equation*}
\vec{r}=\vec{a}+\lambda \vec{b} \tag{1}
\end{equation*}
$$

$\Rightarrow \vec{r}(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)$
The equations of the lines are
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
Line (1) and line (2) are perpendicular to each other.
$\therefore 3 b_{1}-16 b_{2}+7 b_{3}=0$
Also, line (1) and line (3) are perpendicular to each other.
$\therefore 3 b_{1}+8 b_{2}-5 b_{3}=0$
From equations (4) and (5), we obtain
$\frac{b_{1}}{(-16)(-5)-8 \times 7}=\frac{b_{2}}{7 \times 3-3(-5)}=\frac{b_{3}}{3 \times 8-3(-16)}$
$\Rightarrow \frac{b_{1}}{24}=\frac{b_{2}}{36}=\frac{b_{3}}{72}$
$\Rightarrow \frac{b_{1}}{2}=\frac{b_{2}}{3}=\frac{b_{3}}{6}$
\therefore Direction ratios of \vec{b} are 2,3, and 6 .
$\therefore \vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$
Substituting $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ in equation (1), we obtain
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
This is the equation of the required line.

