Class XII : Maths

Chapter 12 : Linear Programming

Questions and Solutions | Exercise 12.1 - NCERT Books

Question 1:

Maximise $Z=3 x+4 y$

Subject to the constraints: $x+y \leq 4, x \geq 0, y \geq 0$.
Answer
The feasible region determined by the constraints, $x+y \leq 4, x \geq 0, y \geq 0$, is as follows.

The corner points of the feasible region are $O(0,0), A(4,0)$, and $B(0,4)$. The values of Z at these points are as follows.

Corner point	$\mathbf{Z}=\mathbf{3} \boldsymbol{x}+\mathbf{4 y}$	
$\mathrm{O}(0,0)$	0	
$\mathrm{~A}(4,0)$	12	
$\mathrm{~B}(0,4)$	16	\rightarrow Maximum

Therefore, the maximum value of Z is 16 at the point $B(0,4)$.

Question 2:

Minimise $Z=-3 x+4 y$
subject to $x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0$.
Answer

The feasible region determined by the system of constraints, $x+2 y \leq 8,3 x+2 y \leq 12, x \geq$ 0 , and $y \geq 0$, is as follows.

The corner points of the feasible region are $O(0,0), A(4,0), B(2,3)$, and $C(0,4)$.
The values of Z at these corner points are as follows.

Corner point	$\mathbf{z}=\mathbf{- 3 x}+\mathbf{4 y}$	
$0(0,0)$	0	
$\mathrm{~A}(4,0)$	-12	\rightarrow Minimum
$\mathrm{B}(2,3)$	6	
$\mathrm{C}(0,4)$	16	

Therefore, the minimum value of Z is -12 at the point $(4,0)$.

Question 3:

Maximise $Z=5 x+3 y$
subject to $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$.
Answer
The feasible region determined by the system of constraints, $3 x+5 y \leq 15$,
$5 x+2 y \leq 10, x \geq 0$, and $y \geq 0$, are as follows.

The corner points of the feasible region are $O(0,0), A(2,0), B(0,3)$, and $C\left(\frac{20}{19}, \frac{45}{19}\right)$.
The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z = 5} \boldsymbol{x}+\mathbf{3 y}$	
$0(0,0)$	0	
$A(2,0)$	10	
$B(0,3)$	9	
$C\left(\frac{20}{19}, \frac{45}{19}\right)$	$\frac{235}{19}$	\rightarrow Maximum

Therefore, the maximum value of Z is $\frac{235}{19}$ at the point $\left(\frac{20}{19}, \frac{45}{19}\right)$.

Question 4:

Minimise $Z=3 x+5 y$
such that ${ }^{x+3 y} \geq 3, x+y \geq 2, x, y \geq 0$.
Answer
The feasible region determined by the system of constraints, $x+3 y \geq 3, x+y \geq 2$, and x, $y \geq 0$, is as follows.

It can be seen that the feasible region is unbounded.
The corner points of the feasible region are $\mathrm{A}(3,0), \mathrm{B}\left(\frac{3}{2}, \frac{1}{2}\right)$, and $\mathrm{C}(0,2)$.
The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z = 3 x + 5 y}$	
$\mathrm{A}(3,0)$	9	
$\mathrm{~B}\left(\frac{3}{2}, \frac{1}{2}\right)$	7	\rightarrow Smallest
$\mathrm{C}(0,2)$	10	

As the feasible region is unbounded, therefore, 7 may or may not be the minimum value of Z.

For this, we draw the graph of the inequality, $3 x+5 y<7$, and check whether the resulting half plane has points in common with the feasible region or not.
It can be seen that the feasible region has no common point with $3 x+5 y<7$ Therefore,
the minimum value of Z is 7 at $\left(\frac{3}{2}, \frac{1}{2}\right)$.

Question 5:
Maximise $Z=3 x+2 y$
subject to $x+2 y \leq 10,3 x+y \leq 15, x, y \geq 0$.
Answer
The feasible region determined by the constraints, $x+2 y \leq 10,3 x+y \leq 15, x \geq 0$, and $y \geq 0$, is as follows.

The corner points of the feasible region are $A(5,0), B(4,3)$, and $C(0,5)$.
The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z}=\mathbf{3 x}+\mathbf{2 y}$	
$\mathrm{A}(5,0)$	15	
$\mathrm{~B}(4,3)$	18	\rightarrow Maximum
$\mathrm{C}(0,5)$	10	

Therefore, the maximum value of Z is 18 at the point $(4,3)$.

Question 6:

Minimise $Z=x+2 y$
subject to $2 x+y \geq 3, x+2 y \geq 6, x, y \geq 0$.
Answer

The feasible region determined by the constraints, $2 x+y \geq 3, x+2 y \geq 6, x \geq 0$, and y ≥ 0, is as follows.

The corner points of the feasible region are $A(6,0)$ and $B(0,3)$.
The values of Z at these corner points are as follows.

Corner point	$Z=\boldsymbol{x}+\mathbf{2 y}$
$\mathrm{A}(6,0)$	6
$\mathrm{~B}(0,3)$	6

It can be seen that the value of Z at points A and B is same. If we take any other point such as $(2,2)$ on line $x+2 y=6$, then $Z=6$
Thus, the minimum value of Z occurs for more than 2 points.
Therefore, the value of Z is minimum at every point on the line, $x+2 y=6$

Question 7:

Minimise and Maximise $Z=5 x+10 y$
subject to $x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0, x, y \geq 0$.
Answer
The feasible region determined by the constraints, $x+2 y \leq 120, x+y \geq 60, x-2 y \geq$ $0, x \geq 0$, and $y \geq 0$, is as follows.

The corner points of the feasible region are A $(60,0), B(120,0), C(60,30)$, and $D(40$, 20).

The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z = 5} \boldsymbol{x}+\mathbf{1 0 y}$	
$A(60,0)$	300	\rightarrow Minimum
$B(120,0)$	600	\rightarrow Maximum
$C(60,30)$	600	\rightarrow Maximum
$D(40,20)$	400	

The minimum value of Z is 300 at $(60,0)$ and the maximum value of Z is 600 at all the points on the line segment joining $(120,0)$ and $(60,30)$.

Question 8:

Minimise and Maximise $Z=x+2 y$
subject to $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200 ; x, y \geq 0$.
Answer
The feasible region determined by the constraints, $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq$ $200, x \geq 0$, and $y \geq 0$, is as follows.

The corner points of the feasible region are $A(0,50), B(20,40), C(50,100)$, and $D(0$, 200).

The values of Z at these corner points are as follows.

Corner point	$Z=x+2 y$	
$A(0,50)$	100	\rightarrow Minimum
$B(20,40)$	100	\rightarrow Minimum
$C(50,100)$	250	
$D(0,200)$	400	\rightarrow Maximum

The maximum value of Z is 400 at $(0,200)$ and the minimum value of Z is 100 at all the points on the line segment joining the points $(0,50)$ and $(20,40)$.

Question 9:

Maximise $Z=-x+2 y$, subject to the constraints:
$x \geq 3, x+y \geq 5, x+2 y \geq 6, y \geq 0$.

Answer

The feasible region determined by the constraints, $x \geq 3, x+y \geq 5, x+2 y \geq 6$, and $y \geq 0$, is as follows.

It can be seen that the feasible region is unbounded.
The values of Z at corner points $A(6,0), B(4,1)$, and $C(3,2)$ are as follows.

Corner point	$Z=-\boldsymbol{x}+\mathbf{2 y}$
$A(6,0)$	$Z=-6$
$B(4,1)$	$Z=-2$
$C(3,2)$	$Z=1$

As the feasible region is unbounded, therefore, $Z=1$ may or may not be the maximum value.

For this, we graph the inequality, $-x+2 y>1$, and check whether the resulting half plane has points in common with the feasible region or not.

The resulting feasible region has points in common with the feasible region.
Therefore, $Z=1$ is not the maximum value. Z has no maximum value.

Question 10:

Maximise $Z=x+y$, subject to $x-y \leq-1,-x+y \leq 0, x, y \geq 0$.
Answer

The region determined by the constraints, $x-y \leq-1,-x+y \leq 0, x, y \geq 0$, is as follows.

There is no feasible region and thus, Z has no maximum value.

