Class XII : Physics
 Chapter 2 : Electrostatic Potential And Capacitance

Questions and Solutions | Exercises - NCERT Books

Question 1:

Two charges $5 \times 10^{-8} \mathrm{C}$ and $-3 \times 10^{-8} \mathrm{C}$ are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

Answer

There are two charges,
$q_{1}=5 \times 10^{-8} \mathrm{C}$
$q_{2}=-3 \times 10^{-8} \mathrm{C}$
Distance between the two charges, $d=16 \mathrm{~cm}=0.16 \mathrm{~m}$
Consider a point P on the line joining the two charges, as shown in the given figure.

$r=$ Distance of point P from charge q_{1}
Let the electric potential (V) at point P be zero.
Potential at point P is the sum of potentials caused by charges q_{1} and q_{2} respectively.

$$
\begin{equation*}
\therefore V=\frac{q_{1}}{4 \pi \epsilon_{0} r}+\frac{q_{2}}{4 \pi \epsilon_{0}(d-r)} \tag{i}
\end{equation*}
$$

Where,
$\epsilon_{0}=$ Permittivity of free space
For $V=0$, equation (i) reduces to

$$
\begin{aligned}
& \frac{q_{1}}{4 \pi \epsilon_{0} r}=-\frac{q_{2}}{4 \pi \in_{0}(d-r)} \\
& \frac{q_{1}}{r}=\frac{-q_{2}}{d-r} \\
& \frac{5 \times 10^{-8}}{r}=-\frac{\left(-3 \times 10^{-8}\right)}{(0.16-r)} \\
& \frac{0.16}{r}-1=\frac{3}{5} \\
& \frac{0.16}{r}=\frac{8}{5} \\
& \therefore r=0.1 \mathrm{~m}=10 \mathrm{~cm}
\end{aligned}
$$

Therefore, the potential is zero at a distance of 10 cm from the positive charge between the charges.

Suppose point P is outside the system of two charges at a distance s from the negative charge, where potential is zero, as shown in the following figure.

For this arrangement, potential is given by,

$$
\begin{equation*}
V=\frac{q_{1}}{4 \pi \epsilon_{0} s}+\frac{q_{2}}{4 \pi \epsilon_{0}(s-d)} \tag{ii}
\end{equation*}
$$

For $V=0$, equation (ii) reduces to

$$
\begin{aligned}
& \frac{q_{1}}{4 \pi \epsilon_{0} s}=-\frac{q_{2}}{4 \pi \epsilon_{0}(s-d)} \\
& \frac{q_{1}}{s}=\frac{-q_{2}}{s-d} \\
& \frac{5 \times 10^{-8}}{s}=-\frac{\left(-3 \times 10^{-8}\right)}{(s-0.16)} \\
& 1-\frac{0.16}{s}=\frac{3}{5} \\
& \frac{0.16}{s}=\frac{2}{5} \\
& \therefore s=0.4 \mathrm{~m}=40 \mathrm{~cm}
\end{aligned}
$$

Therefore, the potential is zero at a distance of 40 cm from the positive charge outside the system of charges.

Question 2:

A regular hexagon of side 10 cm has a charge $5 \mu \mathrm{C}$ at each of its vertices. Calculate the potential at the centre of the hexagon.

Answer

The given figure shows six equal amount of charges, q, at the vertices of a regular hexagon.

Where,
Charge, $q=5 \mu \mathrm{C}=5 \times 10^{-6} \mathrm{C}$
Side of the hexagon, $l=\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}=\mathrm{EF}=\mathrm{FA}=10 \mathrm{~cm}$
Distance of each vertex from centre $\mathrm{O}, d=10 \mathrm{~cm}$
Electric potential at point O,
$V=\frac{6 \times q}{4 \pi \epsilon_{0} d}$
Where,
$\in_{0}=$ Permittivity of free space

$$
\begin{aligned}
& \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{C}^{-2} \mathrm{~m}^{-2} \\
& \begin{aligned}
\therefore V & =\frac{6 \times 9 \times 10^{9} \times 5 \times 10^{-6}}{0.1} \\
\quad & =2.7 \times 10^{6} \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Therefore, the potential at the centre of the hexagon is $2.7 \times 10^{6} \mathrm{~V}$.

Question 3:

Two charges $2 \mu \mathrm{C}$ and $-2 \mu \mathrm{C}$ are placed at points A and B 6 cm apart.
Identify an equipotential surface of the system.
What is the direction of the electric field at every point on this surface?

Answer

The situation is represented in the given figure.

An equipotential surface is the plane on which total potential is zero everywhere. This plane is normal to line $A B$. The plane is located at the mid-point of line $A B$ because the magnitude of charges is the same.

The direction of the electric field at every point on this surface is normal to the plane in the direction of AB .

Question 4:

A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} \mathrm{C}$ distributed uniformly on its surface. What is the electric field

Inside the sphere
Just outside the sphere
At a point 18 cm from the centre of the sphere?

Answer

Radius of the spherical conductor, $r=12 \mathrm{~cm}=0.12 \mathrm{~m}$
Charge is uniformly distributed over the conductor, $q=1.6 \times 10^{-7} \mathrm{C}$
Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.

Electric field E just outside the conductor is given by the relation,

$$
E=\frac{q}{4 \pi \epsilon_{0} r^{2}}
$$

Where,

$$
\epsilon_{0}=\text { Permittivity of free space }
$$

$$
\begin{aligned}
& \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \\
& \therefore E=\frac{1.6 \times 10^{-7} \times 9 \times 10^{-9}}{(0.12)^{2}} \\
& \quad=10^{5} \mathrm{~N} \mathrm{C}^{-1}
\end{aligned}
$$

Therefore, the electric field just outside the sphere is $10^{5} \mathrm{~N} \mathrm{C}^{-1}$.
Electric field at a point 18 m from the centre of the sphere $=E_{1}$
Distance of the point from the centre, $d=18 \mathrm{~cm}=0.18 \mathrm{~m}$

$$
\begin{aligned}
E_{1} & =\frac{q}{4 \pi \epsilon_{0} d^{2}} \\
& =\frac{9 \times 10^{9} \times 1.6 \times 10^{-7}}{\left(18 \times 10^{-2}\right)^{2}} \\
& =4.4 \times 10^{4} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Therefore, the electric field at a point 18 cm from the centre of the sphere is $4.4 \times 10^{4} \mathrm{~N} / \mathrm{C}$

Question 5:
A parallel plate capacitor with air between the plates has a capacitance of $8 \mathrm{pF}(1 \mathrm{pF}=$ $10^{-12} \mathrm{~F}$). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6 ?

Answer

Capacitance between the parallel plates of the capacitor, $\mathrm{C}=8 \mathrm{pF}$
Initially, distance between the parallel plates was d and it was filled with air. Dielectric constant of air, $k=1$

Capacitance, C, is given by the formula,

$$
\begin{align*}
C & =\frac{k \epsilon_{0} A}{d} \\
& =\frac{\in_{0} A}{d} \tag{i}
\end{align*}
$$

Where,
$A=$ Area of each plate

$$
\epsilon_{0}=\text { Permittivity of free space }
$$

If distance between the plates is reduced to half, then new distance, $d=\frac{d}{2}$
Dielectric constant of the substance filled in between the plates, $k^{\prime}=6$
Hence, capacitance of the capacitor becomes

$$
\begin{equation*}
C^{\prime}=\frac{k^{\prime} \epsilon_{0} A}{d^{\prime}}=\frac{6 \epsilon_{0} A}{\frac{d}{2}} \tag{ii}
\end{equation*}
$$

Taking ratios of equations (i) and (ii), we obtain

$$
\begin{aligned}
C^{\prime} & =2 \times 6 C \\
& =12 C \\
& =12 \times 8=96 \mathrm{pF}
\end{aligned}
$$

Therefore, the capacitance between the plates is 96 pF .

Question 6:
Three capacitors each of capacitance 9 pF are connected in series.
What is the total capacitance of the combination?
What is the potential difference across each capacitor if the combination is connected to a 120 V supply?

Answer

Capacitance of each of the three capacitors, $C=9 \mathrm{pF}$
Equivalent capacitance $\left(C^{\prime}\right)$ of the combination of the capacitors is given by the relation,

$$
\begin{aligned}
\frac{1}{C^{\prime}} & =\frac{1}{C}+\frac{1}{C}+\frac{1}{C} \\
& =\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=\frac{3}{9}=\frac{1}{3} \\
\therefore C^{\prime} & =3 \mu \mathrm{~F}
\end{aligned}
$$

Therefore, total capacitance of the combination is $3 \mu \mathrm{~F}$.
Supply voltage, $V=100 \mathrm{~V}$
Potential difference $\left(V^{\prime}\right)$ across each capacitor is equal to one-third of the supply voltage.
$\therefore V^{\prime}=\frac{V}{3}=\frac{120}{3}=40 \mathrm{~V}$
Therefore, the potential difference across each capacitor is 40 V .

Question 7:
Three capacitors of capacitances $2 \mathrm{pF}, 3 \mathrm{pF}$ and 4 pF are connected in parallel.
What is the total capacitance of the combination?
Determine the charge on each capacitor if the combination is connected to a 100 V supply.

Answer

Capacitances of the given capacitors are

$$
\begin{aligned}
& C_{1}=2 \mathrm{pF} \\
& C_{2}=3 \mathrm{pF} \\
& C_{3}=4 \mathrm{pF}
\end{aligned}
$$

For the parallel combination of the capacitors, equivalent capacitor C^{\prime} is given by the algebraic sum,

$$
C^{\prime}=2+3+4=9 \mathrm{pF}
$$

Therefore, total capacitance of the combination is 9 pF .
Supply voltage, $V=100 \mathrm{~V}$
The voltage through all the three capacitors is same $=V=100 \mathrm{~V}$
Charge on a capacitor of capacitance C and potential difference V is given by the relation, $q=V C$

For $\mathrm{C}=2 \mathrm{pF}$,
Charge $=V C=100 \times 2=200 \mathrm{pC}=2 \times 10^{-10} \mathrm{C}$
For $\mathrm{C}=3 \mathrm{pF}$,
Charge $=V C=100 \times 3=300 \mathrm{pC}=3 \times 10^{-10} \mathrm{C}$
For $\mathrm{C}=4 \mathrm{pF}$,
Charge $=V C=100 \times 4=200 \mathrm{pC}=4 \times 10^{-10} \mathrm{C}$

Question 8:

In a parallel plate capacitor with air between the plates, each plate has an area of 6×10^{-3} m^{2} and the distance between the plates is 3 mm . Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?

Answer

Area of each plate of the parallel plate capacitor, $A=6 \times 10^{-3} \mathrm{~m}^{2}$
Distance between the plates, $d=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}$
Supply voltage, $V=100 \mathrm{~V}$
Capacitance C of a parallel plate capacitor is given by, $C=\frac{\in_{0} A}{d}$

Where,
$\epsilon_{0}=$ Permittivity of free space
$=8.854 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{C}^{-2}$

$$
\begin{aligned}
\therefore C & =\frac{8.854 \times 10^{-12} \times 6 \times 10^{-3}}{3 \times 10^{-3}} \\
& =17.71 \times 10^{-12} \mathrm{~F} \\
& =17.71 \mathrm{pF}
\end{aligned}
$$

Potential V is related with the charge q and capacitance C as

$$
\begin{aligned}
V= & \frac{q}{C} \\
\therefore q & =V C \\
& =100 \times 17.71 \times 10^{-12} \\
& =1.771 \times 10^{-9} \mathrm{C}
\end{aligned}
$$

Therefore, capacitance of the capacitor is 17.71 pF and charge on each plate is $1.771 \times$ $10^{-9} \mathrm{C}$.

Question 9:

Explain what would happen if in the capacitor given in Exercise 2.8, a 3 mm thick mica sheet (of dielectric constant $=6$) were inserted between the plates,

While the voltage supply remained connected.
After the supply was disconnected.
Answer

Dielectric constant of the mica sheet, $k=6$
Initial capacitance, $C=1.771 \times 10^{-11} \mathrm{~F}$
New capacitance, $C^{\prime}=k C=6 \times 1.771 \times 10^{-11}=106 \mathrm{pF}$
Supply voltage, $V=100 \mathrm{~V}$
New charge, $q^{\prime}=C^{\prime} V=6 \times 1.771 \times 10^{-9}=1.06 \times 10^{-8} \mathrm{C}$

Potential across the plates remains 100 V .
Dielectric constant, $k=6$

Initial capacitance, $C=1.771 \times 10^{-11} \mathrm{~F}$
New capacitance, $C^{\prime}=k C=6 \times 1.771 \times 10^{-11}=106 \mathrm{pF}$
If supply voltage is removed, then there will be no effect on the amount of charge in the plates.

$$
\text { Charge }=1.771 \times 10^{-9} \mathrm{C}
$$

Potential across the plates is given by,

$$
\begin{aligned}
\therefore V^{\prime} & =\frac{q}{C^{\prime}} \\
& =\frac{1.771 \times 10^{-9}}{106 \times 10^{-12}} \\
& =16.7 \mathrm{~V}
\end{aligned}
$$

Question 10:
A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?

Answer

Capacitor of the capacitance, $C=12 \mathrm{pF}=12 \times 10^{-12} \mathrm{~F}$
Potential difference, $V=50 \mathrm{~V}$
Electrostatic energy stored in the capacitor is given by the relation,

$$
\begin{aligned}
E & =\frac{1}{2} C V^{2} \\
& =\frac{1}{2} \times 12 \times 10^{-12} \times(50)^{2} \\
& =1.5 \times 10^{-8} \mathrm{~J}
\end{aligned}
$$

Therefore, the electrostatic energy stored in the capacitor is $1.5 \times 10^{-8} \mathrm{~J}$.

Question 11:
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

Answer

Capacitance of the capacitor, $C=600 \mathrm{pF}$
Potential difference, $V=200 \mathrm{~V}$
Electrostatic energy stored in the capacitor is given by,

$$
\begin{aligned}
E & =\frac{1}{2} C V^{2} \\
& =\frac{1}{2} \times\left(600 \times 10^{-12}\right) \times(200)^{2} \\
& =1.2 \times 10^{-5} \mathrm{~J}
\end{aligned}
$$

If supply is disconnected from the capacitor and another capacitor of capacitance $C=600$ pF is connected to it, then equivalent capacitance (C) of the combination is given by,

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{C^{\prime}} & =\frac{1}{C}+\frac{1}{C} \\
& =\frac{1}{600}+\frac{1}{600}=\frac{2}{600}=\frac{1}{300} \\
\therefore C^{\prime} & =300 \mathrm{pF}
\end{aligned}
\end{aligned}
$$

New electrostatic energy can be calculated as

$$
\begin{aligned}
E^{\prime} & =\frac{1}{2} \times C^{\prime} \times V^{2} \\
& =\frac{1}{2} \times 300 \times(200)^{2} \\
& =0.6 \times 10^{-5} \mathrm{~J}
\end{aligned}
$$

Loss in electrostatic energy $=E-E^{\prime}$

$$
\begin{aligned}
& =1.2 \times 10^{-5}-0.6 \times 10^{-5} \\
& =0.6 \times 10^{-5} \\
& =6 \times 10^{-6} \mathrm{~J}
\end{aligned}
$$

Therefore, the electrostatic energy lost in the process is $6 \times 10^{-6} \mathrm{~J}$.

