Class XII : Maths
 Chapter 13 : Probability

Questions and Solutions | Exercise 13.1 - NCERT Books

Question 1:

Given that E and F are events such that $P(E)=0.6, P(F)=0.3$ and $P(E \cap F)=0.2$, find P (E|F) and $P(F \mid E)$.

Answer
It is given that $P(E)=0.6, P(F)=0.3$, and $P(E \cap F)=0.2$
$\Rightarrow P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.2}{0.3}=\frac{2}{3}$
$\Rightarrow P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{0.2}{0.6}=\frac{1}{3}$

Question 2:

Compute $P(A \mid B)$, if $P(B)=0.5$ and $P(A \cap B)=0.32$
Answer
It is given that $P(B)=0.5$ and $P(A \cap B)=0.32$
$\Rightarrow \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{0.32}{0.5}=\frac{16}{25}$

Question 3:

If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$, find
(i) $P(A \cap B)$ (ii) $P(A \mid B)$ (iii) $P(A \cup B)$

Answer
It is given that $P(A)=0.8, P(B)=0.5$, and $P(B \mid A)=0.4$
(i) $P(B \mid A)=0.4$
$\therefore \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}=0.4$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{0.8}=0.4$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.32$
(ii) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
$\Rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{0.32}{0.5}=0.64$
(iii)
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.5+0.5-0.32=0.98$

Question 4:

Evaluate $P(A \cup B)$, if $2 P(A)=P(B)=\frac{5}{13}$ and $P(A \mid B)=\frac{2}{5}$

Answer

It is given that, $2 P(A)=P(B)=\frac{5}{13}$
$\Rightarrow P(A)=\frac{5}{26}$ and $P(B)=\frac{5}{13}$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{2}{5}$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{2}{5}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{2}{5} \times \mathrm{P}(\mathrm{B})=\frac{2}{5} \times \frac{5}{13}=\frac{2}{13}$
It is known that, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{5}{26}+\frac{5}{13}-\frac{2}{13}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{5+10-4}{26}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{11}{26}$

Question 5:

If $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$ and $P(A \cup B)=\frac{7}{11}$, find
(i) $P(A \cap B)$ (ii) $P(A \mid B)$ (iii) $P(B \mid A)$

Answer
It is given that $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$, and $P(A \cup B)=\frac{7}{11}$
(i) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{7}{11}$
$\therefore \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{7}{11}$
$\Rightarrow \frac{6}{11}+\frac{5}{11}-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{7}{11}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{11}{11}-\frac{7}{11}=\frac{4}{11}$
(ii) It is known that, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
$\Rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\frac{4}{11}}{\frac{5}{11}}=\frac{4}{5}$
(iii) It is known that, $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$
$\Rightarrow P(B \mid A)=\frac{\frac{4}{11}}{\frac{6}{11}}=\frac{4}{6}=\frac{2}{3}$

Question 6:

A coin is tossed three times, where
(i) E: head on third toss, F: heads on first two tosses
(ii) E : at least two heads, F : at most two heads
(iii) E : at most two tails, F : at least one tail

Answer
If a coin is tossed three times, then the sample space S is $S=\{H H H$, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
It can be seen that the sample space has 8 elements.
(i) $\mathrm{E}=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{THH}, \mathrm{TTH}\}$
$\mathrm{F}=\{\mathrm{HHH}, \mathrm{HHT}\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\{\mathrm{HHH}\}$
$\mathrm{P}(\mathrm{F})=\frac{2}{8}=\frac{1}{4}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{8}$
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{8}}{\frac{1}{4}}=\frac{4}{8}=\frac{1}{2}$
(ii) $\mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$

F = \{HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
$\therefore E \cap F=\{H H T, H T H, T H H\}$
Clearly, $P(E \cap F)=\frac{3}{8}$ and $P(F)=\frac{7}{8}$
$\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\frac{3}{8}}{\frac{7}{8}}=\frac{3}{7}$
(iii) $\mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}\}$
$F=\{H H T, H T T, H T H, T H H, T H T, T T H, T T T\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\{\mathrm{HHT}, \mathrm{HTT}$, HTH,THH,THT,TTH $\}$
$P(F)=\frac{7}{8}$ and $P(E \cap F)=\frac{6}{8}$
Therefore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{6}{8}}{\frac{7}{8}}=\frac{6}{7}$

Question 7:

Two coins are tossed once, where
(i) E: tail appears on one coin, F: one coin shows head
(ii) E: not tail appears, F: no head appears

Answer
If two coins are tossed once, then the sample space S is $S=\{H H, H T, T H, T T\}$
(i) $\mathrm{E}=\{\mathrm{HT}, \mathrm{TH}\}$
$F=\{H T, T H\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\{\mathrm{HT}, \mathrm{TH}\}$
$\mathrm{P}(\mathrm{F})=\frac{2}{8}=\frac{1}{4}$
$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{2}{8}=\frac{1}{4}$
$\therefore \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{2}{2}=1$
(ii) $\mathrm{E}=\{\mathrm{HH}\}$
$\mathrm{F}=\{T \mathrm{~T}\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\Phi$
$P(F)=1$ and $P(E \cap F)=0$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0}{1}=0$

Question 8:

A die is thrown three times,
E: 4 appears on the third toss, F : 6 and 5 appears respectively on first two tosses
Answer
If a die is thrown three times, then the number of elements in the sample space will be 6 $\times 6 \times 6=216$
$E=\left\{\begin{array}{l}(1,1,4),(1,2,4), \ldots(1,6,4) \\ (2,1,4),(2,2,4), \ldots(2,6,4) \\ (3,1,4),(3,2,4), \ldots(3,6,4) \\ (4,1,4),(4,2,4), \ldots(4,6,4) \\ (5,1,4),(5,2,4), \ldots(5,6,4) \\ (6,1,4),(6,2,4), \ldots(6,6,4)\end{array}\right\}$
$\mathrm{F}=\{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\{(6,5,4)\}$
$P(F)=\frac{6}{216}$ and $P(E \cap F)=\frac{1}{216}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6}$

Question 9:

Mother, father and son line up at random for a family picture
E : son on one end, F : father in middle
Answer
If mother (M), father (F), and son (S) line up for the family picture, then the sample space will be
$S=\{M F S, M S F, F M S, F S M, S M F, S F M\}$
$\Rightarrow E=\{M F S, F M S, S M F, S F M\}$
$F=\{M F S, S F M\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\{\mathrm{MFS}, \mathrm{SFM}\}$
$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{2}{6}=\frac{1}{3}$
$P(F)=\frac{2}{6}=\frac{1}{3}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{3}}{\frac{1}{3}}=1$

Question 10:

A black and a red dice are rolled.
(a) Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
(b) Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Answer

Let the first observation be from the black die and second from the red die.
When two dice (one black and another red) are rolled, the sample space S has $6 \times 6=$ 36 number of elements.

1. Let

A: Obtaining a sum greater than 9
$=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
B : Black die results in a 5 .
$=\{(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\}$
$\therefore A \cap B=\{(5,5),(5,6)\}$

The conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5 , is given by $P(A \mid B)$.

$$
\therefore \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}=\frac{\frac{2}{36}}{\frac{6}{35}}=\frac{2}{6}=\frac{1}{3}
$$

(b) E: Sum of the observations is 8.
$=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$
F: Red die resulted in a number less than 4.

$$
=\left\{\begin{array}{l}
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3), \\
(3,1),(3,2),(3,3),(4,1),(4,2),(4,3), \\
(5,1),(5,2),(5,3),(6,1),(6,2),(6,3)
\end{array}\right\} \quad \begin{aligned}
& \mathrm{E} \cap F=\{(5,3),(6,2)\} \\
& P(F)=\frac{18}{36} \text { and } P(E \cap F)=\frac{2}{36}
\end{aligned}
$$

The conditional probability of obtaining the sum equal to 8 , given that the red die resulted in a number less than 4, is given by $P(E \mid F)$.

Therefore, $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\frac{2}{36}}{\frac{18}{36}}=\frac{2}{18}=\frac{1}{9}$

Question 11:

A fair die is rolled. Consider events $E=\{1,3,5\}, F=\{2,3\}$ and $G=\{2,3,4,5\}$
Find
(i) P (E|F) and $P(F \mid E)$ (ii) $P(E \mid G)$ and $P(G \mid E)$
(ii) $P((E \cup F) \mid G)$ and $P((E \cap G) \mid G)$

Answer

When a fair die is rolled, the sample space S will be $S=\{1,2,3,4,5,6\}$
It is given that $E=\{1,3,5\}, F=\{2,3\}$, and $G=\{2,3,4,5\}$
$\therefore P(E)=\frac{3}{6}=\frac{1}{2}$
$P(F)=\frac{2}{6}=\frac{1}{3}$
$P(G)=\frac{4}{6}=\frac{2}{3}$
(i) $\mathrm{E} \cap \mathrm{F}=\{3\}$
$\therefore \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{6}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{6}}{\frac{1}{3}}=\frac{1}{2}$
$P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3}$
(ii) $E \cap G=\{3,5\}$

$$
\begin{aligned}
& \therefore P(E \cap G)=\frac{2}{6}=\frac{1}{3} \\
& \therefore P(E \mid G)=\frac{P(E \cap G)}{P(G)}=\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2} \\
& P(G \mid E)=\frac{P(E \cap G)}{P(E)}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}
\end{aligned}
$$

(iii) $E \cup F=\{1,2,3,5\}$
$(E \cup F) \cap G=\{1,2,3,5\} \cap\{2,3,4,5\}=\{2,3,5\}$
$E \cap F=\{3\}$
$(E \cap F) \cap G=\{3\} \cap\{2,3,4,5\}=\{3\}$

$$
\begin{aligned}
& \therefore P(E \cup G)=\frac{4}{6}=\frac{2}{3} \\
& P((E \cup F) \cap G)=\frac{3}{6}=\frac{1}{2} \\
& P(E \cap F)=\frac{1}{6}
\end{aligned} \begin{aligned}
& P((E \cap F) \cap G)=\frac{1}{6} \\
& \begin{aligned}
\therefore((E \cup F) \mid G) & =\frac{P((E \cup F) \cap G)}{P(G)} \\
& =\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4} \\
P((E \cap F) \mid G)= & \frac{P((E \cap G) \cap G)}{P(G)}
\end{aligned} \\
&=\frac{\frac{1}{6}}{\frac{2}{3}}=\frac{1}{6} \times \frac{3}{2}=\frac{1}{4}
\end{aligned}
$$

Question 12:

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?
Answer
Let b and g represent the boy and the girl child respectively. If a family has two children, the sample space will be
$\mathrm{S}=\{(b, b),(b, g),(g, b),(g, g)\}$
Let A be the event that both children are girls.
$\therefore \mathrm{A}=\{(g, g)\}$
(i) Let B be the event that the youngest child is a girl.
$\therefore \mathrm{B}=[(b, g),(g, g)]$
$\Rightarrow \mathrm{A} \cap \mathrm{B}=\{(g, g)\}$
$\therefore \mathrm{P}(\mathrm{B})=\frac{2}{4}=\frac{1}{2}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$
The conditional probability that both are girls, given that the youngest child is a girl, is given by $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$.
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}$
Therefore, the required probability is $\frac{1}{2}$.
(ii) Let C be the event that at least one child is a girl.
$\therefore \mathrm{C}=\{(b, g),(g, b),(g, g)\}$
$\Rightarrow \mathrm{A} \cap \mathrm{C}=\{g, g\}$
$\Rightarrow \mathrm{P}(\mathrm{C})=\frac{3}{4}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{1}{4}$
The conditional probability that both are girls, given that at least one child is a girl, is given by $P(A \mid C)$.
Therefore, $\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$

Question 13:

An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank,
what is the probability that it will be an easy question given that it is a multiple choice question?
Answer
The given data can be tabulated as

	True/False	Multiple choice	Total
Easy	300	500	800
Difficult	200	400	600
Total	500	900	1400

Let us denote $\mathrm{E}=$ easy questions, $\mathrm{M}=$ multiple choice questions, $\mathrm{D}=$ difficult questions, and $\mathrm{T}=$ True/False questions

Total number of questions $=1400$
Total number of multiple choice questions $=900$
Therefore, probability of selecting an easy multiple choice question is
$P(E \cap M)=\frac{500}{1400}=\frac{5}{14}$
Probability of selecting a multiple choice question, $P(M)$, is
$\frac{900}{1400}=\frac{9}{14}$
$P(E \mid M)$ represents the probability that a randomly selected question will be an easy question, given that it is a multiple choice question.
$\therefore \mathrm{P}(\mathrm{E} \mid \mathrm{M})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{M})}{\mathrm{P}(\mathrm{M})}=\frac{\frac{5}{14}}{\frac{9}{14}}=\frac{5}{9}$

Therefore, the required probability is $\frac{5}{9}$.

Question 14:

Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4 '.
Answer
When dice is thrown, number of observations in the sample space $=6 \times 6=36$ Let A be the event that the sum of the numbers on the dice is 4 and B be the event that the two numbers appearing on throwing the two dice are different.
$\therefore A=\{(1,3),(2,2),(3,1)\}$
$B=\left\{\begin{array}{l}(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$A \cap B=\{(1,3),(3,1)\}$
$\therefore \mathrm{P}(\mathrm{B})=\frac{30}{36}=\frac{5}{6}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{2}{36}=\frac{1}{18}$
Let $P(A \mid B)$ represent the probability that the sum of the numbers on the dice is 4 , given that the two numbers appearing on throwing the two dice are different.
$\therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{18}}{\frac{5}{6}}=\frac{1}{15}$

Therefore, the required probability is $\frac{1}{15}$.

Question 15:

Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event 'the coin shows a tail', given that 'at least one die shows a 3'.
Answer
The outcomes of the given experiment can be represented by the following tree diagram.

The sample space of the experiment is,

$$
S=\left\{\begin{array}{l}
(1, \mathrm{H}),(1, \mathrm{~T}),(2, \mathrm{H}),(2, \mathrm{~T}),(3,1)(3,2),(3,3),(3,4),(3,5),(3,6), \\
(4, \mathrm{H}),(4, \mathrm{~T}),(5, \mathrm{H}),(5, \mathrm{~T}),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right\}
$$

Let A be the event that the coin shows a tail and B be the event that at least one die shows 3.
$\therefore A=\{(1, T),(2, T),(4, T),(5, T)\}$
$\mathrm{B}=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(6,3)\}$
$\Rightarrow \mathrm{A} \cap \mathrm{B}=\phi$
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$
Then, $\mathrm{P}(\mathrm{B})=\mathrm{P}(\{3,1\})+\mathrm{P}(\{3,2\})+\mathrm{P}(\{3,3\})+\mathrm{P}(\{3,4\})+\mathrm{P}(\{3,5\})+\mathrm{P}(\{3,6\})+\mathrm{P}(\{6,3\})$

$$
\begin{aligned}
& =\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36} \\
& =\frac{7}{36}
\end{aligned}
$$

Probability of the event that the coin shows a tail, given that at least one die shows 3, is given by $P(A \mid B)$.
Therefore,
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0}{\frac{7}{36}}=0$

Question 16:

If $P(A)=\frac{1}{2}, P(B)=0$, then $P(A \mid B)$ is
(A) 0 (B) $\frac{1}{2}$
(C) not defined (D) 1

Answer
It is given that $P(A)=\frac{1}{2}$ and $P(B)=0$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{0}$
Therefore, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is not defined.
Thus, the correct answer is C.

Question 17:

If A and B are events such that $P(A \mid B)=P(B \mid A)$, then
(A) $A \subset B$ but $A \neq B(B) A=B$
(C) $A \cap B=\Phi(D) P(A)=P(B)$

Answer
It is given that, $P(A \mid B)=P(B \mid A)$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$
$\Rightarrow P(A)=P(B)$
Thus, the correct answer is D.

Class XII : Maths
 Chapter 13 : Probability

Questions and Solutions | Exercise 13.2 - NCERT Books

Question 1:

If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, find $P(A \cap B)$ if A and B are independent events.
Answer
It is given that $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$
A and B are independent events. Therefore,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{3}{5} \cdot \frac{1}{5}=\frac{3}{25}$

Question 2:

Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.

Answer

There are 26 black cards in a deck of 52 cards.
Let $P(A)$ be the probability of getting a black card in the first draw.
$\therefore \mathrm{P}(\mathrm{A})=\frac{26}{52}=\frac{1}{2}$
Let $P(B)$ be the probability of getting a black card on the second draw.
Since the card is not replaced,
$\therefore \mathrm{P}(\mathrm{B})=\frac{25}{51}$
Thus, probability of getting both the cards black $=\frac{1}{2} \times \frac{25}{51}=\frac{25}{102}$

Question 3:

A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.

Answer

Let A, B, and C be the respective events that the first, second, and third drawn orange is good.

Therefore, probability that first drawn orange is good, $\mathrm{P}(\mathrm{A})=\frac{12}{15}$
The oranges are not replaced.
Therefore, probability of getting second orange good, $P(B)=\frac{11}{14}$
Similarly, probability of getting third orange good, $\mathrm{P}(\mathrm{C})=\frac{10}{13}$
The box is approved for sale, if all the three oranges are good.
Thus, probability of getting all the oranges good $=\frac{12}{15} \times \frac{11}{14} \times \frac{10}{13}=\frac{44}{91}$
Therefore, the probability that the box is approved for sale is $\frac{44}{91}$.

Question 4:

A fair coin and an unbiased die are tossed. Let A be the event 'head appears on the coin' and B be the event ' 3 on the die'. Check whether A and B are independent events or not. Answer

If a fair coin and an unbiased die are tossed, then the sample space S is given by,
$S=\left\{\begin{array}{l}(\mathrm{H}, 1),(\mathrm{H}, 2),(\mathrm{H}, 3),(\mathrm{H}, 4),(\mathrm{H}, 5),(\mathrm{H}, 6), \\ (\mathrm{T}, 1),(\mathrm{T}, 2),(\mathrm{T}, 3),(\mathrm{T}, 4),(\mathrm{T}, 5),(\mathrm{T}, 6)\end{array}\right\}$
Let A: Head appears on the coin
$A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\}$
$\Rightarrow \mathrm{P}(\mathrm{A})=\frac{6}{12}=\frac{1}{2}$
B: 3 on die $=\{(\mathrm{H}, 3),(\mathrm{T}, 3)\}$
$P(B)=\frac{2}{12}=\frac{1}{6}$
$\therefore \mathrm{A} \cap \mathrm{B}=\{(\mathrm{H}, 3)\}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{12}$
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{6}=\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
Therefore, A and B are independent events.

Question 5:

A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event, 'the number is even,' and B be the event, 'the number is red'. Are A and B independent?
Answer
When a die is thrown, the sample space (S) is
$S=\{1,2,3,4,5,6\}$
Let A : the number is even $=\{2,4,6\}$
$\Rightarrow \mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2}$
B : the number is red $=\{1,2,3\}$
$\Rightarrow \mathrm{P}(\mathrm{B})=\frac{3}{6}=\frac{1}{3}$
$\therefore A \cap B=\{2\}$
$P(A B)=P(A \cap B)=\frac{1}{6}$
$P(A) \cdot P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$
$\Rightarrow \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}) \neq \mathrm{P}(\mathrm{AB})$
Therefore, A and B are not independent.

Question 6:

Let E and F be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5}$. Are E and F independent?

Answer
It is given that $P(E)=\frac{3}{5}, P(F)=\frac{3}{10}$, and $P(E F)=P(E \cap F)=\frac{1}{5}$
$\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})=\frac{3}{5} \cdot \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$
$\Rightarrow \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F}) \neq \mathrm{P}(\mathrm{EF})$
Therefore, E and F are not independent.

Question 7:

Given that the events A and B are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{5}$ and $\mathrm{P}(\mathrm{B})=p$. Find p if they are (i) mutually exclusive (ii) independent.

Answer
It is given that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{5}$, and $\mathrm{P}(\mathrm{B})=p$
(i) When A and B are mutually exclusive, $A \cap B=\Phi$
$\therefore P(A \cap B)=0$

It is known that, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+p-0$
$\Rightarrow p=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$
(ii) When A and B are independent, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} p$

It is known that, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+p-\frac{1}{2} p$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+\frac{p}{2}$
$\Rightarrow \frac{p}{2}=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$
$\Rightarrow p=\frac{2}{10}=\frac{1}{5}$

Question 8:

Let A and B be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find
(i) $P(A \cap B)$ (ii) $P(A \cup B)$
(iii) $P(A \mid B)$ (iv) $P(B \mid A)$

Answer
It is given that $P(A)=0.3$ and $P(B)=0.4$
(i) If A and B are independent events, then
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=0.3 \times 0.4=0.12$
(ii) It is known that, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.3+0.4-0.12=0.58$
(iii) It is known that, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
$\Rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{0.12}{0.4}=0.3$
(iv) It is known that, $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$
$\Rightarrow \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{0.12}{0.3}=0.4$

Question 9:

If A and B are two events such that $P(A)=\frac{1}{4}, P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{8}$, find P (not A and not B).
Answer
It is given that, $\mathrm{P}(\mathrm{A})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$
$P($ not on A and not on $B)=P\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
$P($ not on A and not on $B)=P((A \cup B))^{\prime}\left[\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}=(\mathrm{A} \cup \mathrm{B})^{\prime}\right]$
$=1-P(A \cup B)$
$=1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})]$
$=1-\left[\frac{1}{4}+\frac{1}{2}-\frac{1}{8}\right]$
$=1-\frac{5}{8}$
$=\frac{3}{8}$

Question 10:

Events A and B are such that $P(A)=\frac{1}{2}, P(B)=\frac{7}{12}$ and $P(\operatorname{not} A$ or not $B)=\frac{1}{4}$. State whether A and B are independent?
Answer
It is given that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$, and $\mathrm{P}(\operatorname{not} \mathrm{A}$ or not B$)=\frac{1}{4}$
$\Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4}$
$\Rightarrow \mathrm{P}\left((\mathrm{A} \cap \mathrm{B})^{\prime}\right)=\frac{1}{4} \quad\left[\mathrm{~A}^{\prime} \cup \mathrm{B}^{\prime}=(\mathrm{A} \cap \mathrm{B})^{\prime}\right]$
$\Rightarrow 1-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{4}$
However, $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \cdot \frac{7}{12}=\frac{7}{24}$
Here, $\frac{3}{4} \neq \frac{7}{24}$
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
Therefore, A and B are independent events.

Question 11:

Given two independent events A and B such that $P(A)=0.3, P(B)=0.6$. Find
(i) $P(A$ and $B)$ (ii) P (A and not B)
(iii) $P(A$ or $B)$ (iv) P (neither A nor B)

Answer
It is given that $P(A)=0.3$ and $P(B)=0.6$
Also, A and B are independent events.
(i) $\therefore \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.3 \times 0.6=0.18$
(ii) $\mathrm{P}(\mathrm{A}$ and not B$)=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =0.3-0.18 \\
& =0.12
\end{aligned}
$$

(iii) $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
(iv) $\mathrm{P}($ neither A nor B$)=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.72$
$=0.28$

Question 12:

A die is tossed thrice. Find the probability of getting an odd number at least once.
Answer
Probability of getting an odd number in a single throw of a die $=\frac{3}{6}=\frac{1}{2}$
Similarly, probability of getting an even number $=\frac{3}{6}=\frac{1}{2}$
Probability of getting an even number three times $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
Therefore, probability of getting an odd number at least once
$=1$ - Probability of getting an odd number in none of the throws
= 1 - Probability of getting an even number thrice
$=1-\frac{1}{8}$
$=\frac{7}{8}$

Question 13:

Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
(i) both balls are red.
(ii) first ball is black and second is red.
(iii) one of them is black and other is red.

Answer
Total number of balls $=18$
Number of red balls $=8$
Number of black balls $=10$
(i) Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$

The ball is replaced after the first draw.
\therefore Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$

Therefore, probability of getting both the balls red $=\frac{4}{9} \times \frac{4}{9}=\frac{16}{81}$
(ii) Probability of getting first ball black $=\frac{10}{18}=\frac{5}{9}$

The ball is replaced after the first draw.
Probability of getting second ball as red $=\frac{8}{18}=\frac{4}{9}$
Therefore, probability of getting first ball as black and second ball as red $=9 \frac{5}{9} \times \frac{4}{9}=\frac{20}{81}$
(iii) Probability of getting first ball as red $=\frac{8}{18}=\frac{4}{9}$

The ball is replaced after the first draw.
Probability of getting second ball as black $=\frac{10}{18}=\frac{5}{9}$

Therefore, probability of getting first ball as black and second ball as red $=\frac{4}{9} \times \frac{5}{9}=\frac{20}{81}$ Therefore, probability that one of them is black and other is red $=$ Probability of getting first ball black and second as red + Probability of getting first ball red and second ball black
$=\frac{20}{81}+\frac{20}{81}$
$=\frac{40}{81}$

Question 14:

Probability of solving specific problem independently by A and B are ${ }^{\frac{1}{2} \text { and } \frac{1}{3}}$ respectively.
If both try to solve the problem independently, find the probability that
(i) the problem is solved (ii) exactly one of them solves the problem.

Answer
Probability of solving the problem by $A, P(A)=\frac{1}{2}$
Probability of solving the problem by $B, P(B)=\frac{1}{3}$
Since the problem is solved independently by A and B,
$\therefore \mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})=1-\frac{1}{2}=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{B})=1-\frac{1}{3}=\frac{2}{3}$
i. \quad Probability that the problem is solved $=P(A \cup B)$
$=P(A)+P(B)-P(A B)$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
(ii) Probability that exactly one of them solves the problem is given by,
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}$
$=\frac{1}{3}+\frac{1}{6}$
$=\frac{1}{2}$

Question 15:

One card is drawn at random from a well shuffled deck of 52 cards. In which of the following cases are the events E and F independent?
(i) E: 'the card drawn is a spade'

F: 'the card drawn is an ace'
(ii) E: 'the card drawn is black'

F: 'the card drawn is a king'
(iii) E : 'the card drawn is a king or queen'
F : 'the card drawn is a queen or jack'
Answer
(i) In a deck of 52 cards, 13 cards are spades and 4 cards are aces.
$\therefore P(E)=P($ the card drawn is a spade $)=\frac{13}{52}=\frac{1}{4}$
$\therefore P(F)=P($ the card drawn is an ace $)=\frac{4}{52}=\frac{1}{13}$
In the deck of cards, only 1 card is an ace of spades.
$P(E F)=P($ the card drawn is spade and an ace $)=\frac{1}{52}$
$P(E) \times P(F)=\frac{1}{4} \cdot \frac{1}{13}=\frac{1}{52}=P(E F)$
$\Rightarrow P(E) \times P(F)=P(E F)$
Therefore, the events E and F are independent.
(ii) In a deck of 52 cards, 26 cards are black and 4 cards are kings.
$\therefore P(E)=P($ the card drawn is black $)=\frac{26}{52}=\frac{1}{2}$
$\therefore P(F)=P($ the card drawn is a king $)=\frac{4}{52}=\frac{1}{13}$

In the pack of 52 cards, 2 cards are black as well as kings.
$\therefore P(E F)=P($ the card drawn is a black king $)=\frac{2}{52}=\frac{1}{26}$
$P(E) \times P(F)=\frac{1}{2} \cdot \frac{1}{13}=\frac{1}{26}=P(E F)$
Therefore, the given events E and F are independent.
(iii) In a deck of 52 cards, 4 cards are kings, 4 cards are queens, and 4 cards are jacks.
$\therefore \mathrm{P}(\mathrm{E})=\mathrm{P}($ the card drawn is a king or a queen $)=\frac{8}{52}=\frac{2}{13}$
$\therefore P(F)=P($ the card drawn is a queen or a jack $)=\frac{8}{52}=\frac{2}{13}$

There are 4 cards which are king or queen and queen or jack.
$\therefore \mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is a king or a queen, or queen or a jack)
$=\frac{4}{52}=\frac{1}{13}$
$P(E) \times P(F)=\frac{2}{13} \cdot \frac{2}{13}=\frac{4}{169} \neq \frac{1}{13}$
$\Rightarrow \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F}) \neq \mathrm{P}(\mathrm{EF})$

Therefore, the given events E and F are not independent.

Question 16:

In a hostel, 60\% of the students read Hindi newspaper, 40\% read English newspaper and 20% read both Hindi and English news papers. A student is selected at random.
(a) Find the probability that she reads neither Hindi nor English news papers.
(b) If she reads Hindi news paper, find the probability that she reads English news paper.
(c) If she reads English news paper, find the probability that she reads Hindi news paper.

Answer
Let H denote the students who read Hindi newspaper and E denote the students who read English newspaper.

It is given that,
$\mathrm{P}(\mathrm{H})=60 \%=\frac{6}{10}=\frac{3}{5}$
$P(E)=40 \%=\frac{40}{100}=\frac{2}{5}$
$\mathrm{P}(\mathrm{H} \cap \mathrm{E})=20 \%=\frac{20}{100}=\frac{1}{5}$
i. Probability that a student reads Hindi or English newspaper is,

$$
\begin{aligned}
(H \cup E)^{\prime} & =1-P(H \cup E) \\
& =1-\{P(H)+P(E)-P(H \cap E)\} \\
& =1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right) \\
& =1-\frac{4}{5} \\
& =\frac{1}{5}
\end{aligned}
$$

(ii) Probability that a randomly chosen student reads English newspaper, if she reads Hindi news paper, is given by $P(E \mid H)$.
$P(E \mid H)=\frac{P(E \cap H)}{P(H)}$

$$
\begin{aligned}
& =\frac{\frac{1}{5}}{\frac{3}{5}} \\
& =\frac{1}{3}
\end{aligned}
$$

(iii) Probability that a randomly chosen student reads Hindi newspaper, if she reads English newspaper, is given by P (H|E).

$$
\begin{aligned}
P(H \mid E) & =\frac{P(H \cap E)}{P(E)} \\
& =\frac{\frac{1}{5}}{\frac{2}{5}} \\
& =\frac{1}{2}
\end{aligned}
$$

Question 17:

The probability of obtaining an even prime number on each die, when a pair of dice is rolled is
(A) 0
(B) $\frac{1}{3}$ (C) $\frac{1}{12}$ (D)
D) $\frac{1}{36}$

Answer

When two dice are rolled, the number of outcomes is 36 .
The only even prime number is 2 .
Let E be the event of getting an even prime number on each die.
$\therefore \mathrm{E}=\{(2,2)\}$
$\Rightarrow P(E)=\frac{1}{36}$
Therefore, the correct answer is D.

Question 18:

Two events A and B will be independent, if
(A) A and B are mutually exclusive
(B) $\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)=[1-\mathrm{P}(\mathrm{A})][1-\mathrm{P}(\mathrm{B})]$
(C) $P(A)=P(B)$
(D) $P(A)+P(B)=1$

Answer

Two events A and B are said to be independent, if $P(A B)=P(A) \times P(B)$
Consider the result given in alternative \mathbf{B}.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~A}^{\prime} \mathrm{B}^{\prime}\right)=[1-\mathrm{P}(\mathrm{~A})][1-\mathrm{P}(\mathrm{~B})] \\
& \Rightarrow \mathrm{P}\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\
& \Rightarrow 1-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=1-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\
& \Rightarrow \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\
& \Rightarrow \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\
& \Rightarrow \mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
\end{aligned}
$$

This implies that A and B are independent, if $P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$

Distracter Rationale

A. Let $P(A)=m, P(B)=n, 0<m, n<1$
A and B are mutually exclusive.
$\therefore \mathrm{A} \cap \mathrm{B}=\phi$
$\Rightarrow \mathrm{P}(\mathrm{AB})=0$
However, $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=m n \neq 0$
$\therefore \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(B) \neq \mathrm{P}(\mathrm{AB})$
C. Let A : Event of getting an odd number on throw of a die $=\{1,3,5\}$
$\Rightarrow \mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2}$
B : Event of getting an even number on throw of a die $=\{2,4,6\}$
$P(B)=\frac{3}{6}=\frac{1}{2}$
Here, $\mathrm{A} \cap \mathrm{B}=\phi$
$\therefore \mathrm{P}(\mathrm{AB})=0$
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{4} \neq 0$
$\Rightarrow \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}) \neq \mathrm{P}(\mathrm{AB})$
D. From the above example, it can be seen that,
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\frac{1}{2}+\frac{1}{2}=1$
However, it cannot be inferred that A and B are independent.
Thus, the correct answer is B.

Class XII : Maths
Chapter 13 : Probability

Questions and Solutions | Exercise 13.3- NCERT Books

Question 1:

An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red?

Answer
The urn contains 5 red and 5 black balls.
Let a red ball be drawn in the first attempt.
$\therefore \mathrm{P}$ (drawing a red ball) $=\frac{5}{10}=\frac{1}{2}$
If two red balls are added to the urn, then the urn contains 7 red and 5 black balls.
$P\left(\right.$ drawing a red ball) $=\frac{7}{12}$
Let a black ball be drawn in the first attempt.
$\therefore \mathrm{P}$ (drawing a black ball in the first attempt) $=\frac{5}{10}=\frac{1}{2}$
If two black balls are added to the urn, then the urn contains 5 red and 7 black balls.
$P\left(\right.$ drawing a red ball) $=\frac{5}{12}$
Therefore, probability of drawing second ball as red is
$\frac{1}{2} \times \frac{7}{12}+\frac{1}{2} \times \frac{5}{12}=\frac{1}{2}\left(\frac{7}{12}+\frac{5}{12}\right)=\frac{1}{2} \times 1=\frac{1}{2}$

Question 2:

A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

Answer
Let E_{1} and E_{2} be the events of selecting first bag and second bag respectively.
$\therefore P\left(E_{1}\right)=P\left(E_{2}\right)=\frac{1}{2}$
Let A be the event of getting a red ball.
$\Rightarrow \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=\mathrm{P}($ drawing a red ball from first bag $)=\frac{4}{8}=\frac{1}{2}$
$\Rightarrow \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\mathrm{P}($ drawing a red ball from second bag $)=\frac{2}{8}=\frac{1}{4}$
The probability of drawing a ball from the first bag, given that it is red, is given by P ($E_{2} \mid A$).
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{4}} \\
& =\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{8}} \\
& =\frac{\frac{1}{4}}{\frac{3}{8}} \\
& =\frac{2}{3}
\end{aligned}
$$

Question 3:

Of the students in a college, it is known that 60\% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30\% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler? Answer

Let E_{1} and E_{2} be the events that the student is a hostler and a day scholar respectively and A be the event that the chosen student gets grade A.
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=60 \%=\frac{60}{100}=0.6$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=40 \%=\frac{40}{100}=0.4$
$P\left(A \mid E_{1}\right)=P($ student getting an A grade is a hostler $)=30 \%=0.3$
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\mathrm{P}($ student getting an A grade is a day scholar $)=20 \%=0.2$
The probability that a randomly chosen student is a hostler, given that he has an A grade, is given by $\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)$.

By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{0.6 \times 0.3}{0.6 \times 0.3+0.4 \times 0.2} \\
& =\frac{0.18}{0.26} \\
& =\frac{18}{26} \\
& =\frac{9}{13}
\end{aligned}
$$

Question 4:

In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{4}$ be the probability that he knows the answer and $\frac{1}{4}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{4}$ What is the probability that the student knows the answer given that he answered it correctly?

Answer

Let E_{1} and E_{2} be the respective events that the student knows the answer and he guesses the answer.
Let A be the event that the answer is correct.
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{3}{4}$
$P\left(E_{2}\right)=\frac{1}{4}$
The probability that the student answered correctly, given that he knows the answer, is
1.
$\therefore \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=1$
Probability that the student answered correctly, given that he guessed, is $\frac{1}{4}$.
$\therefore \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{1}{4}$
The probability that the student knows the answer, given that he answered it correctly, is given by $P\left(E_{\mid} \mid A\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
P\left(E_{1} \mid A\right) & =\frac{P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)}{P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)} \\
& =\frac{\frac{3}{4} \cdot 1}{\frac{3}{4} \cdot 1+\frac{1}{4} \cdot \frac{1}{4}} \\
& =\frac{\frac{3}{4}}{\frac{3}{4}+\frac{1}{16}} \\
& =\frac{\frac{3}{4}}{\frac{13}{16}} \\
& =\frac{12}{13}
\end{aligned}
$$

Question 5:

A laboratory blood test is 99% effective in detecting a certain disease when it is in fact, present. However, the test also yields a false positive result for 0.5% of the healthy person tested (that is, if a healthy person is tested, then, with probability 0.005 , the test will imply he has the disease). If 0.1 percent of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive? Answer:

Let E_{1} and E_{2} be the respective events that a person has a disease and a person has no disease.

Since E_{1} and E_{2} are events complimentary to each other,
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)=1$
$\Rightarrow P\left(E_{2}\right)=1-P\left(E_{1}\right)=1-0.001=0.999$

Let A be the event that the blood test result is positive.
$P\left(E_{1}\right)=0.1 \%=\frac{0.1}{100}=0.001$
$P\left(A \mid E_{1}\right)=P($ result is positive given the person has disease $)=99 \%=0.99$
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\mathrm{P}$ (result is positive given that the person has no disease) $=0.5 \%=0.005$ Probabilit
y that a person has a disease, given that his test result is positive, is given by $P\left(E_{1} \mid A\right)$.

By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{0.001 \times 0.99}{0.001 \times 0.99+0.999 \times 0.005} \\
& =\frac{0.00099}{0.00099+0.004995} \\
& =\frac{0.00099}{0.005985} \\
& =\frac{990}{5985} \\
& =\frac{110}{665} \\
& =\frac{22}{133}
\end{aligned}
$$

Question 6:

There are three coins. One is two headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the time and third is an unbiased coin. One of the three coins is chosen at random and tossed, it shows heads, what is the probability that it was the two headed coin?

Answer
Let E_{1}, E_{2}, and E_{3} be the respective events of choosing a two headed coin, a biased coin, and an unbiased coin.
$\therefore P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=\frac{1}{3}$

Let A be the event that the coin shows heads.
A two-headed coin will always show heads.
$\therefore \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=\mathrm{P}($ coin showing heads, given that it is a two-headed coin $)=1$
Probability of heads coming up, given that it is a biased coin $=75 \%$
$\therefore \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\mathrm{P}($ coin showing heads, given that it is a biased coin $)=\frac{75}{100}=\frac{3}{4}$
Since the third coin is unbiased, the probability that it shows heads is always $\frac{1}{2}$.
$\therefore \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{3}\right)=\mathrm{P}($ coin showing heads, given that it is an unbiased coin $)=\frac{1}{2}$
The probability that the coin is two-headed, given that it shows heads, is given by $P\left(E_{1} \mid A\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{3}\right)} \\
& =\frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1+\frac{1}{3} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{1}{2}} \\
& =\frac{\frac{1}{3}}{\frac{1}{3}\left(1+\frac{3}{4}+\frac{1}{2}\right)} \\
& =\frac{1}{\frac{9}{4}} \\
& =\frac{4}{9}
\end{aligned}
$$

Question 7:

An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of accidents are $0.01,0.03$ and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

Answer
Let E_{1}, E_{2}, and E_{3} be the respective events that the driver is a scooter driver, a car driver, and a truck driver.

Let A be the event that the person meets with an accident.
There are 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers.
Total number of drivers $=2000+4000+6000=12000$
$P\left(E_{1}\right)=P($ driver is a scooter driver $)=\frac{2000}{12000}=\frac{1}{6}$
$P\left(E_{2}\right)=P($ driver is a car driver $)=\frac{4000}{12000}=\frac{1}{3}$
$P\left(E_{3}\right)=P($ driver is a truck driver $)=\frac{6000}{12000}=\frac{1}{2}$
$P\left(A \mid E_{1}\right)=P($ scooter driver met with an accident $)=0.01=\frac{1}{100}$
$P\left(A \mid E_{2}\right)=P($ car driver met with an accident $)=0.03=\frac{3}{100}$
$P\left(A \mid E_{3}\right)=P($ truck driver met with an accident $)=0.15=\frac{15}{100}$
The probability that the driver is a scooter driver, given that he met with an accident, is given by $P\left(E_{1} \mid A\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{3}\right)} \\
& =\frac{\frac{1}{6} \cdot \frac{1}{100}}{\frac{1}{6} \cdot \frac{1}{100}+\frac{1}{3} \cdot \frac{3}{100}+\frac{1}{2} \cdot \frac{15}{100}} \\
& =\frac{\frac{1}{6} \cdot \frac{1}{100}}{\frac{1}{100}\left(\frac{1}{6}+1+\frac{15}{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{6}}{\frac{104}{12}} \\
& =\frac{1}{6} \times \frac{12}{104} \\
& =\frac{1}{52}
\end{aligned}
$$

Question 8:

A factory has two machines A and B. Past record shows that machine A produced 60% of the items of output and machine B produced 40% of the items. Further, 2% of the items produced by machine A and 1% produced by machine B were defective. All the items are put into one stockpile and then one item is chosen at random from this and is found to be defective. What is the probability that was produced by machine B ?
Answer
Let E_{1} and E_{2} be the respective events of items produced by machines A and B. Let X be the event that the produced item was found to be defective.
\therefore Probability of items produced by machine A, $\mathrm{P}\left(\mathrm{E}_{1}\right)=60 \%=\frac{3}{5}$

Probability of items produced by machine $B, P\left(E_{2}\right)=40 \%=\frac{2}{5}$
Probability that machine A produced defective items, $P\left(X \mid E_{1}\right)=2 \%=\frac{2}{100}$
Probability that machine B produced defective items, $P\left(X \mid E_{2}\right)=1 \%=\frac{1}{100}$
The probability that the randomly selected item was from machine B, given that it is defective, is given by $P\left(E_{2} \mid X\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{X}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{2}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{2}{5} \cdot \frac{1}{100}}{\frac{3}{5} \cdot \frac{2}{100}+\frac{2}{5} \cdot \frac{1}{100}} \\
& =\frac{\frac{2}{500}}{\frac{6}{500}+\frac{2}{500}} \\
& =\frac{2}{8} \\
& =\frac{1}{4}
\end{aligned}
$$

Question 9:

Two groups are competing for the position on the board of directors of a corporation.
The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product introduced was by the second group.
Answer
Let E_{1} and E_{2} be the respective events that the first group and the second group win the competition. Let A be the event of introducing a new product.
$P\left(E_{1}\right)=$ Probability that the first group wins the competition $=0.6$
$P\left(E_{2}\right)=$ Probability that the second group wins the competition $=0.4$
$P\left(A \mid E_{1}\right)=$ Probability of introducing a new product if the first group wins $=0.7$
$P\left(A \mid E_{2}\right)=$ Probability of introducing a new product if the second group wins $=0.3$
The probability that the new product is introduced by the second group is given by P ($E_{2} \mid A$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{0.4 \times 0.3}{0.6 \times 0.7+0.4 \times 0.3} \\
& =\frac{0.12}{0.42+0.12} \\
& =\frac{0.12}{0.54} \\
& =\frac{12}{54} \\
& =\frac{2}{9}
\end{aligned}
$$

Question 10:

Suppose a girl throws a die. If she gets a 5 or 6 , she tosses a coin three times and notes the number of heads. If she gets $1,2,3$ or 4 , she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw $1,2,3$ or 4 with the die?

Answer
Let E_{1} be the event that the outcome on the die is 5 or 6 and E_{2} be the event that the outcome on the die is $1,2,3$, or 4 .
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2}{6}=\frac{1}{3}$ and $\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{4}{6}=\frac{2}{3}$
Let A be the event of getting exactly one head.
$P\left(A \mid E_{1}\right)=$ Probability of getting exactly one head by tossing the coin three times if she gets 5 or $6=\frac{3}{8}$
$P\left(A \mid E_{2}\right)=$ Probability of getting exactly one head in a single throw of coin if she gets 1 ,
2,3 , or $4=\frac{1}{2}$
The probability that the girl threw $1,2,3$, or 4 with the die, if she obtained exactly one head, is given by $P\left(E_{2} \mid A\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{2}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{3}{8}+\frac{2}{3} \cdot \frac{1}{2}} \\
& =\frac{\frac{1}{3}}{\frac{1}{3}\left(\frac{3}{8}+1\right)} \\
& =\frac{1}{\frac{11}{8}} \\
& =\frac{8}{11}
\end{aligned}
$$

Question 11:

A manufacturer has three machine operators A, B and C. The first operator A produces 1% defective items, where as the other two operators B and C produce 5% and 7% defective items respectively. A is on the job for 50% of the time, B is on the job for 30% of the time and C is on the job for 20% of the time. A defective item is produced, what is the probability that was produced by A?

Answer

Let E_{1}, E_{2}, and E_{3} be the respective events of the time consumed by machines A, B, and C for the job.
$\mathrm{P}\left(\mathrm{E}_{1}\right)=50 \%=\frac{50}{100}=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=30 \%=\frac{30}{100}=\frac{3}{10}$
$\mathrm{P}\left(\mathrm{E}_{3}\right)=20 \%=\frac{20}{100}=\frac{1}{5}$
Let X be the event of producing defective items.

$$
\begin{aligned}
& P\left(X \mid \mathrm{E}_{1}\right)=1 \%=\frac{1}{100} \\
& P\left(X \mid \mathrm{E}_{2}\right)=5 \%=\frac{5}{100} \\
& P\left(X \mid \mathrm{E}_{3}\right)=7 \%=\frac{7}{100}
\end{aligned}
$$

The probability that the defective item was produced by A is given by $P\left(E_{1} \mid A\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{X}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{3}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{100}}{\frac{1}{2} \cdot \frac{1}{100}+\frac{3}{10} \cdot \frac{5}{100}+\frac{1}{5} \cdot \frac{7}{100}} \\
& =\frac{\frac{1}{100} \cdot \frac{1}{2}}{\frac{1}{100}\left(\frac{1}{2}+\frac{3}{2}+\frac{7}{5}\right)} \\
& =\frac{\frac{1}{2}}{\frac{17}{5}} \\
& =\frac{5}{34}
\end{aligned}
$$

Question 12:

A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both diamonds. Find the probability of the lost card being a diamond.

Answer
Let E_{1} and E_{2} be the respective events of choosing a diamond card and a card which is not diamond.

Let A denote the lost card.
Out of 52 cards, 13 cards are diamond and 39 cards are not diamond.
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{13}{52}=\frac{1}{4}$
$P\left(E_{2}\right)=\frac{39}{52}=\frac{3}{4}$
When one diamond card is lost, there are 12 diamond cards out of 51 cards.
Two cards can be drawn out of 12 diamond cards in ${ }^{12} \mathrm{C}_{2}$ ways.
Similarly, 2 diamond cards can be drawn out of 51 cards in ${ }^{51} \mathrm{C}_{2}$ ways. The probability of getting two cards, when one diamond card is lost, is given by $P\left(A \mid E_{1}\right)$.
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=\frac{{ }^{12} C_{2}}{{ }^{51} C_{2}}=\frac{12!}{2!\times 10!} \times \frac{21 \times 49!}{51!}=\frac{11 \times 12}{50 \times 51}=\frac{22}{425}$
When the lost card is not a diamond, there are 13 diamond cards out of 51 cards.
Two cards can be drawn out of 13 diamond cards in ${ }^{13} \mathrm{C}_{2}$ ways whereas 2 cards can be drawn out of 51 cards in ${ }^{51} \mathrm{C}_{2}$ ways.
The probability of getting two cards, when one card is lost which is not diamond, is given by $P\left(A \mid E_{2}\right)$.

$$
\mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)=\frac{{ }^{13} C_{2}}{{ }^{51} C_{2}}=\frac{13!}{2!\times 11!} \times \frac{2!\times 49!}{51!}=\frac{12 \times 13}{50 \times 51}=\frac{26}{425}
$$

The probability that the lost card is diamond is given by $P\left(E_{1} \mid A\right)$.
By using Bayes' theorem, we obtain

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{1}{4} \cdot \frac{22}{425}}{\frac{1}{4} \cdot \frac{22}{425}+\frac{3}{4} \cdot \frac{26}{425}} \\
& =\frac{\frac{1}{425}\left(\frac{22}{4}\right)}{\frac{1}{425}\left(\frac{22}{4}+\frac{26 \times 3}{4}\right)}
\end{aligned}
$$

$=\frac{\frac{11}{2}}{25}$
$=\frac{11}{50}$

Question 13:

Probability that A speaks truth is $\frac{4}{5}$. A coin is tossed. A reports that a head appears. The probability that actually there was head is
A. $\frac{4}{5}$
B. $\frac{1}{2}$
C. $\frac{1}{5}$
D. $\frac{2}{5}$

Answer
Let E_{1} and E_{2} be the events such that
E_{1} : A speaks truth
E_{2} : A speaks false
Let X be the event that a head appears.
$P\left(E_{1}\right)=\frac{4}{5}$
$\therefore \mathrm{P}\left(\mathrm{E}_{2}\right)=1-\mathrm{P}\left(\mathrm{E}_{1}\right)=1-\frac{4}{5}=\frac{1}{15}$
If a coin is tossed, then it may result in either head (H) or tail (T).
The probability of getting a head is $\frac{1}{2}$ whether A speaks truth or not.
$\therefore \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{2}\right)=\frac{1}{2}$
The probability that there is actually a head is given by $P\left(E_{1} \mid X\right)$.

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{X}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{X} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{4}{5} \cdot \frac{1}{2}}{\frac{4}{5} \cdot \frac{1}{2}+\frac{1}{5} \cdot \frac{1}{2}} \\
& =\frac{\frac{1}{2} \cdot \frac{4}{5}}{\frac{1}{2}\left(\frac{4}{5}+\frac{1}{5}\right)} \\
& =\frac{\frac{4}{5}}{1} \\
& =\frac{4}{5}
\end{aligned}
$$

Therefore, the correct answer is A.

Question 14:

If A and B are two events such that $A \subset B$ and $P(B) \neq 0$, then which of the following is correct?
A. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A})}$
B. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})<\mathrm{P}(\mathrm{A})$
c. $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \geq \mathrm{P}(\mathrm{A})$
D. None of these

Answer

If $A \subset B$, then $A \cap B=A$
$\Rightarrow P(A \cap B)=P(A)$

Also, $P(A)<P(B)$
Consider $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{B})} \neq \frac{\mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A})}$
Consider $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{B})}$
It is known that, $\mathrm{P}(\mathrm{B}) \leq 1$
$\Rightarrow \frac{1}{\mathrm{P}(\mathrm{B})} \geq 1$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{B})} \geq \mathrm{P}(\mathrm{A})$
From (2), we obtain
$\Rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B}) \geq \mathrm{P}(\mathrm{A})$
$\therefore \mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is not less than $\mathrm{P}(\mathrm{A})$.
Thus, from (3), it can be concluded that the relation given in alternative C is correct.

Class XII : Maths

Chapter 13 : Probability

Questions and Solutions | Miscellaneous Exercise 13 - NCERT Books

Question 1:

A and B are two events such that $P(A) \neq 0$. Find $P(B \mid A)$, if
(i) A is a subset of B (ii) $A \cap B=\Phi$

Answer
It is given that, $P(A) \neq 0$
(i) A is a subset of B.
$\Rightarrow \mathrm{A} \cap \mathrm{B}=\mathrm{A}$
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B} \cap \mathrm{A})=\mathrm{P}(\mathrm{A})$
$\therefore P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A)}{P(A)}=1$
(ii) $\mathrm{A} \cap \mathrm{B}=\phi$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$
$\therefore \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}=0$

Question 2:

A couple has two children,
(i) Find the probability that both children are males, if it is known that at least one of the children is male.
(ii) Find the probability that both children are females, if it is known that the elder child is a female.

Answer

If a couple has two children, then the sample space is
$\mathrm{S}=\{(b, b),(b, g),(g, b),(g, g)\}$
(i) Let E and F respectively denote the events that both children are males and at least one of the children is a male.
$\therefore \mathrm{E} \cap \mathrm{F}=\{(b, b)\} \Rightarrow \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{4}$
$P(E)=\frac{1}{4}$
$P(F)=\frac{3}{4}$
$\Rightarrow \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$
(ii) Let A and B respectively denote the events that both children are females and the elder child is a female.

$$
\begin{aligned}
& \mathrm{A}=\{(g, g)\} \Rightarrow \mathrm{P}(\mathrm{~A})=\frac{1}{4} \\
& \mathrm{~B}=\{(g, b),(g, g)\} \Rightarrow \mathrm{P}(\mathrm{~B})=\frac{2}{4} \\
& \mathrm{~A} \cap \mathrm{~B}=\{(g, g)\} \Rightarrow \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{1}{4} \\
& \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}=\frac{\frac{1}{4}}{\frac{2}{4}}=\frac{1}{2}
\end{aligned}
$$

Question 3:

Suppose that 5% of men and 0.25% of women have grey hair. A haired person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.
Answer
It is given that 5% of men and 0.25% of women have grey hair.
Therefore, percentage of people with grey hair $=(5+0.25) \%=5.25 \%$Probability that the selected haired person is a male $=\frac{5}{5.25}=\frac{20}{21}$

Question 4:

Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
Answer
A person can be either right-handed or left-handed.
It is given that 90% of the people are right-handed.
$\therefore p=\mathrm{P}($ right-handed $)=\frac{9}{10}$
$q=\mathrm{P}($ left-handed $)=1-\frac{9}{10}=\frac{1}{10}$
Using binomial distribution, the probability that more than 6 people are right-handed is given by,
$\sum_{r=7}^{10}{ }^{10} C_{r} p^{r} q^{n-r}=\sum_{r=7}^{10}{ }^{10} C_{r}\left(\frac{9}{10}\right)^{r}\left(\frac{1}{10}\right)^{10-r}$
Therefore, the probability that at most 6 people are right-handed
$=1-\mathrm{P}$ (more than 6 are right-handed)
$=1-\sum_{r=7}^{10}{ }^{10} C_{r}(0.9)^{r}(0.1)^{10-r}$

Question 5:

If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?
Answer
In a leap year, there are 366 days i.e., 52 weeks and 2 days.
In 52 weeks, there are 52 Tuesdays.
Therefore, the probability that the leap year will contain 53 Tuesdays is equal to the probability that the remaining 2 days will be Tuesdays.

The remaining 2 days can be
Monday and Tuesday
Tuesday and Wednesday
Wednesday and Thursday
Thursday and Friday
Friday and Saturday
Saturday and Sunday
Sunday and Monday
Total number of cases $=7$
Favourable cases $=2$
\square Probability that a leap year will have 53 Tuesdays $=\frac{\frac{2}{7}}{7}$

Question 6:

Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:

Box	Marble colour		
	Red	White	Black
A	1	6	3
B	6	2	2
C	8	1	1
D	0	6	4

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A ?, box B ?, box C ?
Answer
Let R be the event of drawing the red marble.
Let E_{A}, E_{B}, and E_{C} respectively denote the events of selecting the box A, B, and C.
Total number of marbles $=40$
Number of red marbles $=15$
$\therefore \mathrm{P}(\mathrm{R})=\frac{15}{40}=\frac{3}{8}$

Probability of drawing the red marble from box A is given by $P\left(E_{A} \mid R\right)$.
$\therefore P\left(E_{A} \mid R\right)=\frac{P\left(E_{A} \cap R\right)}{P(R)}=\frac{\frac{1}{40}}{\frac{3}{8}}=\frac{1}{15}$
Probability that the red marble is from box B is $P\left(E_{B} \mid R\right)$.
$\Rightarrow P\left(E_{B} \mid R\right)=\frac{P\left(E_{B} \cap R\right)}{P(R)}=\frac{\frac{6}{40}}{\frac{3}{8}}=\frac{2}{5}$
Probability that the red marble is from box C is $P\left(E_{C} \mid R\right)$.
$\Rightarrow P\left(E_{C} \mid R\right)=\frac{P\left(E_{C} \cap R\right)}{P(R)}=\frac{\frac{8}{40}}{\frac{3}{8}}=\frac{8}{15}$

Question 7:

Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?

Answer
Let A, E_{1}, and E_{2} respectively denote the events that a person has a heart attack, the selected person followed the course of yoga and meditation, and the person adopted the drug prescription.
$\therefore \mathrm{P}(\mathrm{A})=0.40$
$P\left(E_{1}\right)=P\left(E_{2}\right)=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=0.40 \times 0.70=0.28$
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=0.40 \times 0.75=0.30$

Probability that the patient suffering a heart attack followed a course of meditation and yoga is given by $P\left(E_{1} \mid A\right)$.

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{1}{2} \times 0.28}{\frac{1}{2} \times 0.28+\frac{1}{2} \times 0.30} \\
& =\frac{14}{29}
\end{aligned}
$$

Question 8:

If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability ${ }^{\frac{1}{2}}$).
Answer
The total number of determinants of second order with each element being 0 or 1 is (2) ${ }^{4}$ $=16$

The value of determinant is positive in the following cases.

Required probability $=\frac{\frac{3}{16}}{16}$

Question 9:

An electronic assembly consists of two subsystems, say, A and B. From previous testing procedures, the following probabilities are assumed to be known:
$P(A$ fails $)=0.2$
$P(B$ fails alone $)=0.15$
$P(A$ and B fail $)=0.15$
Evaluate the following probabilities
(i) $P(A$ fails $\mid B$ has failed) (ii) $P(A$ fails alone $)$

Answer
Let the event in which A fails and B fails be denoted by E_{A} and E_{B}.
$P\left(E_{A}\right)=0.2$
$P\left(E_{A} \square E_{B}\right)=0.15$
$P(B$ fails alone $)=P\left(E_{B}\right)-P\left(E_{A} \square E_{B}\right)$$0.15=P\left(E_{B}\right)-0.15$$P\left(E_{B}\right)=0.3$
(i)
$P\left(E_{A} \mid E_{B}\right)=\frac{P\left(E_{A} \cap E_{B}\right)}{P\left(E_{B}\right)}=\frac{0.15}{0.3}=0.5$
(ii) $P(A$ fails alone $)=P\left(E_{A}\right)-P\left(E_{A} \square E_{B}\right)$
$=0.2-0.15$
$=0.05$

Question 10:

Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black. Answer
Let E_{1} and E_{2} respectively denote the events that a red ball is transferred from bag I to II and a black ball is transferred from bag I to II.
$P\left(E_{1}\right)=\frac{3}{7}$ and $P\left(E_{2}\right)=\frac{4}{7}$
Let A be the event that the ball drawn is red.
When a red ball is transferred from bag I to II,
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=\frac{5}{10}=\frac{1}{2}$
When a black ball is transferred from bag I to II,
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{4}{10}=\frac{2}{5}$

$$
\begin{aligned}
\therefore \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\frac{4}{7} \times \frac{2}{5}}{\frac{3}{7} \times \frac{1}{2}+\frac{4}{7} \times \frac{2}{5}} \\
& =\frac{16}{31}
\end{aligned}
$$

Question 11:

If A and B are two events such that $P(A) \neq 0$ and $P(B \mid A)=1$, then.
(A) $A \square B$
(B) $B \square A$
(C) $B=\Phi$
(D) $A=\Phi$

Answer
$P(A) \neq 0$ and $P(B \mid A)=1$
$P(B \mid A)=\frac{P(B \cap A)}{P(A)}$
$1=\frac{\mathrm{P}(\mathrm{B} \cap \mathrm{A})}{\mathrm{P}(\mathrm{A})}$
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B} \cap \mathrm{A})$
$\Rightarrow \mathrm{A} \subset \mathrm{B}$
Thus, the correct answer is A.

Question 12:

If $P(A \mid B)>P(A)$, then which of the following is correct:
(A) $P(B \mid A)<P(B)(B) P(A \square B)<P(A) \cdot P(B)$
(C) $P(B \mid A)>P(B)(D) P(B \mid A)=P(B)$

Answer
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})>\mathrm{P}(\mathrm{A})$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}>\mathrm{P}(\mathrm{A})$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})>\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\Rightarrow \frac{P(A \cap B)}{P(A)}>P(B)$
$\Rightarrow P(B \mid A)>P(B)$
Thus, the correct answer is C .

Question 13:

If A and B are any two events such that $P(A)+P(B)-P(A$ and $B)=P(A)$, then
(A) $P(B \mid A)=1(B) P(A \mid B)=1$
(C) $P(B \mid A)=0(D) P(A \mid B)=0$

Answer
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A})$
$\Rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})$
$\Rightarrow P(B)-P(A \cap B)=0$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B})$
$\therefore \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{B})}=1$
Thus, the correct answer is B.

