Class XII : Physics
Chapter 7 : Alternating Current

Questions and Solutions | Exercises - NCERT Books

1. A $100 \square$ resistor is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.

(a) What is the rms value of current in the circuit?

Ans: It is given that,
Resistance, R $\mathrm{Cl} 100 \mathrm{\square}$
Voltage, V $\quad 220 \mathrm{~V}$
Frequency, f D 50 Hz
It is known that,

Therefore, the rms value of current in the circuit isI $I_{m s} \square 2.2 \mathrm{~A}$.
(b) What is the net power consumed over a full
cycle? Ans: It is known that,
Power

PPower C 220 C 2.2
-Power C 484 W
Therefore, the net power consumed over a full cycle is 484 W .
2.
(a) The peak voltage of an ac supply is 300 V . What is the rms voltage?

Ans: It is given that,
Peak voltage of the ac supply, $\mathrm{V}_{0} 300 \mathrm{~V}$ It
is known that,

Therefore, the rms voltage is 212.1 V .
(b) The rms value of current in an ac circuit is 10 A . What is the peak current?

Ans: It is given that,
Rms value of current in an ac circuit, $\mathrm{I}_{\mathrm{rms}}$ D10A It
is known that,
Io $\sqrt{2}$ Irms
$\begin{array}{llll}\square \square I_{0} & 1.414 & 10 \square\end{array}$
$\square \square \mathrm{I}_{0} \quad 14.14 \mathrm{~A}$
Therefore, the peak current is 14.14 A .

3. A 44 mH inductor is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Determine the rms value of the current in the circuit.

Ans: It is known that,
Inductance, L प $44 \mathrm{mH} \square 4410 \square^{{ }^{2}} \mathrm{H}$
Voltage, V $\quad 220 \mathrm{~V}$
Frequency, $\mathrm{f}_{\mathrm{L}} \mathrm{\square} 50 \mathrm{~Hz}$
Angular frequency, $\square \square \square_{\mathrm{L}} 2 \mathrm{f}_{\mathrm{L}}$
It is known that,
Inductive reactance, X_{L} प $\square \square_{L} L 2 f L_{L}$

$\square X_{L}$ D13.8
 V
 $\mathrm{I}_{\mathrm{rms}}$
 \qquad

$\mathrm{X}_{\mathrm{L}} 220$
$\square \mathrm{I}_{\mathrm{ms}} \mathrm{\square}$ \qquad
13.82
$\square \mathrm{I}_{\mathrm{ms}} \square 15.92 \mathrm{~A}$
Therefore，the rms value of the current in the circuit is 15.92 A ．

4．A 60 F capacitor is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ ac supply．Determine the rms value of the current in the circuit．
Ans：It is given that，

Voltage，V $\quad \mathrm{D} 110 \mathrm{~V}$
Frequency， $\mathrm{f}_{\mathrm{C}} \mathrm{D} 60 \mathrm{~Hz}$
It is known that，

1
$\square \mathrm{X}_{\mathrm{c}} \mathrm{\square}$ \qquad $2 \square$ ${ }^{6}$
3．14D60ロ60 10ロ
— X_{C} —44．248
110
$\square I_{\text {rms }} \mathrm{D}$ \qquad
44.28$\mathrm{I}_{\mathrm{rms}}$［ 2.488 A

Therefore，the rms value of the current in the circuit is 2.488 A ．
5．In exercises 7.3 and 7．4 What is the net power absorbed by each circuit over a complete cycle？Explain your answer．
Ans：From the inductive circuit，

Rms value of current, $\mathrm{I}_{\mathrm{rms}}$ D15.92A
Rms value of voltage, $\mathrm{V}_{\text {rms }} \square 220 \mathrm{~V}$
It is known that,
Net power absorbed, $P \quad V_{\text {rms }} \square I_{\text {rms }} \cos \square$
Where,
\square is the phase difference between voltage and current
For a pure inductive circuit, the phase difference between alternating voltage and current is 90° i.e., पप 90°

प पР $22015.92 \square \cos 90^{\circ} \square 0$
Therefore, net power absorbed is zero in a pure inductive circuit. In a capacitive circuit,
Rms value of current, $\mathrm{I}_{\mathrm{rms}} \square 2.49 \mathrm{~A}$
Rms value of voltage, $\mathrm{V}_{\mathrm{rms}} \mathrm{\square} 110 \mathrm{~V}$
It is known that,
Net power absorbed, P $\quad V_{\text {rms }} \square I_{\text {rms }} \cos \square$
Where,
\square is the phase difference between voltage and current
For a pure capacitive circuit, the phase difference between alternating voltage and current is 90° i.e., पप 90°
— पР $110 \square 2.49 \cos 90^{\circ} \square 0$
Therefore, net power absorbed is zero in a pure capacitive circuit.
6. A charged $30 \mu \mathrm{~F}$ capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit? Ans: It is given that,
Capacitance, CD प प प30 F30 $10^{\square 6} \mathrm{~F}$
Inductance, L प $27 \mathrm{mH} \square 2710 \mathrm{D}^{\mathrm{D3}} \mathrm{H}$
It is known that,
Angular frequency of free oscillations, $_{\mathrm{r}} \frac{1}{\sqrt{\text { LC }}}$
पृ $\square_{r} \frac{1}{\sqrt{27 \varrho^{a^{3}} \square^{30} \bigoplus^{\square^{6}}}}$
ㅁㅁ $\square_{r} \frac{1}{9 \times 10^{-4}}$

Therefore, the angular frequency of free oscillations of the circuit is $1.11103 \mathrm{rad} / \mathrm{s}$.
7. A series LCR circuit with $R \square 20 \square, L \square 1.5 H$ and $C \square \square 35 F$ is connected to a variable frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?

Ans: It is known that,
Resistance, R प [20
Inductance, L D 1.5 H
Capacitance, CD प प 35 F35 $10^{\square 6} \mathrm{~F}$
Voltage, V — 200 V
It is known that,
Impedance, $Z \square{ }^{2} \square\left(X_{L} \square X\right)_{C}{ }^{2}$
At resonance, $X_{L} \square X_{C}$
प——ZR 20ロ
V 200
I \square^{-}
Z 20
— DI 10A
Average power, $\mathrm{P} \square \mathrm{IR}^{2}$
प——P10 20
——P 2000W
Therefore, the average power transferred is 2000 W .
8. Figure shows a series LCR circuit connected to a variable frequency 230 V

(a) Determine the source frequency which drives the circuit in resonance.

Ans: It is given that,
Voltage, V [230 V
Inductance, L D 5.0 H

Resistance, R प C 40
It is known that,
1
Source frequency at resonance \square
$\overline{\sqrt{\text { LC }}}$

Therefore, the source frequency of the circuit in resonance is $50 \mathrm{rad} / \mathrm{s}$.
b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
Ans: It is known that,
At resonance, Impedance, ZD Resistance, R
प——ZR 40ロ
V
I \qquad
Z
230
미
40 - 5.75A
Amplitude, $\mathrm{I}_{0} \mathrm{D} 1.414 \mathrm{I} \mathrm{I}$
$\begin{array}{ll}\square \square \mathrm{I}_{0} & 1.414 \mathrm{C} 5.75\end{array}$
$\square \mathrm{II}_{0} \quad 8.13 \mathrm{~A}$
Therefore, the impedance of the circuit is $40 \square$ and the amplitude of current at resonating frequency is 8.13 A .
c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the $L C$ combination is zero at the resonating frequency.
Ans: It is known that,
Potential drop, V \square IR
Across resistor, $\mathrm{V}_{\mathrm{R}} \mathrm{\square}$ IR
$\square V_{R} \square 5.75 \square \square 40230 \mathrm{~V}$

Across capacitor, $\mathrm{V}_{\mathrm{C}} \square \mathrm{IX}_{\mathrm{C}} \square$ \qquad
—C
$\square V_{C} \square 5.75 \square \frac{1}{50 \times 80 \times 10^{-6}}$
$\square V_{C} 1437.5 \mathrm{~V}$
Across Inductor, $\mathrm{V}_{\mathrm{L}} \mathrm{Q} \mathrm{IX}_{\mathrm{L}} \mathrm{Q}$ IL L

- $\mathrm{VV}_{\mathrm{L}} 1437.5 \mathrm{~V}$

Across LC combination, $\mathrm{V}_{\mathrm{LC}} \mathrm{I}\left(\mathrm{X}_{\mathrm{L}} \square \mathrm{X}\right)_{\mathrm{C}}$
At resonance, $\mathrm{X}_{\mathrm{L}} \mathrm{\square} \mathrm{X}_{\mathrm{C}}$
$\square \mathrm{V}_{\mathrm{LC}} \mathrm{D} 0$
Therefore, the rms potential drop across Resistor is 230 V , Capacitor is 1437.5 V , Inductor is 1437.5 V and the potential drop across LC combination is zero at resonating frequency.

