Class XI : Maths
Chapter 6 : Permutations And Combinations

Questions and Solutions | Exercise 6.4 - NCERT Books

Question 1:
If ${ }^{n} \mathrm{C}_{8}={ }^{\mathrm{n}} \mathrm{C}_{2}$, find ${ }^{\mathrm{n}} \mathrm{C}_{2}$.
Answer
It is known that, ${ }^{n} \mathrm{C}_{\mathrm{a}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{b}} \Rightarrow \mathrm{a}=\mathrm{b}$ or $\mathrm{n}=\mathrm{a}+\mathrm{b}$
Therefore,
${ }^{n} \mathrm{C}_{8}={ }^{\mathrm{n}} \mathrm{C}_{2} \Rightarrow \mathrm{n}=8+2=10$
$\therefore{ }^{\mathrm{n}} \mathrm{C}_{2}={ }^{10} \mathrm{C}_{2}=\frac{10!}{2!(10-2)!}=\frac{10!}{2!8!}=\frac{10 \times 9 \times 8!}{2 \times 1 \times 8!}=45$

Question 2:

Determine n if

$$
={ }^{7} \mathrm{C}_{3}=\frac{7!}{3!4!}=\frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!}=35
$$

(i)

$$
{ }^{2 n} C_{3}:{ }^{n} C_{3}=12: 1
$$

$$
{ }^{2 n} C_{3}:{ }^{n} C_{3}=11: 1
$$

Answer

(i) $\frac{{ }^{2 n} C_{3}}{{ }^{n} C_{3}}=\frac{12}{1}$

$$
\begin{aligned}
& \Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=\frac{12}{1} \\
& \Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}=12 \\
& \Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=12 \\
& \Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=12 \\
& \Rightarrow \frac{(2 n-1)}{(n-2)}=3 \\
& \Rightarrow 2 n-1=3(n-2) \\
& \Rightarrow 2 n-1=3 n-6 \\
& \Rightarrow 3 n-2 n=-1+6 \\
& \Rightarrow n=5
\end{aligned}
$$

(ii)
$\frac{{ }^{2 n} \mathrm{C}_{3}}{{ }^{\mathrm{n}} \mathrm{C}_{3}}=\frac{11}{1}$
$\Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=11$
$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}=11$
$\Rightarrow \frac{2(2 \mathrm{n}-1)(2 \mathrm{n}-2)}{(\mathrm{n}-1)(\mathrm{n}-2)}=11$
$\Rightarrow \frac{4(2 n-1)(\mathrm{n}-1)}{(\mathrm{n}-1)(\mathrm{n}-2)}=11$
$\Rightarrow \frac{4(2 n-1)}{n-2}=11$
$\Rightarrow 4(2 n-1)=11(n-2)$
$\Rightarrow 8 \mathrm{n}-4=1 \ln -22$
$\Rightarrow 1 \ln -8 n=-4+22$
$\Rightarrow 3 \mathrm{n}=18$
$\Rightarrow \mathrm{n}=6$

Question 3:

How many chords can be drawn through 21 points on a circle?
Answer
For drawing one chord on a circle, only 2 points are required.
To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.
Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.

Thus, required number of chords $={ }^{21} \mathrm{C}_{2}=\frac{21!}{2!(21-2)!}=\frac{21!}{2!19!}=\frac{21 \times 20}{2}=210$

Question 4:

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Answer
A team of 3 boys and 3 girls is to be selected from 5 boys and 4 girls.
3 boys can be selected from 5 boys in ${ }^{5} \mathrm{C}_{3}$ ways.
3 girls can be selected from 4 girls in ${ }^{4} \mathrm{C}_{3}$ ways.
Therefore, by multiplication principle, number of ways in which a team of 3 boys and 3
girls can be selected

$$
={ }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{3}=\frac{5!}{3!2!} \times \frac{4!}{3!1!}
$$

$=\frac{5 \times 4 \times 3!}{3!\times 2} \times \frac{4 \times 3!}{3!}$
$=10 \times 4=40$

Question 5:

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Answer
There are a total of 6 red balls, 5 white balls, and 5 blue balls.

9 balls have to be selected in such a way that each selection consists of 3 balls of each colour.

Here,
3 balls can be selected from 6 red balls in ${ }^{6} \mathrm{C}_{3}$ ways.
3 balls can be selected from 5 white balls in ${ }^{5} \mathrm{C}_{3}$ ways.
3 balls can be selected from 5 blue balls in ${ }^{5} \mathrm{C}_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting 9 balls

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3}=\frac{6!}{3!3!} \times \frac{5!}{3!2!} \times \frac{5!}{3!2!} \\
& =\frac{6 \times 5 \times 4 \times 3!}{3!\times 3 \times 2} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \\
& =20 \times 10 \times 10=2000
\end{aligned}
$$

Question 6:

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.

Answer
In a deck of 52 cards, there are 4 aces. A combination of 5 cards have to be made in which there is exactly one ace.
Then, one ace can be selected in ${ }^{4} \mathrm{C}_{1}$ ways and the remaining 4 cards can be selected out of the 48 cards in ${ }^{48} \mathrm{C}_{4}$ ways.
Thus, by multiplication principle, required number of 5 card combinations
$={ }^{48} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1}=\frac{48!}{4!44!} \times \frac{4!}{1!3!}$
$=\frac{48 \times 47 \times 46 \times 45}{4 \times 3 \times 2 \times 1} \times 4$
$=778320$

Question 7:

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?

Answer

Out of 17 players, 5 players are bowlers.
A cricket team of 11 players is to be selected in such a way that there are exactly 4 bowlers.

4 bowlers can be selected in ${ }^{5} \mathrm{C}_{4}$ ways and the remaining 7 players can be selected out of the 12 players in ${ }^{12} \mathrm{C}_{7}$ ways.
Thus, by multiplication principle, required number of ways of selecting cricket team

$$
={ }^{5} \mathrm{C}_{4} \times{ }^{12} \mathrm{C}_{7}=\frac{5!}{4!1!} \times \frac{12!}{7!5!}=5 \times \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}=3960
$$

Question 8:

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.

Answer
There are 5 black and 6 red balls in the bag.
2 black balls can be selected out of 5 black balls in ${ }^{5} \mathrm{C}_{2}$ ways and 3 red balls can be selected out of 6 red balls in ${ }^{6} \mathrm{C}_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting 2 black and 3 red
balls $={ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}=\frac{5!}{2!3!} \times \frac{6!}{3!3!}=\frac{5 \times 4}{2} \times \frac{6 \times 5 \times 4}{3 \times 2 \times 1}=10 \times 20=200$

Question 9:

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?

Answer

There are 9 courses available out of which, 2 specific courses are compulsory for every student.

Therefore, every student has to choose 3 courses out of the remaining 7 courses. This can be chosen in ${ }^{7} \mathrm{C}_{3}$ ways.
Thus, required number of ways of choosing the programme
$={ }^{7} \mathrm{C}_{3}=\frac{7!}{3!4!}=\frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!}=35$

