Class XI : Maths
Chapter 8 : Sequence And Series

Questions and Solutions | Exercise 8.1 - NCERT Books

Question 1:

Write the first five terms of the sequences whose $\mathrm{n}^{\text {th }}$ term is $a_{n}=n(n+2)$
Answer

$$
a_{n}=n(n+2)
$$

Substituting $n=1,2,3,4$, and 5, we obtain

$$
\begin{aligned}
& a_{1}=1(1+2)=3 \\
& a_{2}=2(2+2)=8 \\
& a_{3}=3(3+2)=15 \\
& a_{4}=4(4+2)=24 \\
& a_{5}=5(5+2)=35
\end{aligned}
$$

Therefore, the required terms are $3,8,15,24$, and 35 .

Question 2:

Write the first five terms of the sequences whose $\mathrm{n}^{\text {th }}$ term is $a_{n}=\frac{n}{n+1}$
Answer

$$
a_{n}=\frac{n}{n+1}
$$

Substituting $n=1,2,3,4,5$, we obtain

$$
a_{1}=\frac{1}{1+1}=\frac{1}{2}, a_{2}=\frac{2}{2+1}=\frac{2}{3}, a_{3}=\frac{3}{3+1}=\frac{3}{4}, a_{4}=\frac{4}{4+1}=\frac{4}{5}, a_{5}=\frac{5}{5+1}=\frac{5}{6}
$$

Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$, and $\frac{5}{6}$.

Question 3:

Write the first five terms of the sequences whose $\mathrm{n}^{\text {th }}$ term is $a_{n}=2^{n}$
Answer
$a_{n}=2^{n}$
Substituting $n=1,2,3,4,5$, we obtain
$a_{1}=2^{1}=2$
$a_{2}=2^{2}=4$
$a_{3}=2^{3}=8$
$a_{4}=2^{4}=16$
$a_{5}=2^{5}=32$
Therefore, the required terms are $2,4,8,16$, and 32 .

Question 4:

Write the first five terms of the sequences whose $n^{\text {th }}$ term is

$$
\mathrm{a}_{\mathrm{n}}=\frac{2 \mathrm{n}-3}{6}
$$

Answer

Substituting $n=1,2,3,4,5$, we obtain
$\mathrm{a}_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$
$\mathrm{a}_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$
$\mathrm{a}_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$
$\mathrm{a}_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$
$\mathrm{a}_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$
Therefore, the required terms are $\frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$, and $\frac{7}{6}$.

Question 5:

Write the first five terms of the sequences whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$

Answer

Substituting $n=1,2,3,4,5$, we obtain

$$
\begin{aligned}
& \mathrm{a}_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25 \\
& \mathrm{a}_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125 \\
& \mathrm{a}_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625 \\
& \mathrm{a}_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125 \\
& \mathrm{a}^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625
\end{aligned}
$$

Therefore, the required terms are $25,-125,625,-3125$, and 15625.

Question 6:

Write the first five terms of the sequences whose $n^{\text {th }}$ term is $a_{n}=n \frac{n^{2}+5}{4}$
Answer
Substituting $n=1,2,3,4,5$, we obtain
$a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}$
$a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}$
$a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2}$
$a_{4}=4 \cdot \frac{4^{2}+5}{4}=21$
$a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}$
Therefore, the required terms are $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$, and $\frac{75}{2}$.

Question 7:

Find the $17^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $\mathrm{a}_{\mathrm{n}}=4 \mathrm{n}-3 ; \mathrm{a}_{17}, \mathrm{a}_{24}$
Answer
Substituting $n=17$, we obtain

$$
a_{17}=4(17)-3=68-3=65
$$

Substituting $n=24$, we obtain

$$
a_{24}=4(24)-3=96-3=93
$$

Question 8:

Find the $7^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n^{2}}{2 n} ; a_{7}$
Answer
Substituting $n=7$, we obtain
$a_{7}=\frac{7^{2}}{2^{7}}=\frac{49}{128}$

Question 9:

Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{n}^{3} ; \mathrm{a}_{9}$
Answer
Substituting $n=9$, we obtain
$a_{9}=(-1)^{9-1}(9)^{3}=(9)^{3}=729$

Question 10:

Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3} ; a_{20}$
Answer
Substituting $n=20$, we obtain
$\mathrm{a}_{20}=\frac{20(20-2)}{20+3}=\frac{20(18)}{23}=\frac{360}{23}$

Question 11:

Write the first five terms of the following sequence and obtain the corresponding series:
$a_{1}=3, a_{n}=3 a_{n-1}+2$ for all $n>1$
Answer
$a_{1}=3, a_{n}=3 a_{n-1}+2$ for all $n>1$
$\Rightarrow a_{2}=3 a_{1}+2=3(3)+2=11$
$a_{3}=3 a_{2}+2=3(11)+2=35$
$a_{4}=3 a_{3}+2=3(35)+2=107$
$a_{5}=3 a_{4}+2=3(107)+2=323$
Hence, the first five terms of the sequence are $3,11,35,107$, and 323.
The corresponding series is $3+11+35+107+323+\ldots$

Question 12:

Write the first five terms of the following sequence and obtain the corresponding series:

$$
a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n \geq 2
$$

Answer
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n \geq 2$
$\Rightarrow a_{2}=\frac{a_{1}}{2}=\frac{-1}{2}$
$a_{3}=\frac{a_{2}}{3}=\frac{-1}{6}$
$a_{4}=\frac{a_{3}}{4}=\frac{-1}{24}$
$a_{5}=\frac{a_{4}}{4}=\frac{-1}{120}$
Hence, the first five terms of the sequence are $-\frac{-1}{2}, \frac{-1}{6}, \frac{-1}{24}$, and $\frac{-1}{120}$.
The corresponding series is $(-1)+\left(\frac{-1}{2}\right)+\left(\frac{-1}{6}\right)+\left(\frac{-1}{24}\right)+\left(\frac{-1}{120}\right)+\ldots$

Question 13:

Write the first five terms of the following sequence and obtain the corresponding series:
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$
Answer

$$
a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2
$$

$$
\begin{aligned}
& \Rightarrow a_{3}=a_{2}-1=2-1=1 \\
& a_{4}=a_{3}-1=1-1=0 \\
& a_{5}=a_{4}-1=0-1=-1
\end{aligned}
$$

Hence, the first five terms of the sequence are $2,2,1,0$, and -1 .
The corresponding series is $2+2+1+0+(-1)+\ldots$

Question 14:

The Fibonacci sequence is defined by

$$
1=a_{1}=a_{2} \text { and } a_{n}=a_{n-1}+a_{n-2}, n>2
$$

Find $\frac{a_{n+1}}{a_{n}}$, for $n=1,2,3,4,5$

Answer

$1=\mathrm{a}_{1}=\mathrm{a}_{2}$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2}, \mathrm{n}>2$
$\therefore a_{3}=a_{2}+a_{1}=1+1=2$
$\mathrm{a}_{4}=\mathrm{a}_{3}+\mathrm{a}_{2}=2+1=3$
$a_{5}=a_{4}+a_{3}=3+2=5$
$a_{6}=a_{5}+a_{4}=5+3=8$
\therefore For $\mathrm{n}=1, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}=\frac{1}{1}=1$
For $\mathrm{n}=2, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{3}}{\mathrm{a}_{2}}=\frac{2}{1}=2$
For $\mathrm{n}=3, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{4}}{\mathrm{a}_{3}}=\frac{3}{2}$
For $\mathrm{n}=4, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{5}}{\mathrm{a}_{4}}=\frac{5}{3}$
For $\mathrm{n}=5, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{6}}{\mathrm{a}_{5}}=\frac{8}{5}$

