Class XI : Maths
Chapter 8 : Sequence And Series

Questions and Solutions | Exercise 8.2 - NCERT Books

Question 1:

Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the G.P.
Answer

$$
\text { The given G.P. is } \quad \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots
$$

Here, $a=$ First term =

$$
\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots
$$

$r=$ Common ratio $=\frac{5}{2}$
$a_{20}=a r^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{(2)(2)^{19}}=\frac{5}{(2)^{20}}$
$a_{n}=a r^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{(2)(2)^{n-1}}=\frac{5}{(2)^{n}}$

Question 2:

Find the $12^{\text {th }}$ term of a G.P. whose $8^{\text {th }}$ term is 192 and the common ratio is 2 .
Answer
Common ratio, $r=2$
Let a be the first term of the G.P.
$\therefore a_{8}=a r^{8-1}=a r^{7}$
$\Rightarrow a r^{7}=192$
$a(2)^{7}=192$
$a(2)^{7}=(2)^{6}(3)$

$$
\begin{aligned}
& \Rightarrow a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2} \\
& \therefore a_{12}=a r^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072
\end{aligned}
$$

Question 3:

The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a G.P. are p, q and s, respectively. Show that $q^{2}=p s$.

Answer

Let a be the first term and r be the common ratio of the G.P.
According to the given condition,
$a_{5}=a r^{5-1}=a r^{4}=p \ldots$ (1)
$a_{8}=a r^{8-1}=a r^{7}=q \ldots$ (2)
$a_{11}=a r^{11-1}=a r^{10}=s .$.
Dividing equation (2) by (1), we obtain

$$
\begin{align*}
& \frac{a r^{7}}{a r^{4}}=\frac{q}{p} \\
& r^{3}=\frac{q}{p} \tag{4}
\end{align*}
$$

Dividing equation (3) by (2), we obtain

$$
\begin{align*}
& \frac{a r^{10}}{a r^{7}}=\frac{s}{q} \\
& \Rightarrow r^{3}=\frac{s}{q} \tag{5}
\end{align*}
$$

Equating the values of r^{3} obtained in (4) and (5), we obtain
$\frac{q}{p}=\frac{s}{q}$
$\Rightarrow q^{2}=p s$
Thus, the given result is proved.

Question 4:

The $4^{\text {th }}$ term of a G.P. is square of its second term, and the first term is -3 . Determine its $7^{\text {th }}$ term.

Answer

Let a be the first term and r be the common ratio of the G.P.
$\therefore a=-3$
It is known that, $a_{n}=a r^{n-1}$
$\therefore a_{4}=a r^{3}=(-3) r^{3}$
$a_{2}=a r^{1}=(-3) r$
According to the given condition,
$(-3) r^{3}=[(-3) r]^{2}$
$\Rightarrow-3 r^{3}=9 r^{2}$
$\Rightarrow r=-3$
$a_{7}=a r^{7-1}=a r^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$
Thus, the seventh term of the G.P. is -2187 .

Question 5:

Which term of the following sequences:
(a)
(b) $\sqrt{3}, 3,3 \sqrt{3}, \ldots$ is 729 ?
(c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$ is $\frac{1}{19683}$?

Answer
(a) The given sequence is $2,2 \sqrt{2}, 4, \ldots$

Here, $a=2$ and $r=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
Let the $n^{\text {th }}$ term of the given sequence be 128 .

$$
\begin{aligned}
& a_{n}=a r^{n-1} \\
& \Rightarrow(2)(\sqrt{2})^{n-1}=128 \\
& \Rightarrow(2)(2)^{\frac{n-1}{2}}=(2)^{7} \\
& \Rightarrow(2)^{\frac{n-1}{2}+1}=(2)^{7} \\
& \therefore \frac{n-1}{2}+1=7 \\
& \Rightarrow \frac{n-1}{2}=6 \\
& \Rightarrow n-1=12 \\
& \Rightarrow n=13
\end{aligned}
$$

Thus, the $13^{\text {th }}$ term of the given sequence is 128 .
(b) The given sequence is $\sqrt{3}, 3,3 \sqrt{3}, \ldots$

Here,

$$
a=\sqrt{3} \text { and } r=\frac{3}{\sqrt{3}}=\sqrt{3}
$$

Let the $n^{\text {th }}$ term of the given sequence be 729 .

$$
\begin{aligned}
& a_{n}=a r^{n-1} \\
& \therefore a^{n-1}=729 \\
& \Rightarrow(\sqrt{3})(\sqrt{3})^{n-1}=729 \\
& \Rightarrow(3)^{\frac{1}{2}}(3)^{\frac{n-1}{2}}=(3)^{6} \\
& \Rightarrow(3)^{\frac{1}{2}+\frac{n-1}{2}}=(3)^{6} \\
& \therefore \frac{1}{2}+\frac{n-1}{2}=6 \\
& \Rightarrow \frac{1+n-1}{2}=6 \\
& \Rightarrow n=12
\end{aligned}
$$

Thus, the $12^{\text {th }}$ term of the given sequence is 729 .
(c) The given sequence is $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$

Here, $\quad a=\frac{1}{3}$ and $r=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$
Let the $n^{\text {th }}$ term of the given sequence be $\frac{1}{19683}$.
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$
$\Rightarrow n=9$
Thus, the $9^{\text {th }}$ term of the given sequence is $\frac{1}{19683}$.

Question 6:

For what values of x, the numbers $\frac{2}{7}, x,-\frac{7}{2}$ are in G.P?
Answer
The given numbers are $\frac{-2}{7}, x, \frac{-7}{2}$.

$$
\frac{x}{-2}=\frac{-7 x}{2}
$$

Common ratio $=7$
Also, common ratio $=\frac{\frac{-7}{2}}{x}=\frac{-7}{2 x}$
$\therefore \frac{-7 \mathrm{x}}{2}=\frac{-7}{2 \mathrm{x}}$
$\Rightarrow \mathrm{x}^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow \mathrm{x}=\sqrt{1}$
$\Rightarrow \mathrm{x}= \pm 1$
Thus, for $x= \pm 1$, the given numbers will be in G.P.

Question 7:

Find the sum to 20 terms in the geometric progression $0.15,0.015,0.0015 \ldots$

Answer

The given G.P. is $0.15,0.015,0.00015, \ldots$
Here, $a=0.15$ and $r=\frac{0.015}{0.15}=0.1$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}= \\
& \begin{aligned}
\therefore \mathrm{S}_{20} & =\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
& =\frac{0.15\left[1-(0.1)^{20}\right]}{0.9}\left[1-(0.1)^{20}\right] \\
& =\frac{15}{90}\left[1-(0.1)^{20}\right] \\
& =\frac{1}{6}\left[1-(0.1)^{20}\right]
\end{aligned}
\end{aligned}
$$

Question 8:

Find the sum to n terms in the geometric progression $\sqrt{7}, \sqrt{21}, 3 \sqrt{7} \ldots$
Answer
The given G.P. is $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$
Here, $a=\sqrt{7}$

$$
\begin{aligned}
& \mathrm{r}=\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3} \\
& \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
& \begin{aligned}
\therefore \mathrm{S}_{\mathrm{n}} & =\frac{\sqrt{7}\left[1-(\sqrt{3})^{\mathrm{n}}\right]}{1-\sqrt{3}} \\
& =\frac{\sqrt{7}\left[1-(\sqrt{3})^{\mathrm{n}}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}} \\
& =\frac{\sqrt{7}(1+\sqrt{3})\left[1-(\sqrt{3})^{\mathrm{n}}\right]}{1-3} \\
& =\frac{-\sqrt{7}(1+\sqrt{3})}{2}\left[1-(3)^{\frac{n}{2}}\right] \\
& =\frac{\sqrt{7}(1+\sqrt{3})}{2}\left[(3)^{\frac{n}{2}}-1\right]
\end{aligned} \quad \text { (By rationalizir }
\end{aligned}
$$

Question 9:

Find the sum to n terms in the geometric progression $1,-a, a^{2},-a^{3} \ldots($ if $a \neq-1)$ Answer

The given G.P. is $1,-\mathrm{a}, \mathrm{a}^{2},-\mathrm{a}^{3}$, \qquad
Here, first term $=a_{1}=1$
Common ratio $=r=-a$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{1\left[1-(-\mathrm{a})^{\mathrm{n}}\right]}{1-(-a)}=\frac{\left[1-(-\mathrm{a})^{\mathrm{n}}\right]}{1+\mathrm{a}}$

Question 10:

Find the sum to n terms in the geometric progression $x^{3}, x^{5}, x^{7} \ldots($ if $x \neq \pm 1)$ Answer

The given G.P. is $\mathrm{x}^{3}, \mathrm{x}^{5}, \mathrm{x}^{7}, \ldots$
Here, $a=x^{3}$ and $r=x^{2}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-\left(x^{2}\right)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}$

Question 11:

Evaluate $\sum_{k=1}^{11}\left(2+3^{k}\right)$
Answer
$\sum_{k=1}^{11}\left(2+3^{k}\right)=\sum_{k=1}^{11}(2)+\sum_{k=1}^{11} 3^{k}=2(11)+\sum_{k=1}^{11} 3^{k}=22+\sum_{k=1}^{11} 3^{k}$
$\sum_{k=1}^{11} 3^{k}=3^{1}+3^{2}+3^{3}+\ldots+3^{11}$
The terms of this sequence $3,3^{2}, 3^{3}, \ldots$ forms a G.P.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1} \\
& \Rightarrow \mathrm{~S}_{11}=\frac{3\left[(3)^{11}-1\right]}{3-1} \\
& \Rightarrow \mathrm{~S}_{11}=\frac{3}{2}\left(3^{11}-1\right) \\
& \therefore \sum_{\mathrm{k}=1}^{11} 3^{\mathrm{k}}=\frac{3}{2}\left(3^{11}-1\right)
\end{aligned}
$$

Substituting this value in equation (1), we obtain

$$
\sum_{k=1}^{11}\left(2+3^{k}\right)=22+\frac{3}{2}\left(3^{11}-1\right)
$$

Question 12:

The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1 . Find the common ratio and the terms.

Answer

Let $\frac{a}{r}, a, a r$ be the first three terms of the G.P.
$\frac{a}{r}+a+a r=\frac{39}{10}$
$\left(\frac{a}{r}\right)(a)(a r)=1$
From (2), we obtain
$a^{3}=1$
$\Rightarrow a=1$ (Considering real roots only)
Substituting $a=1$ in equation (1), we obtain
$\frac{1}{r}+1+r=\frac{39}{10}$
$\Rightarrow 1+r+r^{2}=\frac{39}{10} r$
$\Rightarrow 10+10 r+10 r^{2}-39 r=0$
$\Rightarrow 10 r^{2}-29 r+10=0$
$\Rightarrow 10 r^{2}-25 r-4 r+10=0$
$\Rightarrow 5 r(2 r-5)-2(2 r-5)=0$
$\Rightarrow(5 r-2)(2 r-5)=0$
$\Rightarrow r=\frac{2}{5}$ or $\frac{5}{2}$
Thus, the three terms of G.P. are $\frac{5}{2}, 1$, and $\frac{2}{5}$.

Question 13:

How many terms of G.P. $3,3^{2}, 3^{3}, \ldots$ are needed to give the sum 120 ?
Answer
The given G.P. is $3,3^{2}, 3^{3}, \ldots$
Let n terms of this G.P. be required to obtain the sum as 120 .
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
Here, $a=3$ and $r=3$
$\therefore S_{n}=120=\frac{3\left(3^{n}-1\right)}{3-1}$
$\Rightarrow 120=\frac{3\left(3^{n}-1\right)}{2}$
$\Rightarrow \frac{120 \times 2}{3}=3^{n}-1$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81$
$\Rightarrow 3^{n}=3^{4}$
$\therefore n=4$
Thus, four terms of the given G.P. are required to obtain the sum as 120 .

Question 14:

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128.
Determine the first term, the common ratio and the sum to n terms of the G.P.

Answer

Let the G.P. be $a, a r, a r^{2}, a r^{3}, \ldots$
According to the given condition,
$a+a r+a r^{2}=16$ and $a r^{3}+a r^{4}+a r^{5}=128$
$\Rightarrow a\left(1+r+r^{2}\right)=16 \ldots$ (1)
$a r^{3}\left(1+r+r^{2}\right)=128$..
Dividing equation (2) by (1), we obtain

$$
\begin{aligned}
& \frac{a r^{3}\left(1+r+r^{2}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16} \\
& \Rightarrow r^{3}=8 \\
& \therefore r=2
\end{aligned}
$$

Substituting $r=2$ in (1), we obtain
$a(1+2+4)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\frac{16}{7}$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow S_{n}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)$

Question 15:

Given a G.P. with $a=729$ and $7^{\text {th }}$ term 64, determine S_{7}.
Answer
$a=729$
$a_{7}=64$
Let r be the common ratio of the G.P.
It is known that, $a_{n}=a r^{n-1}$
$a_{7}=a r^{7-1}=(729) r^{6}$
$\Rightarrow 64=729 r^{6}$
$\Rightarrow r^{6}=\frac{64}{729}$
$\Rightarrow r^{6}=\left(\frac{2}{3}\right)^{6}$
$\Rightarrow r=\frac{2}{3}$

Also, it is known that,

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
\therefore S_{7} & =\frac{729\left[1-\left(\frac{2}{3}\right)^{7}\right]}{1-\frac{2}{3}} \\
& =3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right] \\
& =(3)^{7}\left[\frac{(3)^{7}-(2)^{7}}{(3)^{7}}\right] \\
& =(3)^{7}-(2)^{7} \\
& =2187-128 \\
& =2059
\end{aligned}
$$

Question 16:

Find a G.P. for which sum of the first two terms is -4 and the fifth term is 4 times the third term.

Answer
Let a be the first term and r be the common ratio of the G.P.
According to the given conditions,

$$
\begin{aligned}
& S_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r} \\
& a_{5}=4 \times a_{3} \\
& a r^{4}=4 a r^{2} \\
& \Rightarrow r^{2}=4 \\
& \therefore r= \pm 2
\end{aligned}
$$

From (1), we obtain
$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$
$\Rightarrow-4=\frac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\frac{-4}{3}$
Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\frac{a(1-4)}{1+2}$
$\Rightarrow-4=\frac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required G.P. is
$\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,16,-32, \ldots$

Question 17:

If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.

Answer

Let a be the first term and r be the common ratio of the G.P.
According to the given condition,
$a_{4}=a r^{3}=x \ldots$
$a_{10}=a r^{9}=y$
$a_{16}=a r^{15}=z$
Dividing (2) by (1), we obtain

$$
\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}
$$

Dividing (3) by (2), we obtain

$$
\begin{aligned}
& \frac{z}{y}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{z}{y}=r^{6} \\
& \therefore \frac{y}{x}=\frac{z}{y}
\end{aligned}
$$

Thus, x, y, z are in G. P.

Question 18:

Find the sum to n terms of the sequence, $8,88,888,8888 \ldots$
Answer
The given sequence is $8,88,888,8888 \ldots$
This sequence is not a G.P. However, it can be changed to G.P. by writing the terms as
$S_{n}=8+88+888+8888+$ \qquad to n terms
$=\frac{8}{9}[9+99+999+9999+\ldots \ldots . . .$. to n terms $]$
$=\frac{8}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)+\ldots \ldots .\right.$. to n terms $]$
$=\frac{8}{9}\left[\left(10+10^{2}+\ldots \ldots . n\right.\right.$ terms $)-(1+1+1+\ldots . n$ terms $\left.)\right]$
$=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$
$=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$=\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n$

Question 19:

Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$
and $128,32,8,2, \frac{1}{2}$.
Answer
Required sum $=2 \times 128+4 \times 32+8 \times 8+16 \times 2+32 \times \frac{1}{2}$
$=64\left[4+2+1+\frac{1}{2}+\frac{1}{2^{2}}\right]$
Here, 4, 2, $1, \frac{1}{2}, \frac{1}{2^{2}}$ is a G.P.
First term, $a=4$
Common ratio, $r=\frac{1}{2}$
It is known that, $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore \mathrm{S}_{5}=\frac{4\left[1-\left(\frac{1}{2}\right)^{5}\right]}{1-\frac{1}{2}}=\frac{4\left[1-\frac{1}{32}\right]}{\frac{1}{2}}=8\left(\frac{32-1}{32}\right)=\frac{31}{4}$
$64\left(\frac{31}{4}\right)=(16)(31)=496$

Question 20:

Show that the products of the corresponding terms of the sequences
$a, a r, a r^{2}, \ldots a r^{n-1}$ and $A, A R, A R^{2}, \ldots A R^{n-1}$ form a G.P, and find the common ratio.
Answer
It has to be proved that the sequence, $a A, a r A R, a r^{2} A R^{2}, \ldots a r^{n-1} A R^{n-1}$, forms a G.P.
$\frac{\text { Second term }}{\text { First term }}=\frac{a r A R}{a A}=r R$
$\frac{\text { Third term }}{\text { Second term }}=\frac{a r^{2} A R^{2}}{a r A R}=r R$
Thus, the above sequence forms a G.P. and the common ratio is $r R$.

Question 21:

Find four numbers forming a geometric progression in which third term is greater than the first term by 9 , and the second term is greater than the $4^{\text {th }}$ by 18.

Answer
Let a be the first term and r be the common ratio of the G.P.
$a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}$
By the given condition,
$a_{3}=a_{1}+9$
$\Rightarrow a r^{2}=a+9$
$a_{2}=a_{4}+18$
$\Rightarrow a r=a r^{3}+18$
From (1) and (2), we obtain
$a\left(r^{2}-1\right)=9$
$\operatorname{ar}\left(1-r^{2}\right)=18 \ldots$
Dividing (4) by (3), we obtain
$\frac{\operatorname{ar}\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}$
$\Rightarrow-r=2$
$\Rightarrow r=-2$
Substituting the value of r in (1), we obtain
$4 a=a+9$
$\Rightarrow 3 a=9$
$\therefore a=3$
Thus, the first four numbers of the G.P. are $3,3(-2), 3(-2)^{2}$, and $3(-2)^{3}$ i.e., $3,-6,12$, and -24 .

Question 22:

If the $\mathrm{p}^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a G.P. are a, b and c, respectively. Prove that
$a^{q-r} b^{r-p} c^{p-q}=1$

Answer

Let A be the first term and R be the common ratio of the G.P.
According to the given information,
$A R^{p-1}=a$
$A R^{q-1}=b$
$A R^{r-1}=c$
$a^{q-r} b^{r-p} c^{p-q}$
$=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$=A q^{-r+r-p+p-q} \times R^{(p r-p r-q+r)+(r q-r+p-p q)+(p r-p-q r+q)}$
$=A^{0} \times R^{0}$
= 1
Thus, the given result is proved.

Question 23:

If the first and the $n^{\text {th }}$ term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that $P^{2}=(a b)^{n}$.

Answer

The first term of the G.P is a and the last term is b.
Therefore, the G.P. is $a, a r, a r^{2}, a r^{3}, \ldots a r^{n-1}$, where r is the common ratio.
$b=a r^{n-1}$
$P=$ Product of n terms
$=(a)(a r)\left(a r^{2}\right) \ldots\left(a r^{n-1}\right)$
$=(a \times a \times \ldots a)\left(r \times r^{2} \times \ldots r^{n-1}\right)$
$=a^{n} r^{1+2+\ldots(n-1)} \ldots(2)$
Here, $1,2, \ldots(n-1)$ is an A.P.

$$
\begin{aligned}
& \therefore 1+2+ \\
& +(n-1) \\
& =\frac{\mathrm{n}-1}{2}[2+(\mathrm{n}-1-1) \times 1]=\frac{\mathrm{n}-1}{2}[2+\mathrm{n}-2]=\frac{\mathrm{n}(\mathrm{n}-1)}{2} \\
& \mathrm{P}=\mathrm{a}^{\mathrm{n}} \mathrm{r}^{\frac{\mathrm{n}(\mathrm{n}-1)}{2}} \\
& \therefore P^{2}=a^{2 n} r^{n(n-1)} \\
& =\left[a^{2} r^{(n-1)}\right]^{n} \\
& =\left[\mathrm{a} \times \mathrm{ar}^{\mathrm{n}-1}\right]^{\mathrm{n}} \\
& =(\mathrm{ab})^{\mathrm{n}} \quad[\mathrm{U} \sin \mathrm{~g}(1)]
\end{aligned}
$$

Thus, the given result is proved.

Question 24:

Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from $(\mathrm{n}+1)^{\text {th }}$ to $(2 \mathrm{n})^{\text {th }}$ term is $\frac{1}{\mathrm{r}^{\mathrm{n}}}$.

Answer

Let a be the first term and r be the common ratio of the G.P.
Sum of first n terms $=\frac{a\left(1-r^{n}\right)}{(1-r)}$
Since there are n terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term,
Sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term $=\frac{a_{n+1}\left(1-r^{\mathrm{n}}\right)}{(1-\mathrm{r})}$
$a^{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\frac{a\left(1-r^{n}\right)}{(1-r)} \times \frac{(1-r)}{a^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}}$
Thus, the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to
$(2 n)^{\text {th }}$ term is $\frac{1}{\mathrm{r}^{n}}$

Question 25:

If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$.
Answer
a, b, c, d are in G.P.
Therefore,
$b c=a d .$.
$b^{2}=a c \ldots$ (2)
$c^{2}=b d$..
It has to be proved that,
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c-c d)^{2}$
R.H.S.
$=(a b+b c+c d)^{2}$
$=(a b+a d+c d)^{2}[$ Using (1)]
$=[a b+d(a+c)]^{2}$
$=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}$
$=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)$
$=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}$ [Using (1) and (2)]
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}$
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2}$
[Using (2) and (3) and rearranging terms]
$=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)$
= L.H.S.
\therefore L.H.S. $=$ R.H.S.
$\therefore\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

Question 26:

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Answer
Let G_{1} and G_{2} be two numbers between 3 and 81 such that the series, $3, G_{1}, G_{2}, 81$, forms a G.P.

Let a be the first term and r be the common ratio of the G.P.
$\therefore 81=(3)(r)^{3}$
$\Rightarrow r^{3}=27$
$\therefore r=3$ (Taking real roots only)
For $r=3$,
$G_{1}=a r=(3)(3)=9$
$G_{2}=a r^{2}=(3)(3)^{2}=27$
Thus, the required two numbers are 9 and 27 .

Question 27:

Answer
G. M. of a and b is $\sqrt{a b}$.

By the given condition, $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\sqrt{a b}$
Squaring both sides, we obtain

$$
\begin{aligned}
& \frac{\left(a^{n+1}+b^{n+1}\right)^{2}}{\left(a^{n}+b^{n}\right)^{2}}=a b \\
& \Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=(a b)\left(a^{2 n}+2 a^{n} b^{n}+b^{2 n}\right) \\
& \Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=a^{2 n+1} b+2 a^{n+1} b^{n+1}+a b^{2 n+1} \\
& \Rightarrow a^{2 n+2}+b^{2 n+2}=a^{2 n+1} b+a b^{2 n+1} \\
& \Rightarrow a^{2 n+2}-a^{2 n+1} b=a b^{2 n+1}-b^{2 n+2} \\
& \Rightarrow a^{2 n+1}(a-b)=b^{2 n+1}(a-b) \\
& \Rightarrow\left(\frac{a}{b}\right)^{2 n+1}=1=\left(\frac{a}{b}\right)^{0} \\
& \Rightarrow 2 n+1=0 \\
& \Rightarrow n=\frac{-1}{2}
\end{aligned}
$$

Question 28:

The sum of two numbers is 6 times their geometric mean, show that numbers are in the

$$
\text { ratio }(3+2 \sqrt{2}):(3-2 \sqrt{2})
$$

Answer
Let the two numbers be a and b.
G.M. $=\sqrt{a b}$

According to the given condition,
$a+b=6 \sqrt{a b}$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$
Adding (1) and (2), we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$\Rightarrow a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of a in (1), we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.

Question 29:

If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $\mathrm{A} \pm \sqrt{(\mathrm{A}+\mathrm{G})(\mathrm{A}-\mathrm{G})}$.

Answer
It is given that A and G are A.M. and G.M. between two positive numbers. Let these two positive numbers be a and b.
$\therefore \mathrm{AM}=\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2}$
$\mathrm{GM}=\mathrm{G}=\sqrt{\mathrm{ab}}$
From (1) and (2), we obtain
$a+b=2 A$
$a b=G^{2}$
Substituting the value of a and b from (3) and (4) in the identity $(a-b)^{2}=(a+b)^{2}-$
4ab, we obtain
$(a-b)^{2}=4 A^{2}-4 G^{2}=4\left(A^{2}-G^{2}\right)$

$$
\begin{align*}
& (a-b)^{2}=4(A+G)(A-G) \\
& (a-b)=2 \sqrt{(A+G)(A-G)} \tag{5}
\end{align*}
$$

From (3) and (5), we obtain

$$
\begin{aligned}
& 2 \mathrm{a}=2 \mathrm{~A}+2 \sqrt{(\mathrm{~A}+\mathrm{G})(\mathrm{A}-\mathrm{G})} \\
& \Rightarrow \mathrm{a}=\mathrm{A}+\sqrt{(\mathrm{A}+\mathrm{G})(\mathrm{A}-\mathrm{G})}
\end{aligned}
$$

Substituting the value of a in (3), we obtain

$$
\mathrm{b}=2 \mathrm{~A}-\mathrm{A}-\sqrt{(\mathrm{A}+\mathrm{G})(\mathrm{A}-\mathrm{G})}=\mathrm{A}-\sqrt{(\mathrm{A}+\mathrm{G})(\mathrm{A}-\mathrm{G})}
$$

Thus, the two numbers are $A \pm \sqrt{(A+G)(A-G)}$.

Question 30:

The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text {nd }}$ hour, $4^{\text {th }}$ hour and $n^{\text {th }}$ hour?

Answer

It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a G.P.
Here, $a=30$ and $r=2$
$\therefore a_{3}=a r^{2}=(30)(2)^{2}=120$
Therefore, the number of bacteria at the end of $2^{\text {nd }}$ hour will be 120 .
$a_{5}=a r^{4}=(30)(2)^{4}=480$
The number of bacteria at the end of $4^{\text {th }}$ hour will be 480 .
$a_{n+1}=a r^{n}=(30) 2^{n}$
Thus, number of bacteria at the end of $n^{\text {th }}$ hour will be $30(2)^{n}$.

Question 31:

What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually?

Answer
The amount deposited in the bank is Rs 500.

At the end of first year, amount $=\quad$ Rs $500\left(1+\frac{1}{10}\right)=$ Rs 500 (1.1)
At the end of $2^{\text {nd }}$ year, amount $=$ Rs 500 (1.1) (1.1)
At the end of $3^{\text {rd }}$ year, amount $=$ Rs 500 (1.1) (1.1) (1.1) and so on
\therefore Amount at the end of 10 years $=$ Rs 500 (1.1) (1.1) ... (10 times)
$=$ Rs 500(1.1) ${ }^{10}$

Question 32:

If A.M. and G.M. of roots of a quadratic equation are 8 and 5 , respectively, then obtain the quadratic equation.
Answer
Let the root of the quadratic equation be a and b.
According to the given condition,
A.M. $=\frac{a+b}{2}=8 \Rightarrow a+b=16$
G.M. $=\sqrt{a b}=5 \Rightarrow a b=25$

The quadratic equation is given by,
$x^{2}-x$ (Sum of roots) + (Product of roots) $=0$
$x^{2}-x(a+b)+(a b)=0$
$x^{2}-16 x+25=0$ [Using (1) and (2)]
Thus, the required quadratic equation is $x^{2}-16 x+25=0$

