Class XI : Maths
 Chapter 10 : Conic Sections

Questions and Solutions | Exercise 10.1-NCERT Books

Question 1:

Find the equation of the circle with centre $(0,2)$ and radius 2
Answer
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(0,2)$ and radius $(r)=2$.
Therefore, the equation of the circle is
$(x-0)^{2}+(y-2)^{2}=2^{2}$
$x^{2}+y^{2}+4-4 y=4$
$x^{2}+y^{2}-4 y=0$

Question 2:

Find the equation of the circle with centre $(-2,3)$ and radius 4
Answer
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(-2,3)$ and radius $(r)=4$.
Therefore, the equation of the circle is
$(x+2)^{2}+(y-3)^{2}=(4)^{2}$
$x^{2}+4 x+4+y^{2}-6 y+9=16$
$x^{2}+y^{2}+4 x-6 y-3=0$

Question 3:

Find the equation of the circle with centre
Answer

$$
\left(\frac{1}{2}, \frac{1}{4}\right)^{\text {and radius }} \frac{1}{12}
$$

The equation of a circle with centre (h, k) and radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$

It is given that centre $(h, k)=\left(\frac{1}{2}, \frac{1}{4}\right) ;$
Therefore, the equation of the radius $(r)=\frac{1}{12}$

$$
\begin{aligned}
& \left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{4}\right)^{2}=\left(\frac{1}{12}\right)^{2} \\
& x^{2}-x+\frac{1}{4}+y^{2}-\frac{y}{2}+\frac{1}{16}=\frac{1}{144} \\
& x^{2}-x+\frac{1}{4}+y^{2}-\frac{y}{2}+\frac{1}{16}-\frac{1}{144}=0 \\
& 144 x^{2}-144 x+36+144 y^{2}-72 y+9-1=0 \\
& 144 x^{2}-144 x+144 y^{2}-72 y+44=0 \\
& 36 x^{2}-36 x+36 y^{2}-18 y+11=0 \\
& 36 x^{2}+36 y^{2}-36 x-18 y+11=0
\end{aligned}
$$

Question 4:

Find the equation of the circle with centre $(1,1)$ and radius $\sqrt{2}$
Answer
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(1,1)$ and radius $(r)=\sqrt{2}$.
Therefore, the equation of the circle is

$$
\begin{aligned}
& (x-1)^{2}+(y-1)^{2}=(\sqrt{2})^{2} \\
& x^{2}-2 x+1+y^{2}-2 y+1=2 \\
& x^{2}+y^{2}-2 x-2 y=0
\end{aligned}
$$

Question 5:

Find the equation of the circle with centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$
Answer
The equation of a circle with centre (h, k) and radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(-a,-b)$ and radius $(r)=\sqrt{a^{2}-b^{2}}$.
Therefore, the equation of the circle is

$$
\begin{aligned}
& (x+a)^{2}+(y+b)^{2}=\left(\sqrt{a^{2}-b^{2}}\right)^{2} \\
& x^{2}+2 a x+a^{2}+y^{2}+2 b y+b^{2}=a^{2}-b^{2} \\
& x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0
\end{aligned}
$$

Question 6:

Find the centre and radius of the circle $(x+5)^{2}+(y-3)^{2}=36$
Answer
The equation of the given circle is $(x+5)^{2}+(y-3)^{2}=36$.
$(x+5)^{2}+(y-3)^{2}=36$
$\Rightarrow\{x-(-5)\}^{2}+(y-3)^{2}=6^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=-$ $5, k=3$, and $r=6$.

Thus, the centre of the given circle is $(-5,3)$, while its radius is 6 .

Question 7:

Find the centre and radius of the circle $x^{2}+y^{2}-4 x-8 y-45=0$
Answer
The equation of the given circle is $x^{2}+y^{2}-4 x-8 y-45=0$.
$x^{2}+y^{2}-4 x-8 y-45=0$
$\Rightarrow\left(x^{2}-4 x\right)+\left(y^{2}-8 y\right)=45$
$\Rightarrow\left\{x^{2}-2(x)(2)+2^{2}\right\}+\left\{y^{2}-2(y)(4)+4^{2}\right\}-4-16=45$
$\Rightarrow(x-2)^{2}+(y-4)^{2}=65$
$\Rightarrow(x-2)^{2}+(y-4)^{2}=(\sqrt{65})^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=$
$2, k=4$, and $r=\sqrt{65}$.
Thus, the centre of the given circle is $(2,4)$, while its radius is $\sqrt{65}$.

Question 8:

Find the centre and radius of the circle $x^{2}+y^{2}-8 x+10 y-12=0$
Answer
The equation of the given circle is $x^{2}+y^{2}-8 x+10 y-12=0$.
$x^{2}+y^{2}-8 x+10 y-12=0$
$\Rightarrow\left(x^{2}-8 x\right)+\left(y^{2}+10 y\right)=12$
$\Rightarrow\left\{x^{2}-2(x)(4)+4^{2}\right\}+\left\{y^{2}+2(y)(5)+5^{2}\right\}-16-25=12$
$\Rightarrow(x-4)^{2}+(y+5)^{2}=53$
$\Rightarrow(x-4)^{2}+\{y-(-5)\}^{2}=(\sqrt{53})^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where h
$=4, k=-5$, and $r=\sqrt{53}$.
Thus, the centre of the given circle is $(4,-5)$, while its radius is $\sqrt{53}$.

Question 9:

Find the centre and radius of the circle $2 x^{2}+2 y^{2}-x=0$
Answer
The equation of the given circle is $2 x^{2}+2 y^{2}-x=0$.

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}-x=0 \\
& \Rightarrow\left(2 x^{2}-x\right)+2 y^{2}=0 \\
& \Rightarrow 2\left[\left(x^{2}-\frac{x}{2}\right)+y^{2}\right]=0 \\
& \Rightarrow\left\{x^{2}-2 x\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{2}\right\}+y^{2}-\left(\frac{1}{4}\right)^{2}=0 \\
& \Rightarrow\left(x-\frac{1}{4}\right)^{2}+(y-0)^{2}=\left(\frac{1}{4}\right)^{2}, \text { which is of the form }(x-h)^{2}+(y-k)^{2}=r^{2}, \text { where } h=\frac{1}{4} \\
& \quad r=\frac{1}{4} .
\end{aligned}
$$

Thus, the centre of the given circle is $\left(\frac{1}{4}, 0\right)$, while its radius is $\frac{1}{4}$.

Question 10:

Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.

Answer

Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Since the circle passes through points $(4,1)$ and $(6,5)$,
$(4-h)^{2}+(1-k)^{2}=r^{2}$.
$(6-h)^{2}+(5-k)^{2}=r^{2}$.
Since the centre (h, k) of the circle lies on line $4 x+y=16$,
$4 h+k=16$
From equations (1) and (2), we obtain
$(4-h)^{2}+(1-k)^{2}=(6-h)^{2}+(5-k)^{2}$
$\Rightarrow 16-8 h+h^{2}+1-2 k+k^{2}=36-12 h+h^{2}+25-10 k+k^{2}$
$\Rightarrow 16-8 h+1-2 k=36-12 h+25-10 k$
$\Rightarrow 4 h+8 k=44$
$\Rightarrow h+2 k=11$..
On solving equations (3) and (4), we obtain $h=3$ and $k=4$.
On substituting the values of h and k in equation (1), we obtain
$(4-3)^{2}+(1-4)^{2}=r^{2}$
$\Rightarrow(1)^{2}+(-3)^{2}=r^{2}$
$\Rightarrow 1+9=r^{2}$
$\Rightarrow r^{2}=10$
$\Rightarrow r=\sqrt{10}$
Thus, the equation of the required circle is
$(x-3)^{2}+(y-4)^{2}=(\sqrt{10})^{2}$
$x^{2}-6 x+9+y^{2}-8 y+16=10$
$x^{2}+y^{2}-6 x-8 y+15=0$

Question 11:

Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y-11=0$.
Answer
Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the circle passes through points $(2,3)$ and $(-1,1)$,
$(2-h)^{2}+(3-k)^{2}=r^{2}$
$(-1-h)^{2}+(1-k)^{2}=r^{2}$
Since the centre (h, k) of the circle lies on line $x-3 y-11=0$,
$h-3 k=11$..
From equations (1) and (2), we obtain
$(2-h)^{2}+(3-k)^{2}=(-1-h)^{2}+(1-k)^{2}$
$\Rightarrow 4-4 h+h^{2}+9-6 k+k^{2}=1+2 h+h^{2}+1-2 k+k^{2}$
$\Rightarrow 4-4 h+9-6 k=1+2 h+1-2 k$
$\Rightarrow 6 h+4 k=11$.
On solving equations (3) and (4), we obtain $h=\frac{7}{2}$ and $k=\frac{-5}{2}$.
On substituting the values of h and k in equation (1), we obtain

$$
\begin{aligned}
& \left(2-\frac{7}{2}\right)^{2}+\left(3+\frac{5}{2}\right)^{2}=r^{2} \\
& \Rightarrow\left(\frac{4-7}{2}\right)^{2}+\left(\frac{6+5}{2}\right)^{2}=r^{2} \\
& \Rightarrow\left(\frac{-3}{2}\right)^{2}+\left(\frac{11}{2}\right)^{2}=r^{2} \\
& \Rightarrow \frac{9}{4}+\frac{121}{4}=r^{2} \\
& \Rightarrow \frac{130}{4}=r^{2}
\end{aligned}
$$

Thus, the equation of the required circle is

$$
\begin{aligned}
& \left(x-\frac{7}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{130}{4} \\
& \left(\frac{2 x-7}{2}\right)^{2}+\left(\frac{2 y+5}{2}\right)^{2}=\frac{130}{4} \\
& 4 x^{2}-28 x+49+4 y^{2}+20 y+25=130 \\
& 4 x^{2}+4 y^{2}-28 x+20 y-56=0 \\
& 4\left(x^{2}+y^{2}-7 x+5 y-14\right)=0 \\
& x^{2}+y^{2}-7 x+5 y-14=0
\end{aligned}
$$

Question 12:

Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.

Answer

Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the radius of the circle is 5 and its centre lies on the x-axis, $k=0$ and $r=5$.
Now, the equation of the circle becomes $(x-h)^{2}+y^{2}=25$.
It is given that the circle passes through point $(2,3)$.
$\therefore(2-h)^{2}+3^{2}=25$
$\Rightarrow(2-h)^{2}=25-9$
$\Rightarrow(2-h)^{2}=16$
$\Rightarrow 2-h= \pm \sqrt{16}= \pm 4$
If $2-h=4$, then $h=-2$.
If $2-h=-4$, then $h=6$.
When $h=-2$, the equation of the circle becomes
$(x+2)^{2}+y^{2}=25$
$x^{2}+4 x+4+y^{2}=25$
$x^{2}+y^{2}+4 x-21=0$
When $h=6$, the equation of the circle becomes
$(x-6)^{2}+y^{2}=25$
$x^{2}-12 x+36+y^{2}=25$
$x^{2}+y^{2}-12 x+11=0$

Question 13:

Find the equation of the circle passing through $(0,0)$ and making intercepts a and b on the coordinate axes.

Answer
Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the centre of the circle passes through $(0,0)$,
$(0-h)^{2}+(0-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}=r^{2}$
The equation of the circle now becomes $(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}$.
It is given that the circle makes intercepts a and b on the coordinate axes. This means that the circle passes through points $(a, 0)$ and $(0, b)$. Therefore,
$(a-h)^{2}+(0-k)^{2}=h^{2}+k^{2}$
$(0-h)^{2}+(b-k)^{2}=h^{2}+k^{2}$
From equation (1), we obtain
$a^{2}-2 a h+h^{2}+k^{2}=h^{2}+k^{2}$
$\Rightarrow a^{2}-2 a h=0$
$\Rightarrow a(a-2 h)=0$
$\Rightarrow a=0$ or $(a-2 h)=0$
However, $a \neq 0$; hence, $(a-2 h)=0 \Rightarrow h=\frac{\frac{a}{2}}{2}$.
From equation (2), we obtain
$h^{2}+b^{2}-2 b k+k^{2}=h^{2}+k^{2}$
$\Rightarrow b^{2}-2 b k=0$
$\Rightarrow b(b-2 k)=0$
$\Rightarrow b=0 \operatorname{or}(b-2 k)=0$
However, $b \neq 0$; hence, $(b-2 k)=0 \Rightarrow k=\frac{\frac{b}{2}}{}$.
Thus, the equation of the required circle is

$$
\begin{aligned}
& \left(x-\frac{a}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2} \\
& \Rightarrow\left(\frac{2 x-a}{2}\right)^{2}+\left(\frac{2 y-b}{2}\right)^{2}=\frac{a^{2}+b^{2}}{4} \\
& \Rightarrow 4 x^{2}-4 a x+a^{2}+4 y^{2}-4 b y+b^{2}=a^{2}+b^{2} \\
& \Rightarrow 4 x^{2}+4 y^{2}-4 a x-4 b y=0 \\
& \Rightarrow x^{2}+y^{2}-a x-b y=0
\end{aligned}
$$

Question 14:

Find the equation of a circle with centre $(2,2)$ and passes through the point $(4,5)$.
Answer
The centre of the circle is given as $(h, k)=(2,2)$.
Since the circle passes through point $(4,5)$, the radius (r) of the circle is the distance between the points $(2,2)$ and $(4,5)$.
$\therefore r=\sqrt{(2-4)^{2}+(2-5)^{2}}=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13}$

Thus, the equation of the circle is

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-2)^{2}=(\sqrt{13})^{2} \\
& x^{2}-4 x+4+y^{2}-4 y+4=13 \\
& x^{2}+y^{2}-4 x-4 y-5=0
\end{aligned}
$$

Question 15:

Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$?

Answer

The equation of the given circle is $x^{2}+y^{2}=25$.
$x^{2}+y^{2}=25$
$\Rightarrow(x-0)^{2}+(y-0)^{2}=5^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=0, k$ $=0$, and $r=5$.
\therefore Centre $=(0,0)$ and radius $=5$
Distance between point ($-2.5,3.5$) and centre (0,0)

$$
\begin{aligned}
& =\sqrt{(-2.5-0)^{2}+(3.5-0)^{2}} \\
& =\sqrt{6.25+12.25} \\
& =\sqrt{18.5} \\
& =4.3 \text { (approx.) }<5
\end{aligned}
$$

Since the distance between point $(-2.5,3.5)$ and centre $(0,0)$ of the circle is less than the radius of the circle, point $(-2.5,3.5)$ lies inside the circle.

