Class XI : Maths
 Chapter 10 : Conic Sections

Questions and Solutions | Exercise 10.2 - NCERT Books

Question 1:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^{2}=12 x$

Answer
The given equation is $y^{2}=12 x$.
Here, the coefficient of x is positive. Hence, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 a x$, we obtain
$4 a=12 \Rightarrow a=3$
\therefore Coordinates of the focus $=(a, 0)=(3,0)$
Since the given equation involves y^{2}, the axis of the parabola is the x-axis.
Equation of directrix, $x=-a$ i.e., $x=-3$ i.e., $x+3=0$
Length of latus rectum $=4 a=4 \times 3=12$

Question 2:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^{2}=6 y$
Answer
The given equation is $x^{2}=6 y$.
Here, the coefficient of y is positive. Hence, the parabola opens upwards.
On comparing this equation with $x^{2}=4 a y$, we obtain

$$
4 a=6 \Rightarrow a=\frac{3}{2} \quad\left(0, \frac{3}{2}\right)
$$

\therefore Coordinates of the f_{i}
Since the given equa

Equation of directrix,
Length of latus rectum $=4 a=6$

Question 3:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^{2}=-8 x$
Answer
The given equation is $y^{2}=-8 x$.
Here, the coefficient of x is negative. Hence, the parabola opens towards the left.
On comparing this equation with $y^{2}=-4 a x$, we obtain
$-4 a=-8 \Rightarrow a=2$
\therefore Coordinates of the focus $=(-a, 0)=(-2,0)$
Since the given equation involves y^{2}, the axis of the parabola is the x-axis.
Equation of directrix, $x=a$ i.e., $x=2$
Length of latus rectum $=4 a=8$

Question 4:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^{2}=-16 y$
Answer
The given equation is $x^{2}=-16 y$.
Here, the coefficient of y is negative. Hence, the parabola opens downwards.
On comparing this equation with $x^{2}=-4 a y$, we obtain
$-4 a=-16 \Rightarrow a=4$
\therefore Coordinates of the focus $=(0,-a)=(0,-4)$
Since the given equation involves x^{2}, the axis of the parabola is the y-axis.
Equation of directrix, $y=a$ i.e., $y=4$
Length of latus rectum $=4 a=16$

Question 5:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^{2}=10 x$

Answer
The given equation is $y^{2}=10 x$.
Here, the coefficient of x is positive. Hence, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 a x$, we obtain

$$
4 a=10 \Rightarrow a=\frac{5}{2}
$$

\therefore Coordinates of the focus $=(a, 0)$

$$
=\left(\frac{5}{2}, 0\right)
$$

Since the given equation involves y^{2}, the axis of the parabola is the x-axis.
Equation of directrix, $x=-a$, i.e., $x=-\frac{5}{2}$
Length of latus rectum $=4 a=10$

Question 6:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^{2}=-9 y$
Answer
The given equation is $x^{2}=-9 y$.
Here, the coefficient of y is negative. Hence, the parabola opens downwards.
On comparing this equation with $x^{2}=-4 a y$, we obtain
$-4 a=-9 \Rightarrow b=\frac{9}{4}$
\therefore Coordinates of the focus $=(0,-a)=\left(0,-\frac{9}{4}\right)$
Since the given equation involves x^{2}, the axis of the parabola is the y-axis.
Equation of directrix, $y=a$, i.e., $y=\frac{9}{4}$
Length of latus rectum $=4 a=9$

Question 7:

Find the equation of the parabola that satisfies the following conditions: Focus (6, 0);
directrix $x=-6$

Answer

Focus (6, 0); directrix, $x=-6$
Since the focus lies on the x-axis, the x-axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $y^{2}=4 a x$ or
$y^{2}=-4 a x$.
It is also seen that the directrix, $x=-6$ is to the left of the y-axis, while the focus $(6,0)$ is to the right of the y-axis. Hence, the parabola is of the form $y^{2}=4 a x$.
Here, $a=6$
Thus, the equation of the parabola is $y^{2}=24 x$.

Question 8:

Find the equation of the parabola that satisfies the following conditions: Focus $(0,-3)$; directrix $y=3$

Answer
Focus $=(0,-3)$; directrix $y=3$
Since the focus lies on the y-axis, the y-axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $x^{2}=4 a y$ or $x^{2}=-4 a y$.

It is also seen that the directrix, $y=3$ is above the x-axis, while the focus $(0,-3)$ is below the x-axis. Hence, the parabola is of the form $x^{2}=-4 a y$.
Here, $a=3$
Thus, the equation of the parabola is $x^{2}=-12 y$.

Question 9:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$; focus $(3,0)$
Answer
Vertex $(0,0)$; focus $(3,0)$
Since the vertex of the parabola is $(0,0)$ and the focus lies on the positive x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^{2}=4 a x$.
Since the focus is $(3,0), a=3$.
Thus, the equation of the parabola is $y^{2}=4 \times 3 \times x$, i.e., $y^{2}=12 x$

Question 10:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$ focus $(-2,0)$

Answer

Vertex $(0,0)$ focus $(-2,0)$
Since the vertex of the parabola is $(0,0)$ and the focus lies on the negative x-axis, x axis is the axis of the parabola, while the equation of the parabola is of the form $y^{2}=-$ 4ax.

Since the focus is $(-2,0), a=2$.
Thus, the equation of the parabola is $y^{2}=-4(2) x$, i.e., $y^{2}=-8 x$

Question 11:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$ passing through $(2,3)$ and axis is along x-axis

Answer
Since the vertex is $(0,0)$ and the axis of the parabola is the x-axis, the equation of the parabola is either of the form $y^{2}=4 a x$ or $y^{2}=-4 a x$.
The parabola passes through point $(2,3)$, which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $y^{2}=4 a x$, while point
$(2,3)$ must satisfy the equation $y^{2}=4 a x$.

$$
\therefore 3^{2}=4 a(2) \Rightarrow a=\frac{9}{8}
$$

Thus, the equation of the parabola is

$$
\begin{aligned}
& y^{2}=4\left(\frac{9}{8}\right) x \\
& y^{2}=\frac{9}{2} x \\
& 2 y^{2}=9 x
\end{aligned}
$$

Question 12:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to y-axis

Answer
Since the vertex is $(0,0)$ and the parabola is symmetric about the y-axis, the equation of the parabola is either of the form $x^{2}=4 a y$ or $x^{2}=-4 a y$.
The parabola passes through point $(5,2)$, which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $x^{2}=4 a y$, while point
$(5,2)$ must satisfy the equation $x^{2}=4 a y$.

$$
\therefore(5)^{2}=4 \times a \times 2 \Rightarrow 25=8 a \Rightarrow a=\frac{25}{8}
$$

Thus, the equation of the parabola is

$$
\begin{aligned}
& x^{2}=4\left(\frac{25}{8}\right) y \\
& 2 x^{2}=25 y
\end{aligned}
$$

