Class XI : Maths Chapter 10 : Conic Sections

Questions and Solutions | Exercise 10.2 - NCERT Books

Question 1:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = 12x$

Answer

The given equation is $y^2 = 12x$.

Here, the coefficient of x is positive. Hence, the parabola opens towards the right.

On comparing this equation with $y^2 = 4ax$, we obtain

$$4a = 12 \Rightarrow a = 3$$

::Coordinates of the focus = (a, 0) = (3, 0)

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = -a i.e., x = -3 i.e., x + 3 = 0

Length of latus rectum = $4a = 4 \times 3 = 12$

Question 2:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = 6y$

Answer

The given equation is $x^2 = 6y$.

Here, the coefficient of *y* is positive. Hence, the parabola opens upwards.

On comparing this equation with $x^2 = 4ay$, we obtain

$$4a = 6 \Longrightarrow a = \frac{3}{2} \qquad \qquad \left(0, \frac{3}{2}\right)$$

:.Coordinates of the final y = -a i.e., $y = -\frac{3}{2}e$ axis of the parabola is the y-axis.

Equation of directrix, Length of latus rectum = 4a = 6

∛Saral

ЪÅ

Question 3:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = -8x$

Answer

The given equation is $y^2 = -8x$.

Here, the coefficient of *x* is negative. Hence, the parabola opens towards the left.

On comparing this equation with $y^2 = -4ax$, we obtain

$-4a = -8 \Rightarrow a = 2$

:.Coordinates of the focus = (-a, 0) = (-2, 0)

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = a i.e., x = 2

Length of latus rectum = 4a = 8

Question 4:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = -16y$

Answer

The given equation is $x^2 = -16y$.

Here, the coefficient of *y* is negative. Hence, the parabola opens downwards.

On comparing this equation with $x^2 = -4ay$, we obtain

 $-4a = -16 \Rightarrow a = 4$

::Coordinates of the focus = (0, -a) = (0, -4)

Since the given equation involves x^2 , the axis of the parabola is the *y*-axis.

Equation of directrix, y = a i.e., y = 4

Length of latus rectum = 4a = 16

Question 5:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = 10x$

Answer

The given equation is $y^2 = 10x$.

Here, the coefficient of x is positive. Hence, the parabola opens towards the right. On comparing this equation with $y^2 = 4ax$, we obtain

∛Saral

Å

 $4a = 10 \Rightarrow a = \frac{5}{2}$

::Coordinates of the focus = (a, 0) = $\left(\frac{5}{2}, 0\right)$ Since the given equation involves y^2 , the axis of the parabola is the *x*-axis.

x = -a, i.e., $x = -\frac{5}{2}$ Equation of directrix, Length of latus rectum = 4a = 10

Question 6:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = -9y$

Answer

The given equation is $x^2 = -9y$.

Here, the coefficient of y is negative. Hence, the parabola opens downwards.

On comparing this equation with $x^2 = -4ay$, we obtain

 $-4a = -9 \Longrightarrow b = \frac{9}{4}$

 $(0,-a)=\left(0,-\frac{9}{4}\right)$

 \therefore Coordinates of the focus =

Since the given equation involves x^2 , the axis of the parabola is the *y*-axis.

y = a, i.e., $y = \frac{9}{4}$ Equation of directrix, Length of latus rectum = 4a = 9

Question 7:

Find the equation of the parabola that satisfies the following conditions: Focus (6, 0); directrix x = -6Answer Focus (6, 0); directrix, x = -6Since the focus lies on the *x*-axis, the *x*-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form $y^2 = 4ax$ or

<mark>∛</mark>Saral

ЪÅ

 $y^2 = -4ax.$

It is also seen that the directrix, x = -6 is to the left of the *y*-axis, while the focus (6, 0) is to the right of the *y*-axis. Hence, the parabola is of the form $y^2 = 4ax$. Here, a = 6Thus, the equation of the parabola is $y^2 = 24x$.

Question 8:

Find the equation of the parabola that satisfies the following conditions: Focus (0, -3);

directrix y = 3

Answer

Focus = (0, -3); directrix y = 3

Since the focus lies on the *y*-axis, the *y*-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form $x^2 = 4ay$ or

 $x^2 = -4ay.$

It is also seen that the directrix, y = 3 is above the x-axis, while the focus

(0, -3) is below the *x*-axis. Hence, the parabola is of the form $x^2 = -4ay$.

Here, a = 3

Thus, the equation of the parabola is $x^2 = -12y$.

Question 9:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0); focus (3, 0)

Answer

Vertex (0, 0); focus (3, 0)

Since the vertex of the parabola is (0, 0) and the focus lies on the positive *x*-axis, *x*-axis is the axis of the parabola, while the equation of the parabola is of the form $y^2 = 4ax$. Since the focus is (3, 0), a = 3.

Thus, the equation of the parabola is $y^2 = 4 \times 3 \times x$, i.e., $y^2 = 12x$

Question 10:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0) focus (-2, 0)Answer

Class XI Maths

www.esaral.com

∛Saral

► Å

Vertex (0, 0) focus (-2, 0)

Since the vertex of the parabola is (0, 0) and the focus lies on the negative *x*-axis, *x*-axis is the axis of the parabola, while the equation of the parabola is of the form $y^2 = -4ax$.

Since the focus is (-2, 0), a = 2.

Thus, the equation of the parabola is $y^2 = -4(2)x$, i.e., $y^2 = -8x$

Question 11:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0)

passing through (2, 3) and axis is along *x*-axis

Answer

Since the vertex is (0, 0) and the axis of the parabola is the *x*-axis, the equation of the parabola is either of the form $y^2 = 4ax$ or $y^2 = -4ax$.

The parabola passes through point (2, 3), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form $y^2 = 4ax$, while point

(2, 3) must satisfy the equation $y^2 = 4ax$.

$$\therefore 3^2 = 4a(2) \Longrightarrow a = \frac{9}{8}$$

Thus, the equation of the parabola is

$$y^{2} = 4\left(\frac{9}{8}\right)x$$
$$y^{2} = \frac{9}{2}x$$
$$2y^{2} = 9x$$

Question 12:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0), passing through (5, 2) and symmetric with respect to *y*-axis

Answer

Since the vertex is (0, 0) and the parabola is symmetric about the *y*-axis, the equation of the parabola is either of the form $x^2 = 4ay$ or $x^2 = -4ay$.

The parabola passes through point (5, 2), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form $x^2 = 4ay$, while point

<mark>∛</mark>Saral

(5, 2) must satisfy the equation $x^2 = 4ay$.

$$\therefore (5)^2 = 4 \times a \times 2 \Longrightarrow 25 = 8a \Longrightarrow a = \frac{25}{8}$$

Thus, the equation of the parabola is

$$x^{2} = 4\left(\frac{25}{8}\right)y$$
$$2x^{2} = 25y$$

www.esaral.com