Class XI : Maths
 Chapter 10 : Conic Sections

Questions and Solutions | Exercise 10.3-NCERT Books

Question 1:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, Question 3:
the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
Answer
The given equation is $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
Here, the denominator of $\frac{x^{2}}{36}$ is greater than the denominator of $\frac{y^{2}}{16}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=6$ and $b=4$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}$
Therefore,
The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$.
The coordinates of the vertices are $(6,0)$ and $(-6,0)$.
Length of major axis $=2 a=12$
Length of minor axis $=2 b=8$
Eccentricity, $e=\frac{c}{a}=\frac{2 \sqrt{5}}{6}=\frac{\sqrt{5}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 16}{6}=\frac{16}{3}$

Question 2:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,
the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
Answer

The given equation is $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ or $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{5^{2}}=1$.
Here, the denominator of $\frac{y^{2}}{25}$ is greater than the denominator of $\frac{x^{2}}{4}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=2$ and $a=5$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{25-4}=\sqrt{21}$
Therefore,
The coordinates of the foci are $(0, \sqrt{21})$ and $(0,-\sqrt{21})$.
The coordinates of the vertices are $(0,5)$ and $(0,-5)$
Length of major axis $=2 a=10$
Length of minor axis $=2 b=4$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{21}}{5}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{5}=\frac{8}{5}$

Question 3:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,
the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Answer

The given equation is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}=1$.
Here, the denominator of $\frac{x^{2}}{16}$ is greater than the denominator of $\frac{y^{2}}{9}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=3$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-9}=\sqrt{7}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{7}, 0)$.
The coordinates of the vertices are $(\pm 4,0)$.
Length of major axis $=2 a=8$
Length of minor axis $=2 b=6$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{7}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$

Question 4:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,
the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

Answer

The given equation is $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$ or $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{10^{2}}=1$
Here, the denominator of $\frac{y^{2}}{100}$ is greater than the denominator of $\frac{x^{2}}{25}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=5$ and $a=10$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \pm 5 \sqrt{3})$.
The coordinates of the vertices are $(0, \pm 10)$.
Length of major axis $=2 a=20$
Length of minor axis $=2 b=10$

Eccentricity, $e=\frac{c}{a}=\frac{5 \sqrt{3}}{10}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 25}{10}=5$

Question 5:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis,
the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
Answer
The given equation is $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$ or $\frac{x^{2}}{7^{2}}+\frac{y^{2}}{6^{2}}=1$
Here, the denominator of $\frac{x^{2}}{49}$ is greater than the denominator of $\frac{y^{2}}{36}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=7$ and $b=6$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{13}, 0)$.
The coordinates of the vertices are $(\pm 7,0)$.
Length of major axis $=2 a=14$
Length of minor axis $=2 b=12$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{7}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 36}{7}=\frac{72}{7}$

Question 6:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$
Answer
The given equation is $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$ or $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{20^{2}}=1$.
Here, the denominator of $\frac{y^{2}}{400}$ is greater than the denominator of $\frac{x^{2}}{100}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=10$ and $a=20$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{400-100}=\sqrt{300}=10 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \pm 10 \sqrt{3})$.
The coordinates of the vertices are $(0, \pm 20)$
Length of major axis $=2 a=40$
Length of minor axis $=2 b=20$
Eccentricity, $e=\frac{c}{a}=\frac{10 \sqrt{3}}{20}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 100}{20}=10$

Question 7:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$

Answer
The given equation is $36 x^{2}+4 y^{2}=144$.
It can be written as
$36 x^{2}+4 y^{2}=144$
Or, $\frac{x^{2}}{4}+\frac{y^{2}}{36}=1$
Or, $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{6^{2}}=1$
Here, the denominator of $\frac{y^{2}}{6^{2}}$ is greater than the denominator of $\frac{x^{2}}{2^{2}}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing equation (1) with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=2$ and $a=6$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-4}=\sqrt{32}=4 \sqrt{2}$
Therefore,
The coordinates of the foci are $(0, \pm 4 \sqrt{2})$.
The coordinates of the vertices are ($0, \pm 6$).
Length of major axis $=2 a=12$
Length of minor axis $=2 b=4$
Eccentricity, $e=\frac{c}{a}=\frac{4 \sqrt{2}}{6}=\frac{2 \sqrt{2}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{6}=\frac{4}{3}$

Question 8:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$

Answer
The given equation is $16 x^{2}+y^{2}=16$.
It can be written as
$16 x^{2}+y^{2}=16$
Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$
Or, $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$
Here, the denominator of $\frac{y^{2}}{4^{2}}$ is greater than the denominator of $\frac{x^{2}}{1^{2}}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing equation (1) with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=1$ and $a=4$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{15})$.
The coordinates of the vertices are $(0, \pm 4)$.
Length of major axis $=2 a=8$
Length of minor axis $=2 b=2$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$

Question 9:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x^{2}+9 y^{2}=36$

Answer
The given equation is $4 x^{2}+9 y^{2}=36$.
It can be written as
$4 x^{2}+9 y^{2}=36$
Or, $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
Or, $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$
Here, the denominator of $\frac{x^{2}}{3^{2}}$ is greater than the denominator of $\frac{y^{2}}{2^{2}}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=3$ and $b=2$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{9-4}=\sqrt{5}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{5}, 0)$
The coordinates of the vertices are $(\pm 3,0)$.
Length of major axis $=2 a=6$
Length of minor axis $=2 b=4$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{5}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{3}=\frac{8}{3}$

Question 10:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 5,0)$, foci ($\pm 4,0)$

Answer
Vertices $(\pm 5,0)$, foci $(\pm 4,0)$
Here, the vertices are on the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semi-major axis.

Accordingly, $a=5$ and $c=4$.

It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 5^{2}=b^{2}+4^{2}$
$\Rightarrow 25=b^{2}+16$
$\Rightarrow b^{2}=25-16$
$\Rightarrow b=\sqrt{9}=3$
Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.

Question 11:

Find the equation for the ellipse that satisfies the given conditions: Vertices ($0, \pm 13$), foci $(0, \pm 5)$
Answer
Vertices $(0, \pm 13)$, foci $(0, \pm 5)$
Here, the vertices are on the y-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, where a is the semi-major axis.

Accordingly, $a=13$ and $c=5$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\frac{x^{2}}{12^{2}}+\frac{y^{2}}{13^{2}}=1$ or $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$.

Question 12:

Find the equation for the ellipse that satisfies the given conditions: Vertices ($\pm 6,0$), foci ($\pm 4,0$)
Answer
Vertices ($\pm 6,0$), foci $(\pm 4,0)$

Here, the vertices are on the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semi-major axis.

Accordingly, $a=6, c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 6^{2}=b^{2}+4^{2}$
$\Rightarrow 36=b^{2}+16$
$\Rightarrow b^{2}=36-16$
$\Rightarrow b=\sqrt{20}$

Thus, the equation of the ellipse is

$$
\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1 \text { or } \frac{x^{2}}{36}+\frac{y^{2}}{20}=1
$$

Question 13:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$

Answer
Ends of major axis ($\pm 3,0$), ends of minor axis ($0, \pm 2$)
Here, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semi-major axis.
Accordingly, $a=3$ and $b=2$.
Thus, the equation of the ellipse is $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$ i.e., $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

Question 14:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
Answer

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
Here, the major axis is along the y-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, where a is the semi-major axis.

Accordingly, $a=\sqrt{5}$ and $b=1$.

Thus, the equation of the ellipse is

$$
\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1 \text { or } \frac{x^{2}}{1}+\frac{y^{2}}{5}=1
$$

Question 15:

Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26 , foci $(\pm 5,0)$

Answer
Length of major axis $=26$; foci $=(\pm 5,0)$.
Since the foci are on the x-axis, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semi-major axis.
Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$.
It is known that $a^{2}=b^{2}+c^{2}$.

$$
\begin{aligned}
& \therefore 13^{2}=b^{2}+5^{2} \\
& \Rightarrow 169=b^{2}+25 \\
& \Rightarrow b^{2}=169-25 \\
& \Rightarrow b=\sqrt{144}=12
\end{aligned}
$$

Thus, the equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$.

Question 16:

Find the equation for the ellipse that satisfies the given conditions: Length of minor axis 16 , foci $(0, \pm 6)$

Answer

Length of minor axis $=16$; foci $=(0, \pm 6)$.
Since the foci are on the y-axis, the major axis is along the y-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, where a is the semi-major axis.

Accordingly, $2 b=16 \Rightarrow b=8$ and $c=6$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore a^{2}=8^{2}+6^{2}=64+36=100$
$\Rightarrow a=\sqrt{100}=10$
Thus, the equation of the ellipse is $\frac{x^{2}}{8^{2}}+\frac{y^{2}}{10^{2}}=1$ or $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$.

Question 17:

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,0), a=4$
Answer
Foci $(\pm 3,0), a=4$
Since the foci are on the x-axis, the major axis is along the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semi-major axis.

Accordingly, $c=3$ and $a=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 4^{2}=b^{2}+3^{2}$
$\Rightarrow 16=b^{2}+9$
$\Rightarrow b^{2}=16-9=7$
Thus, the equation of the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$.

Question 18:

Find the equation for the ellipse that satisfies the given conditions: $b=3, c=4$, centre at the origin; foci on the x axis.

Answer

It is given that $b=3, c=4$, centre at the origin; foci on the x axis.
Since the foci are on the x-axis, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semi-major axis.

Accordingly, $b=3, c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore a^{2}=3^{2}+4^{2}=9+16=25$
$\Rightarrow a=5$
Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.

Question 19:

Find the equation for the ellipse that satisfies the given conditions: Centre at (0,0), major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.

Answer
Since the centre is at $(0,0)$ and the major axis is on the y-axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$

Where, a is the semi-major axis

The ellipse passes through points $(3,2)$ and $(1,6)$. Hence,
$\frac{9}{b^{2}}+\frac{4}{a^{2}}=1$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$
On solving equations (2) and (3), we obtain $b^{2}=10$ and $a^{2}=40$.

Thus, the equation of the ellipse is $\frac{x^{2}}{10}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$.

Question 20:

Find the equation for the ellipse that satisfies the given conditions: Major axis on the x axis and passes through the points $(4,3)$ and $(6,2)$.
Answer
Since the major axis is on the x-axis, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Where, a is the semi-major axis
The ellipse passes through points $(4,3)$ and $(6,2)$. Hence,

$$
\begin{align*}
& \frac{16}{a^{2}}+\frac{9}{b^{2}}=1 \tag{2}\\
& \frac{36}{a^{2}}+\frac{4}{b^{2}}=1 \tag{3}
\end{align*}
$$

On solving equations (2) and (3), we obtain $a^{2}=52$ and $b^{2}=13$.
Thus, the equation of the ellipse is $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ or $x^{2}+4 y^{2}=52$

