Class XI : Maths
Chapter 10 : Conic Sections

Questions and Solutions | Exercise 10.4 - NCERT Books

Question 1:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
Answer
The given equation is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1$.
On comparing this equation with the standard equation of hyperbola i.e., $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=3$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=4^{2}+3^{2}=25$
$\Rightarrow c=5$
Therefore,
The coordinates of the foci are $(\pm 5,0)$.
The coordinates of the vertices are $(\pm 4,0)$.
Eccentricity, $e=\frac{c}{a}=\frac{5}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$

Question 2:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the
latus rectum of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$
Answer
The given equation is $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$ or $\frac{y^{2}}{3^{2}}-\frac{x^{2}}{(\sqrt{27})^{2}}=1$.

On comparing this equation with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=3$ and $b=\sqrt{27}$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=3^{2}+(\sqrt{27})^{2}=9+27=36$
$\Rightarrow c=6$
Therefore,
The coordinates of the foci are $(0, \pm 6)$.
The coordinates of the vertices are $(0, \pm 3)$.
Eccentricity, $e=\frac{c}{a}=\frac{6}{3}=2$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 27}{3}=18$

Question 3:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $9 y^{2}-4 x^{2}=36$

Answer
The given equation is $9 y^{2}-4 x^{2}=36$.
It can be written as
$9 y^{2}-4 x^{2}=36$
Or, $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$
Or, $\frac{y^{2}}{2^{2}}-\frac{x^{2}}{3^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=2$ and $b=3$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=4+9=13$
$\Rightarrow c=\sqrt{13}$

Therefore,
The coordinates of the foci are $(0, \pm \sqrt{13})$.
The coordinates of the vertices are $(0, \pm 2)$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{2}=9$

Question 4:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$

Answer

The given equation is $16 x^{2}-9 y^{2}=576$.
It can be written as

$$
\begin{align*}
& 16 x^{2}-9 y^{2}=576 \\
& \Rightarrow \frac{x^{2}}{36}-\frac{y^{2}}{64}=1 \\
& \Rightarrow \frac{x^{2}}{6^{2}}-\frac{y^{2}}{8^{2}}=1 \tag{1}
\end{align*}
$$

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we obtain $a=6$ and $b=8$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=36+64=100$
$\Rightarrow c=10$
Therefore,
The coordinates of the foci are $(\pm 10,0)$.
The coordinates of the vertices are $(\pm 6,0)$.
Eccentricity, $e=\frac{c}{a}=\frac{10}{6}=\frac{5}{3}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 64}{6}=\frac{64}{3}$

Question 5:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y^{2}-9 x^{2}=36$

Answer

The given equation is $5 y^{2}-9 x^{2}=36$.

$$
\begin{align*}
& \Rightarrow \frac{y^{2}}{\left(\frac{36}{5}\right)}-\frac{x^{2}}{4}=1 \\
& \Rightarrow \frac{y^{2}}{\left(\frac{6}{\sqrt{5}}\right)^{2}}-\frac{x^{2}}{2^{2}}=1 \tag{1}
\end{align*}
$$

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=\frac{6}{\sqrt{5}}$ and $b=2$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=\frac{36}{5}+4=\frac{56}{5}$
$\Rightarrow c=\sqrt{\frac{56}{5}}=\frac{2 \sqrt{14}}{\sqrt{5}}$
Therefore, the coordinates of the foci are $\left(0, \pm \frac{2 \sqrt{14}}{\sqrt{5}}\right)$.
The coordinates of the vertices are $\left(0, \pm \frac{6}{\sqrt{5}}\right)$.
Eccentricity, $e=\frac{c}{a}=\frac{\left(\frac{2 \sqrt{14}}{\sqrt{5}}\right)}{\left(\frac{6}{\sqrt{5}}\right)}=\frac{\sqrt{14}}{3}$

Length of latus rectum

$$
=\frac{2 b^{2}}{a}=\frac{2 \times 4}{\left(\frac{6}{\sqrt{5}}\right)}=\frac{4 \sqrt{5}}{3}
$$

Question 6:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$
Answer
The given equation is $49 y^{2}-16 x^{2}=784$.
It can be written as
$49 y^{2}-16 x^{2}=784$
Or, $\frac{y^{2}}{16}-\frac{x^{2}}{49}=1$
Or, $\frac{y^{2}}{4^{2}}-\frac{x^{2}}{7^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=7$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=16+49=65$
$\Rightarrow c=\sqrt{65}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{65})$.
The coordinates of the vertices are $(0, \pm 4)$.
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{65}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 49}{4}=\frac{49}{2}$

Question 7:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(\pm 2,0)$, foci $(\pm 3,0)$
Answer
Vertices $(\pm 2,0)$, foci $(\pm 3,0)$
Here, the vertices are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the vertices are $(\pm 2,0), a=2$.
Since the foci are $(\pm 3,0), c=3$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 2^{2}+b^{2}=3^{2}$
$b^{2}=9-4=5$
Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$.

Question 8:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Answer
Vertices $(0, \pm 5)$, foci $(0, \pm 8)$
Here, the vertices are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the vertices are $(0, \pm 5), a=5$.
Since the foci are $(0, \pm 8), c=8$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 5^{2}+b^{2}=8^{2}$
$b^{2}=64-25=39$
Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{39}=1$.

Question 9:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
Answer
Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
Here, the vertices are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the vertices are $(0, \pm 3), a=3$.
Since the foci are $(0, \pm 5), c=5$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 3^{2}+b^{2}=5^{2}$
$\Rightarrow b^{2}=25-9=16$
Thus, the equation of the hyperbola is $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$.

Question 10:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 5,0)$, the transverse axis is of length 8.
Answer
Foci $(\pm 5,0)$, the transverse axis is of length 8 .
Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the foci are $(\pm 5,0), c=5$.
Since the length of the transverse axis is $8,2 a=8 \Rightarrow a=4$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 4^{2}+b^{2}=5^{2}$
$\Rightarrow b^{2}=25-16=9$
Thus, the equation of the hyperbola is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.

Question 11:

Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \pm 13)$, the conjugate axis is of length 24.
Answer
Foci $(0, \pm 13)$, the conjugate axis is of length 24.
Here, the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the foci are $(0, \pm 13), c=13$.
Since the length of the conjugate axis is $24,2 b=24 \Rightarrow b=12$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+12^{2}=13^{2}$
$\Rightarrow a^{2}=169-144=25$
Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$.

Question 12:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .
Answer
Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .
Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the foci are $(\pm 3 \sqrt{5}, 0), c= \pm 3 \sqrt{5}$.
Length of latus rectum $=8$
$\Rightarrow \frac{2 b^{2}}{a}=8$
$\Rightarrow b^{2}=4 a$

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+4 a=45$
$\Rightarrow a^{2}+4 a-45=0$
$\Rightarrow a^{2}+9 a-5 a-45=0$
$\Rightarrow(a+9)(a-5)=0$
$\Rightarrow a=-9,5$
Since a is non-negative, $a=5$.
$\therefore b^{2}=4 a=4 \times 5=20$
Thus, the equation of the hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$.

Question 13:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 4,0)$, the latus rectum is of length 12

Answer
Foci $(\pm 4,0)$, the latus rectum is of length 12 .
Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the foci are $(\pm 4,0), c=4$.
Length of latus rectum $=12$
$\Rightarrow \frac{2 b^{2}}{a}=12$
$\Rightarrow b^{2}=6 a$
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+6 a=16$
$\Rightarrow a^{2}+6 a-16=0$
$\Rightarrow a^{2}+8 a-2 a-16=0$
$\Rightarrow(a+8)(a-2)=0$
$\Rightarrow a=-8,2$
Since a is non-negative, $a=2$.
$\therefore b^{2}=6 a=6 \times 2=12$

Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$.

Question 14:

Find the equation of the hyperbola satisfying the give conditions: Vertices ($\pm 7,0$),
$e=\frac{4}{3}$
Answer
Vertices ($\pm 7,0$), $\quad e=\frac{4}{3}$
Here, the vertices are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the vertices are ($\pm 7,0$), $a=7$.
It is given that $e=\frac{4}{3}$
$\therefore \frac{c}{a}=\frac{4}{3}$
$\Rightarrow \frac{c}{7}=\frac{4}{3}$
$\Rightarrow c=\frac{28}{3}$

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 7^{2}+b^{2}=\left(\frac{28}{3}\right)^{2}$
$\Rightarrow b^{2}=\frac{784}{9}-49$
$\Rightarrow b^{2}=\frac{784-441}{9}=\frac{343}{9}$
Thus, the equation of the hyperbola is $\frac{x^{2}}{49}-\frac{9 y^{2}}{343}=1$.

Question 15:

Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$
Answer
Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$
Here, the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the foci are ${ }^{(0, \pm \sqrt{10})}, c=\sqrt{10}$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+b^{2}=10$
$\Rightarrow b^{2}=10-a^{2}$
Since the hyperbola passes through point $(2,3)$,
$\frac{9}{a^{2}}-\frac{4}{b^{2}}=1$
From equations (1) and (2), we obtain

$$
\begin{aligned}
& \frac{9}{a^{2}}-\frac{4}{\left(10-a^{2}\right)}=1 \\
& \Rightarrow 9\left(10-a^{2}\right)-4 a^{2}=a^{2}\left(10-a^{2}\right) \\
& \Rightarrow 90-9 a^{2}-4 a^{2}=10 a^{2}-a^{4} \\
& \Rightarrow a^{4}-23 a^{2}+90=0 \\
& \Rightarrow a^{4}-18 a^{2}-5 a^{2}+90=0 \\
& \Rightarrow a^{2}\left(a^{2}-18\right)-5\left(a^{2}-18\right)=0 \\
& \Rightarrow\left(a^{2}-18\right)\left(a^{2}-5\right)=0 \\
& \Rightarrow a^{2}=18 \text { or } 5
\end{aligned}
$$

In hyperbola, $c>a$, i.e., $c^{2}>a^{2}$
$\therefore a^{2}=5$
$\Rightarrow b^{2}=10-a^{2}=10-5=5$

