FINAL JEE-MAIN EXAMINATION - JULY, 2021

(Held On Sunday 25th July, 2021)
TIME: 9:00 AM to 12:00

MATHEMATICS

SECTION-A

1. A spherical gas balloon of radius 16 meter subtends an angle 60° at the eye of the observer A while the angle of elevation of its center from the eye of A is 75°. Then the height (in meter) of the top most point of the balloon from the level of the observer's eye is :
(1) $8(2+2 \sqrt{3}+\sqrt{2})$
(2) $8(\sqrt{6}+\sqrt{2}+2)$
(3) $8(\sqrt{2}+2+\sqrt{3})$
(4) $8(\sqrt{6}-\sqrt{2}+2)$

Official Ans. by NTA (2)
2. Let $f(x)=3 \sin ^{4} x+10 \sin ^{3} x+6 \sin ^{2} x-3$, $\mathrm{x} \in\left[-\frac{\pi}{6}, \frac{\pi}{2}\right]$. Then, f is :
(1) increasing in $\left(-\frac{\pi}{6}, \frac{\pi}{2}\right)$
(2) decreasing in $\left(0, \frac{\pi}{2}\right)$
(3) increasing in $\left(-\frac{\pi}{6}, 0\right)$
(4) decreasing in $\left(-\frac{\pi}{6}, 0\right)$

Official Ans. by NTA (4)
3. Let S_{n} be the sum of the first n terms of an arithmetic progression. If $S_{3 n}=3 S_{2 n}$, then the value of $\frac{S_{4 n}}{S_{2 n}}$ is :
(1) 6
(2) 4
(3) 2
(4) 8

Official Ans. by NTA (1)
4. The locus of the centroid of the triangle formed by any point P on the hyperbola $16 x^{2}-9 y^{2}+32 x+36 y-164=0$, and its foci is :
(1) $16 x^{2}-9 y^{2}+32 x+36 y-36=0$
(2) $9 x^{2}-16 y^{2}+36 x+32 y-144=0$
(3) $16 x^{2}-9 y^{2}+32 x+36 y-144=0$
(4) $9 x^{2}-16 y^{2}+36 x+32 y-36=0$

Official Ans. by NTA (1)

TEST PAPER WITH ANSWER

5. Let the vectors
$(2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k},(1+b) \hat{i}+2 b \hat{j}-b \hat{k}$ and $(2+b) \hat{i}+2 b \hat{j}+(1-b) \hat{k} a, b, c, \in \mathbf{R}$ be co-planar. Then which of the following is true?
(1) $2 b=a+c$
(2) $3 c=a+b$
(3) $a=b+2 c$
(4) $2 \mathrm{a}=\mathrm{b}+\mathrm{c}$

Official Ans. by NTA (1)
6. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined as
$\mathrm{f}(\mathrm{x})= \begin{cases}\frac{\lambda\left|\mathrm{x}^{2}-5 \mathrm{x}+6\right|}{\mu\left(5 \mathrm{x}-\mathrm{x}^{2}-6\right)}, & \mathrm{x}<2 \\ \mathrm{e}^{\frac{\tan (x-2)}{x-[x]}} & , \mathrm{x}>2 \\ \mu & , \mathrm{x}=2\end{cases}$
where $[x]$ is the greatest integer less than or equal to x . If f is continuous at $\mathrm{x}=2$, then $\lambda+\mu$ is equal to :
(1) $\mathrm{e}(-\mathrm{e}+1)$
(2) $e(e-2)$
(3) 1
(4) $2 \mathrm{e}-1$

Official Ans. by NTA (1)

7. The value of the definite integral

$$
\int_{\pi / 24}^{5 \pi / 24} \frac{\mathrm{dx}}{1+\sqrt[3]{\tan 2 \mathrm{x}}} \text { is : }
$$

(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{12}$
(4) $\frac{\pi}{18}$

Official Ans. by NTA (3)
8. If b is very small as compared to the value of a, so that the cube and other higher powers of $\frac{b}{a}$ can be neglected in the identity
$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$,
then the value of γ is :
(1) $\frac{a^{2}+b}{3 a^{3}}$
(2) $\frac{a+b}{3 a^{2}}$
(3) $\frac{b^{2}}{3 a^{3}}$
(4) $\frac{a+b^{2}}{3 a^{3}}$

Official Ans. by NTA (3)
9. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}=1+\mathrm{xe}^{\mathrm{y}-\mathrm{x}},-\sqrt{2}<\mathrm{x}<\sqrt{2}, \mathrm{y}(0)=0$ then, the minimum value of $y(x), x \in(-\sqrt{2}, \sqrt{2})$ is equal to :
(1) $(2-\sqrt{3})-\log _{e} 2$
(2) $(2+\sqrt{3})+\log _{\mathrm{e}} 2$
(3) $(1+\sqrt{3})-\log _{e}(\sqrt{3}-1)$
(4) $(1-\sqrt{3})-\log _{e}(\sqrt{3}-1)$

Official Ans. by NTA (4)
10. The Boolean expression $(\mathrm{p} \Rightarrow \mathrm{q}) \wedge(\mathrm{q} \Rightarrow \sim \mathrm{p})$ is equivalent to :
(1) $\sim q$
(2) q
(3) p
(4) $\sim p$

Official Ans. by NTA (4)

11. The area (in sq. units) of the region, given by the set $\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid \mathrm{x} \geq 0,2 \mathrm{x}^{2} \leq \mathrm{y} \leq 4-2 \mathrm{x}\right\}$ is :
(1) $\frac{8}{3}$
(2) $\frac{17}{3}$
(3) $\frac{13}{3}$
(4) $\frac{7}{3}$

Official Ans. by NTA (4)
12. The sum of all values of x in $[0,2 \pi]$, for which $\sin \mathrm{x}+\sin 2 \mathrm{x}+\sin 3 \mathrm{x}+\sin 4 \mathrm{x}=0$, is equal to :
(1) 8π
(2) 11π
(3) 12π
(4) 9π

Official Ans. by NTA (4)

13. Let $\mathrm{g}: \mathbf{N} \rightarrow \mathbf{N}$ be defined as
$g(3 n+1)=3 n+2$,
$g(3 n+2)=3 n+3$,
$\mathrm{g}(3 \mathrm{n}+3)=3 \mathrm{n}+1$, for all $\mathrm{n} \geq 0$.
Then which of the following statements is true ?
(1) There exists an onto function $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$ such that $\mathrm{fog}=\mathrm{f}$
(2) There exists a one-one function $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$ such that $f o g=f$
(3) $\operatorname{gogog}=\mathrm{g}$
(4) There exists a function $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$ such that gof $=\mathrm{f}$

Official Ans. by NTA (1)
14. Let $\mathrm{f}:[0, \infty) \rightarrow[0, \infty)$ be defined as
$f(x)=\int_{0}^{x}[y] d y$
where $[\mathrm{x}]$ is the greatest integer less than or equal to x . Which of the following is true?
(1) f is continuous at every point in $[0, \infty)$ and differentiable except at the integer points.
(2) f is both continuous and differentiable except at the integer points in $[0, \infty)$.
(3) f is continuous everywhere except at the integer points in $[0, \infty)$.
(4) f is differentiable at every point in $[0, \infty)$.

Official Ans. by NTA (1)
15. The values of a and b, for which the system of equations

$$
\begin{aligned}
& 2 x+3 y+6 z=8 \\
& x+2 y+a z=5 \\
& 3 x+5 y+9 z=b
\end{aligned}
$$

has no solution, are :
(1) $\mathrm{a}=3, \mathrm{~b} \neq 13$
(2) $a \neq 3, b \neq 13$
(3) $a \neq 3, b=3$
(4) $a=3, b=13$

Official Ans. by NTA (1)
16. Let 9 distinct balls be distributed among 4 boxes, B_{1}, B_{2}, B_{3} and B_{4}. If the probability than B_{3} contains exactly 3 balls is $\mathrm{k}\left(\frac{3}{4}\right)^{9}$ then k lies in the set :
(1) $\{x \in \mathbf{R}:|x-3|<1\}$
(2) $\{\mathrm{x} \in \mathbf{R}:|\mathrm{x}-2| \leq 1\}$
(3) $\{x \in \mathbf{R}:|x-1|<1\}$
(4) $\{x \in \mathbf{R}:|x-5| \leq 1\}$

Official Ans. by NTA (1)
17. Let a parabola P be such that its vertex and focus lie on the positive x-axis at a distance 2 and 4 units from the origin, respectively. If tangents are drawn from $\mathrm{O}(0,0)$ to the parabola P which meet P at S and R, then the area (in sq. units) of $\Delta S O R$ is equal to :
(1) $16 \sqrt{2}$
(2) 16
(3) 32
(4) $8 \sqrt{2}$

Official Ans. by NTA (2)
18. The number of real roots of the equation
$e^{6 x}-e^{4 x}-2 e^{3 x}-12 e^{2 x}+e^{x}+1=0$ is :
(1) 2
(2) 4
(3) 6
(4) 1

Official Ans. by NTA (1)
19. Let an ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$, passes through $\left(\sqrt{\frac{3}{2}}, 1\right)$ and has eccentricity $\frac{1}{\sqrt{3}}$. If a circle, centered at focus $\mathrm{F}(\alpha, 0), \alpha>0$, of E and radius $\frac{2}{\sqrt{3}}$, intersects E at two points P and Q , then $P Q^{2}$ is equal to :
(1) $\frac{8}{3}$
(2) $\frac{4}{3}$
(3) $\frac{16}{3}$
(4) 3

Official Ans. by NTA (3)
20. Let the foot of perpendicular from a point $P(1,2,-1)$ to the straight line $L: \frac{x}{1}=\frac{y}{0}=\frac{z}{-1}$ be N. Let a line be drawn from P parallel to the plane $x+y+2 z=0$ which meets L at point Q. If α is the acute angle between the lines PN and PQ , then $\cos \alpha$ is equal to \qquad -.
(1) $\frac{1}{\sqrt{5}}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\frac{1}{2 \sqrt{3}}$

Official Ans. by NTA (3)

SECTION-B

1. Let $y=y(x)$ be solution of the following differential equation
$e^{y} \frac{d y}{d x}-2 e^{y} \sin x+\sin x \cos ^{2} x=0, y\left(\frac{\pi}{2}\right)=0$
If $y(0)=\log _{\mathrm{c}}\left(\alpha+\beta \mathrm{e}^{-2}\right)$, then $4(\alpha+\beta)$ is equal to
\qquad .

Official Ans. by NTA (4)

2. If the value of
$\left(1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\ldots . . \text { upto } \infty\right)^{\log _{(0.25)}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \ldots . . \text { upto } \infty\right)}$ is l, then l^{2} is equal to \qquad .
Official Ans. by NTA (3)
3. Consider the following frequency distribution:

class :	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency :	α	110	54	30	β

If the sum of all frequencies is 584 and median is 45 , then $|\alpha-\beta|$ is equal to \qquad —.

Official Ans. by NTA (164)
4. Let $\vec{p}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{q}=\hat{i}+2 \hat{j}+\hat{k}$ be two vectors. If a vector $\overrightarrow{\mathrm{r}}=(\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}})$ is perpendicular to each of the vectors $(\vec{p}+\vec{q})$ and $(\vec{p}-\vec{q})$, and $|\vec{r}|=\sqrt{3}$, then $|\alpha|+|\beta|+|\gamma|$ is equal to \qquad -.
Official Ans. by NTA (3)
5. The ratio of the coefficient of the middle term in the expansion of $(1+x)^{20}$ and the sum of the coefficients of two middle terms in expansion of $(1+x)^{19}$ is \qquad -.
Official Ans. by NTA (1)
6. Let $\mathrm{M}=\left\{\mathrm{A}=\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right): \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in\{ \pm 3, \pm 2, \pm 1,0\}\right\}$.

Define $\mathrm{f}: \mathbf{M} \rightarrow \mathbf{Z}$, as $f(A)=\operatorname{det}(A)$, for all $A \in M$, where \mathbf{Z} is set of all integers. Then the number of $A \in M$ such that $f(A)=15$ is equal to \qquad -
Official Ans. by NTA (16)
7. There are 5 students in class 10,6 students in class 11 and 8 students in class 12 . If the number of ways, in which 10 students can be selected from them so as to include at least 2 students from each class and at most 5 students from the total 11 students of class 10 and 11 is 100 k , then k is equal to \qquad —.

Official Ans. by NTA (238)
8. If α, β are roots of the equation $x^{2}+5(\sqrt{2}) x+10=0, \alpha>\beta$ and $P_{n}=\alpha^{n}-\beta^{n}$ for each positive integer n, then the value of $\left(\frac{\mathrm{P}_{17} \mathrm{P}_{20}+5 \sqrt{2} \mathrm{P}_{17} \mathrm{P}_{19}}{\mathrm{P}_{18} \mathrm{P}_{19}+5 \sqrt{2} \mathrm{P}_{18}^{2}}\right)$ is equal to \qquad .

Official Ans. by NTA (1)

9. The term independent of ' x ' in the expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$, where $x \neq 0,1$ is equal to \qquad -.

Official Ans. by NTA (210)
10. Let
$\mathbf{S}=\left\{\mathrm{n} \in \mathbf{N} \left\lvert\,\left(\begin{array}{ll}0 & \mathrm{i} \\ 1 & 0\end{array}\right)^{\mathrm{n}}\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right) \forall \mathrm{a}\right., \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbf{R}\right\}$,
where $i=\sqrt{-1}$. Then the number of 2-digit numbers in the set S is \qquad —.

Official Ans. by NTA (11)

