FINAL JEE-MAIN EXAMINATION - JULY, 2021

MATHEMATICS

SECTION-A

1. If the mean and variance of the following data:
$6,10,7,13, a, 12, b, 12$
are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to:
(1) 24
(2) 12
(3) 32
(4) 16

Official Ans. by NTA (4)
2. The value of $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2 j-1)+8 n}{(2 j-1)+4 n}$ is equal to :
(1) $5+\log _{\mathrm{e}}\left(\frac{3}{2}\right)$
(2) $2-\log _{\mathrm{e}}\left(\frac{2}{3}\right)$
(3) $3+2 \log _{\mathrm{e}}\left(\frac{2}{3}\right)$
(4) $1+2 \log _{e}\left(\frac{3}{2}\right)$

Official Ans. by NTA (4)
3. Let $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+2 \hat{j}+3 \hat{k}$. Then the vector product $(\vec{a}+\vec{b}) \times((\vec{a} \times((\vec{a}-\vec{b}) \times \vec{b})) \times \vec{b})$ is equal to :
(1) $5(34 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
(2) $7(34 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
(3) $7(30 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})$
(4) $5(30 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})$

Official Ans. by NTA (2)
4. The value of the definite integral
$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{\left(1+e^{x \cos x}\right)\left(\sin ^{4} x+\cos ^{4} x\right)}$
is equal to :
(1) $-\frac{\pi}{2}$
(2) $\frac{\pi}{2 \sqrt{2}}$
(3) $-\frac{\pi}{4}$
(4) $\frac{\pi}{\sqrt{2}}$

Official Ans. by NTA (2)
5. Let C be the set of all complex numbers. Let
$S_{1}=\left\{z \in C| | z-3-\left.2 i\right|^{2}=8\right\}$,
$S_{2}=\{z \in C \mid \operatorname{Re}(z) \geq 5\}$ and
$S_{3}=\{z \in C| | z-\bar{z} \mid \geq 8\}$.
Then the number of elements in $S_{1} \cap S_{2} \cap S_{3}$ is equal to
(1) 1
(2) 0
(3) 2
(4) Infinite

Official Ans. by NTA (1)

TEST PAPER WITH ANSWER

6. If the area of the bounded region
$\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \max \left\{0, \log _{\mathrm{e}} \mathrm{x}\right\} \leq \mathrm{y} \leq 2^{\mathrm{x}}, \frac{1}{2} \leq \mathrm{x} \leq 2\right\}$
is, $\alpha\left(\log _{e} 2\right)^{-1}+\beta\left(\log _{e} 2\right)+\gamma$, then the value of $(\alpha+\beta-2 \gamma)^{2}$ is equal to :
(1) 8
(2) 2
(3) 4
(4) 1

Official Ans. by NTA (2)
7. A ray of light through $(2,1)$ is reflected at a point P on the y -axis and then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with eccentricity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be:
(1) $11 x+7 y+8=0$ or $11 x+7 y-15=0$
(2) $11 x-7 y-8=0$ or $11 x+7 y+15=0$
(3) $2 x-7 y+29=0$ or $2 x-7 y-7=0$
(4) $2 x-7 y-39=0$ or $2 x-7 y-7=0$

Official Ans. by NTA (3)
8. If the coefficients of x^{7} in $\left(x^{2}+\frac{1}{b x}\right)^{11}$ and x^{-7} in $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$, are equal, then the value of b is equal to:
(1) 2
(2) -1
(3) 1
(4) -2

Official Ans. by NTA (3)
9. The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:
(1) $P \vee Q$
(2) $P \wedge \sim Q$
(3) $\sim(P \Rightarrow Q)$
(4) $\sim(P \Rightarrow Q) \Leftrightarrow P \wedge \sim Q$

Official Ans. by NTA (4)
10. If $\sin \theta+\cos \theta=\frac{1}{2}$, then
$16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ is equal to:
(1) 23
(2) -27
(3) -23
(4) 27

Official Ans. by NTA (3)
11. Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$. If $A^{-1}=\alpha I+\beta A, \alpha, \beta \in \mathbf{R}, I$ is a 2×2 identity matrix, then $4(\alpha-\beta)$ is equal to :
(1) 5
(2) $\frac{8}{3}$
(3) 2
(4) 4

Official Ans. by NTA (4)
12. Let $\mathrm{f}:\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \rightarrow \mathbf{R}$ be defined as
$f(x)=\left\{\begin{array}{ccc}(1+|\sin x|)^{\frac{3 a}{|\sin x|}} & , & -\frac{\pi}{4}<x<0 \\ b & , & x=0 \\ e^{\cot 4 x / \cot 2 x} & , & 0<x<\frac{\pi}{4}\end{array}\right.$
If f is continuous at $x=0$, then the value of $6 a+b^{2}$ is equal to:
(1) $1-\mathrm{e}$
(2) e-1
(3) $1+\mathrm{e}$
(4) e

Official Ans. by NTA (3)
13. Let $y=y(x)$ be solution of the differential equation $\log _{e}\left(\frac{d y}{d x}\right)=3 x+4 y$, with $y(0)=0$.
If $y\left(-\frac{2}{3} \log _{e} 2\right)=\alpha \log _{e} 2$, then the value of α is equal to:
(1) $-\frac{1}{4}$
(2) $\frac{1}{4}$
(3) 2
(4) $-\frac{1}{2}$

Official Ans. by NTA (1)
14. Let the plane passing through the point $(-1,0,-2)$ and perpendicular to each of the planes $2 x+y-z=2$ and $\mathrm{x}-\mathrm{y}-\mathrm{z}=3$ be $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+8=0$. Then the value of $a+b+c$ is equal to:
(1) 3
(2) 8
(3) 5
(4) 4

Official Ans. by NTA (4)
15. Two tangents are drawn from the point $\mathrm{P}(-1,1)$ to the circle $x^{2}+y^{2}-2 x-6 y+6=0$. If these tangents touch the circle at points A and B , and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle $A B D$ is equal to:
(1) 2
(2) $(3 \sqrt{2}+2)$
(3) 4
(4) $3(\sqrt{2}-1)$

Official Ans. by NTA (3)
16. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that $\mathrm{f}(2)=4$ and $f^{\prime}(2)=1$. Then, the value of $\lim _{x \rightarrow 2} \frac{x^{2} f(2)-4 f(x)}{x-2}$ is equal to :
(1) 4
(2) 8
(3) 16
(4) 12

Official Ans. by NTA (4)
17. Let P and Q be two distinct points on a circle which has center at $\mathrm{C}(2,3)$ and which passes through origin O . If OC is perpendicular to both the line segments $C P$ and $C Q$, then the set $\{P, Q\}$ is equal to
(1) $\{(4,0),(0,6)\}$
(2) $\{(2+2 \sqrt{2}, 3-\sqrt{5}),(2-2 \sqrt{2}, 3+\sqrt{5})\}$
(3) $\{(2+2 \sqrt{2}, 3+\sqrt{5}),(2-2 \sqrt{2}, 3-\sqrt{5})\}$
(4) $\{(-1,5),(5,1)\}$

Official Ans. by NTA (4)
18. Let α, β be two roots of the equation $x^{2}+(20)^{1 / 4} x+(5)^{1 / 2}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to
(1) 10
(2) 100
(3) 50
(4) 160

Official Ans. by NTA (3)
19. The probability that a randomly selected 2-digit number belongs to the $\operatorname{set}\left\{\mathrm{n} \in \mathrm{N}:\left(2^{\mathrm{n}}-2\right)\right.$ is a multiple of 3$\}$ is equal to
(1) $\frac{1}{6}$
(2) $\frac{2}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$

Official Ans. by NTA (3)
20. Let
$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid 2 \mathrm{x}^{2}+2 \mathrm{y}^{2}-2 \mathrm{x}-2 \mathrm{y}=1\right\}$,
$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid 4 \mathrm{x}^{2}+4 \mathrm{y}^{2}-16 \mathrm{y}+7=0\right\}$ and
$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid \mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-2 \mathrm{y}+5 \leq \mathrm{r}^{2}\right\}$.
Then the minimum value of $|\mathrm{r}|$ such that $\mathrm{A} \cup \mathrm{B} \subseteq \mathrm{C}$ is equal to
(1) $\frac{3+\sqrt{10}}{2}$
(2) $\frac{2+\sqrt{10}}{2}$
(3) $\frac{3+2 \sqrt{5}}{2}$
(4) $1+\sqrt{5}$

Official Ans. by NTA (3)

SECTION-B

1. For real numbers α and β, consider the following system of linear equations :
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$.
If the system has infinite solutions, then $\alpha+\beta$ is equal to \qquad
Official Ans. by NTA (5)
2. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}$ and $\vec{c}=\hat{j}-\hat{k}$ be three vectors such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=1$. If the length of projection vector of the vector \vec{b} on the vector $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}$ is l, then the value of $3 l^{2}$ is equal to \qquad —.

Official Ans. by NTA (2)
3. If $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in an arithmetic progression, then the value of x is equal to \qquad .

Official Ans. by NTA (3)

4. Let the domain of the function
$f(x)=\log _{4}\left(\log _{5}\left(\log _{3}\left(18 x-x^{2}-77\right)\right)\right)$ be (a, b). Then the value of the integral
$\int_{a}^{b} \frac{\sin ^{3} x}{\left(\sin ^{3} x+\sin ^{3}(a+b-x)\right)} d x$ is equal to \qquad
Official Ans. by NTA (1)
5. Let
$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & -2+\cos ^{2} x & \cos 2 x \\ 2+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+\cos 2 x\end{array}\right|, x \in[0, \pi]$
Then the maximum value of $f(x)$ is equal to
\qquad .

Official Ans. by NTA (6)

6. Let $\mathrm{F}:[3,5] \rightarrow \mathbf{R}$ be a twice differentiable function on $(3,5)$ such that
$F(x)=e^{-x} \int_{3}^{x}\left(3 t^{2}+2 t+4 F^{\prime}(t)\right) d t$.
If $F^{\prime}(4)=\frac{\alpha e^{\beta}-224}{\left(e^{\beta}-4\right)^{2}}$, then $\alpha+\beta$ is equal to
\qquad _.

Official Ans. by NTA (16)
7. Let a plane P pass through the point $(3,7,-7)$ and contain the line, $\frac{x-2}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$. If distance of the plane P from the origin is d, then d^{2} is equal to \qquad -.

Official Ans. by NTA (3)
8. Let $S=\{1,2,3,4,5,6,7\}$. Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $\mathrm{m}, \mathrm{n} \in \mathrm{S}$ and $\mathrm{m} \cdot \mathrm{n} \in \mathrm{S}$ is equal to \qquad -

Official Ans. by NTA (490)
9. If $y=y(x), y \in\left[0, \frac{\pi}{2}\right)$ is the solution of the differential equation
$\sec y \frac{d y}{d x}-\sin (x+y)-\sin (x-y)=0$, with $y(0)=0$, then $5 y^{\prime}\left(\frac{\pi}{2}\right)$ is equal to \qquad .

Official Ans. by NTA (2)

10. Let $\mathrm{f}:[0,3] \rightarrow \mathbf{R}$ be defined by
$f(x)=\min \{x-[x], 1+[x]-x\}$
where [x] is the greatest integer less than or equal to x. Let P denote the set containing all $x \in[0,3]$ where f is discontinuous, and Q denote the set containing all $x \in(0,3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to
\qquad _.

Official Ans. by NTA (5)

