FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021 (Held On Thursday 25th February, 2021) TIME: 9:00 AM to 12:00 NOON

MATHEMATIGS

SECTION-A

1. When a missile is fired from a ship, the probability that it is intercepted is $\frac{1}{3}$ and the probability that the missile hits the target, given that it is not intercepted, is $\frac{3}{4}$. If three missiles are fired independently from the ship, then the probability that all three hit the target, is :
(1) $\frac{1}{27}$
(2) $\frac{3}{4}$
(3) $\frac{1}{8}$
(4) $\frac{3}{8}$

Official Ans. by NTA (3)
Sol. Required probability $=\left(\frac{2}{3} \times \frac{3}{4}\right)^{3}=\frac{1}{8}$
2. If $0<\theta, \phi<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and $\mathrm{z}=\sum_{\mathrm{n}=0}^{\infty} \cos ^{2 \mathrm{n}} \theta \cdot \sin ^{2 \mathrm{n}} \phi$ then :
(1) $x y-z=(x+y) z$
(2) $x y+y z+z x=z$
(3) $x y z=4$
(4) $x y+z=(x+y) z$

Official Ans. by NTA (4)
Sol. $\mathrm{x}=\frac{1}{1-\cos ^{2} \theta} \Rightarrow \sin ^{2} \theta=\frac{1}{\mathrm{x}}$
Also, $\cos ^{2} \theta=\frac{1}{y} \& 1-\sin ^{2} \theta \cos ^{2} \theta=\frac{1}{\mathrm{z}}$
So, $1-\frac{1}{x} \times \frac{1}{y}=\frac{1}{z} \Rightarrow z(x y-1)=x y$
Also, $\frac{1}{x}+\frac{1}{y}=1 \quad \Rightarrow x+y=x y$
From (i) and (ii)
$x y+z=x y z=(x+y) z$
3. Let $\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{N}$ such that $\mathrm{f}(\mathrm{n}+1)=\mathrm{f}(\mathrm{n})+\mathrm{f}(1)$ $\forall \mathrm{n} \in \mathrm{N}$ and g be any arbitrary function.
Which of the following statements is NOT true?
(1) If fog is one-one, then g is one-one
(2) If f is onto, then $f(n)=n \forall n \in N$
(3) f is one-one
(4) If g is onto, then fog is one-one

Official Ans. by NTA (4)
Sol. $f(n+1)-f(n)=f(1)$
$\Rightarrow \mathrm{f}(\mathrm{n})=\mathrm{nf}(1)$

TEST PAPER WHIH SOLUIION

$\Rightarrow \mathrm{f}$ is one-one
Now, Let $\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}_{2}\right)\right)=\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}_{1}\right)\right)$
$\Rightarrow \mathrm{g}\left(\mathrm{x}_{2}\right)=\mathrm{g}\left(\mathrm{x}_{1}\right)$ (as f is one-one)
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$ (as fog is one-one)
$\Rightarrow \mathrm{g}$ is one-one
Now, $\mathrm{f}(\mathrm{g}(\mathrm{n}))=\mathrm{g}(\mathrm{n}) \mathrm{f}(1)$
may be many-one if
$\mathrm{g}(\mathrm{n})$ is many-one
4. The equation of the line through the point $(0,1,2)$ and perpendicular to the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2}$ is :
(1) $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{3}$
(2) $\frac{x}{3}=\frac{y-1}{-4}=\frac{z-2}{3}$
(3) $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{-3}$
(4) $\frac{\mathrm{x}}{-3}=\frac{\mathrm{y}-1}{4}=\frac{\mathrm{z}-2}{3}$

Official Ans. by NTA (4)
Sol. $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2}=r$
$\Rightarrow \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(2 \mathrm{r}+1,3 \mathrm{r}-1,-2 \mathrm{r}+1)$
Since, $\overrightarrow{Q P} \perp(2 \hat{i}+3 \hat{j}-2 \hat{k})$
$\Rightarrow 4 \mathrm{r}+2+9 \mathrm{r}-6+4 \mathrm{r}+2=0$
$\Rightarrow \mathrm{r}=\frac{2}{17}$
$\Rightarrow \mathrm{P}\left(\frac{21}{17}, \frac{-11}{17}, \frac{13}{17}\right)$

$\Rightarrow \overrightarrow{\mathrm{PQ}}=\frac{21 \hat{\mathrm{i}}-28 \hat{\mathrm{j}}-21 \hat{\mathrm{k}}}{17}$
So, $\overrightarrow{\mathrm{QP}}: \frac{\mathrm{x}}{-3}=\frac{\mathrm{y}-1}{4}=\frac{\mathrm{z}-2}{3}$
5. Let α be the angle between the lines whose direction cosines satisfy the equations $l+\mathrm{m}-\mathrm{n}=0$ and $l^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}=0$. Then the
value of $\sin ^{4} \alpha+\cos ^{4} \alpha$ is :
(1) $\frac{3}{4}$
(2) $\frac{3}{8}$
(3) $\frac{5}{8}$
(4) $\frac{1}{2}$

Official Ans. by NTA (3)
Sol. $\mathrm{n}=\ell+\mathrm{m}$
Now, $\ell^{2}+\mathrm{m}^{2}=\mathrm{n}^{2}=(\ell+\mathrm{m})^{2}$
$\Rightarrow 2 \ell \mathrm{~m}=0$
If $\ell=0 \Rightarrow \mathrm{~m}=\mathrm{n}= \pm \frac{1}{\sqrt{2}}$
And, If $\mathrm{m}=0 \Rightarrow \mathrm{n}=\ell= \pm \frac{1}{\sqrt{2}}$
So, direction cosines of two lines are
$\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$
Thus, $\cos \alpha=\frac{1}{2} \Rightarrow \alpha=\frac{\pi}{3}$
6. The value of the integral

$$
\int \frac{\sin \theta \cdot \sin 2 \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{1-\cos 2 \theta} \mathrm{~d} \theta
$$

is :
(where c is a constant of integration)
(1) $\frac{1}{18}\left[11-18 \sin ^{2} \theta+9 \sin ^{4} \theta-2 \sin ^{6} \theta\right]^{\frac{3}{2}}+\mathrm{c}$
(2) $\frac{1}{18}\left[9-2 \cos ^{6} \theta-3 \cos ^{4} \theta-6 \cos ^{2} \theta\right]^{\frac{3}{2}}+\mathrm{c}$
(3) $\frac{1}{18}\left[9-2 \sin ^{6} \theta-3 \sin ^{4} \theta-6 \sin ^{2} \theta\right]^{\frac{3}{2}}+\mathrm{c}$
(4) $\frac{1}{18}\left[11-18 \cos ^{2} \theta+9 \cos ^{4} \theta-2 \cos ^{6} \theta\right]^{\frac{3}{2}}+c$

Official Ans. by NTA (4)
Sol. $I=\int \frac{\sin \theta \cdot \sin 2 \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{1-\cos 2 \theta} d \theta$
$\Rightarrow I=\int \frac{\sin \theta \cdot 2 \sin \theta \cos \theta \cdot \sin ^{2} \theta\left(\sin ^{4} \theta+\sin ^{2} \theta+1\right)\left(2 \sin ^{4} \theta+3 \sin ^{2} \theta+6\right)^{1 / 2}}{2 \sin ^{2} \theta} d \theta$

$$
=\int \sin ^{2} \theta \cdot \cos \theta\left(\sin ^{4} \theta+\sin ^{2} \theta+1\right)\left(2 \sin ^{4} \theta+3 \sin ^{2} \theta+6\right)^{1 / 2} d \theta
$$

Let $\sin \theta=\mathrm{t} \Rightarrow \cos \theta \mathrm{d} \theta=\mathrm{dt}$

$$
\begin{aligned}
\therefore \quad I & =\int t^{2}\left(t^{4}+t^{2}+1\right)\left(2 t^{4}+3 t^{2}+6\right)^{1 / 2} d t \\
& =\int\left(t^{5}+t^{3}+t\right) t\left(2 t^{4}+3 t^{2}+6\right)^{1 / 2} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(\mathrm{t}^{5}+\mathrm{t}^{3}+\mathrm{t}\right)\left(\mathrm{t}^{2}\right)^{1 / 2}\left(2 \mathrm{t}^{4}+3 \mathrm{t}^{2}+6\right)^{1 / 2} \mathrm{dt} \\
& =\int\left(\mathrm{t}^{5}+\mathrm{t}^{3}+\mathrm{t}\right)\left(2 \mathrm{t}^{6}+3 \mathrm{t}^{4}+6 \mathrm{t}^{2}\right)^{1 / 2} \mathrm{dt}
\end{aligned}
$$

Let $2 t^{6}+3 t^{4}+6 t^{2}=u^{2}$
$\Rightarrow 12\left(\mathrm{t}^{5}+\mathrm{t}^{3}+\mathrm{t}\right) \mathrm{dt}=2 \mathrm{udu}$

$$
\begin{aligned}
\therefore \quad \mathrm{I} & =\int\left(\mathrm{u}^{2}\right)^{1 / 2} \cdot \frac{2 \mathrm{udu}}{12} \\
& =\int \frac{\mathrm{u}^{2}}{6} d u=\frac{\mathrm{u}^{3}}{18}+\mathrm{C} \\
& =\frac{\left(2 t^{6}+3 \mathrm{t}^{4}+6 \mathrm{t}^{2}\right)^{3 / 2}}{18}+\mathrm{C}
\end{aligned}
$$

when $\mathrm{t}=\sin \theta$
and $t^{2}=1-\cos ^{2} \theta$ will give option (4)
7. The value of $\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$, where [t] denotes the greatest integer $\leq t$, is :
(1) $\frac{e-1}{3 \mathrm{e}}$
(2) $\frac{e+1}{3}$
(3) $\frac{e+1}{3 e}$
(4) $\frac{1}{3 \mathrm{e}}$

Official Ans. by NTA (3)
Sol. $I=\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$
$=\int_{-1}^{0} x^{2} e^{\left[x^{3}\right]} d x+\int_{0}^{1} x^{2} e^{\left[x^{3}\right]} d x$
$=\int_{-1}^{0} x^{2} e^{-1} d x+\int_{0}^{1} x^{2} e^{0} d x$
$=\frac{1}{e} \times\left.\frac{\mathrm{x}^{3}}{3}\right|_{-1} ^{0}+\left.\frac{\mathrm{x}^{3}}{3}\right|_{0} ^{1}$
$=\frac{1}{\mathrm{e}} \times\left(0-\left(\frac{-1}{3}\right)\right)+\frac{1}{3}$
$=\frac{1}{3 \mathrm{e}}+\frac{1}{3}=\frac{1+\mathrm{e}}{3 \mathrm{e}}$
8. A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point A, with uniform speed. At that point, angle of depression of the boat with the man's eye is
30° (Ignore man's height). After sailing for 20 seconds, towards the base of the tower (which is at the level of water), the boat has reached a point B, where the angle of depression is 45°. Then the time taken (in seconds) by the boat from B to reach the base of the tower is:
(1) 10
(2) $10 \sqrt{3}$
(3) $10(\sqrt{3}+1)$
(4) $10(\sqrt{3}-1)$

Official Ans. by NTA (3)

Sol.

Let speed of boat is $u \mathrm{~m} / \mathrm{s}$ and height of tower is h meter $\&$ distance $A B=x$ metre
$\therefore \mathrm{x}=\mathrm{h} \cot 30^{\circ}-\mathrm{h} \cot 45^{\circ}$
$\Rightarrow \mathrm{x}=\mathrm{h}(\sqrt{3}-1)$
$\therefore u=\frac{x}{20}=\frac{h(\sqrt{3}-1)}{20} \mathrm{~m} / \mathrm{s}$
\therefore Time taken to travel from B to C (Distance $=\mathrm{h}$ meter)
$=\frac{h}{u}=\frac{h}{h \frac{(\sqrt{3}-1)}{20}}=\frac{20}{\sqrt{3}-1}=10(\sqrt{3}+1) \mathrm{sec}$.
9. A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 \mathrm{x}+\mathrm{y}=1$. Which of the following points does NOT lie on it?
(1) $(-6,0)$
$(2)(4,5)$
$(3)(5,4)$
(4) $(0,3)$

Official Ans. by NTA (3)
Sol. Slope of tangent $=\mathrm{m}_{\mathrm{T}}=\mathrm{m}$
So, $m(-2)=-1 \Rightarrow m=\frac{1}{2}$

Equation : $y=m x+\frac{a}{m}$
$\Rightarrow y=\frac{1}{2} x+\frac{3}{2 \times \frac{1}{2}}\left(a=\frac{6}{4}=\frac{3}{2}\right)$
$\Rightarrow \mathrm{y}=\frac{\mathrm{x}}{2}+3$
$\Rightarrow 2 \mathrm{y}=\mathrm{x}+6$
Point $(5,4)$ will not lie on it
10. All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in :
(1) $\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)$
(2) $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
(3) $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)$
(4) $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$

Official Ans. by NTA (4)
Sol. $\sin 2 \theta+\tan 2 \theta>0$
$\Rightarrow \sin 2 \theta+\frac{\sin 2 \theta}{\cos 2 \theta}>0$
$\Rightarrow \sin 2 \theta \frac{(\cos 2 \theta+1)}{\cos 2 \theta}>0 \Rightarrow \tan 2 \theta\left(2 \cos ^{2} \theta\right)>0$
Note : $\cos 2 \theta \neq 0$
$\Rightarrow 1-2 \sin ^{2} \theta \neq 0 \Rightarrow \sin \theta \neq \pm \frac{1}{\sqrt{2}}$
Now, $\tan 2 \theta(1+\cos 2 \theta)>0$
$\Rightarrow \tan 2 \theta>0 \quad($ as $\cos 2 \theta+1>0)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right) \cup\left(2 \pi, \frac{5 \pi}{2}\right) \cup\left(3 \pi, \frac{7 \pi}{2}\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$

As $\sin \theta \neq \pm \frac{1}{\sqrt{2}} ;$ which has been already considered
11. Let the lines $(2-i) z=(2+i) \bar{z}$ and $(2+\mathrm{i}) \mathrm{z}+(\mathrm{i}-2) \overline{\mathrm{z}}-4 \mathrm{i}=0$, (here $\left.\mathrm{i}^{2}=-1\right)$ be normal to a circle C. If the line $i z+\bar{z}+1+i=0$ is tangent to this circle C , then its radius is:
(1) $\frac{3}{\sqrt{2}}$
(2) $\frac{1}{2 \sqrt{2}}$
(3) $3 \sqrt{2}$
(4) $\frac{3}{2 \sqrt{2}}$

Official Ans. by NTA (4)
Sol. (i) $(2-i) z=(2+i) \bar{z}$
$y=\frac{x}{2}$
(ii) $(2+i) z+(i-2) \bar{z}-4 i=0$
$x+2 y=2$
(iii) $\mathrm{iz}+\overline{\mathrm{z}}+1+\mathrm{i}=0$

Eqn of tangent $x-y+1=0$
Solving (i) and (ii)
$\mathrm{x}=1, \mathrm{y}=\frac{1}{2}$
Now, $\mathrm{p}=\mathrm{r} \Rightarrow\left|\frac{1-\frac{1}{2}+1}{\sqrt{2}}\right|=\mathrm{r}$
$\Rightarrow \mathrm{r}=\frac{3}{2 \sqrt{2}}$
12. The image of the point $(3,5)$ in the line $x-y+1=0$, lies on :
(1) $(x-2)^{2}+(y-2)^{2}=12$
(2) $(x-4)^{2}+(y+2)^{2}=16$
(3) $(x-4)^{2}+(y-4)^{2}=8$
(4) $(x-2)^{2}+(y-4)^{2}=4$

Official Ans. by NTA (4)

Sol.

$$
\frac{x-3}{1}=\frac{y-5}{-1}=-2\left(\frac{3-5+1}{1+1}\right)
$$

So, $x=4, y=4$
Hence, $(x-2)^{2}+(y-4)^{2}=4$
13. If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of 90°, then which of the following relations is TRUE?
(1) $a+b=c+d$
(2) $a-b=c-d$
(3) $a-c=b+d$
(4) $a b=\frac{c+d}{a+b}$

Official Ans. by NTA (2)
Sol. For orthogonal curves $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{d}$ $\Rightarrow \mathrm{a}-\mathrm{b}=\mathrm{c}-\mathrm{d}$
14. $\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1+\frac{1}{2}+\ldots \ldots .+\frac{1}{\mathrm{n}}}{\mathrm{n}^{2}}\right)^{\mathrm{n}}$ is equal to :
(1) $\frac{1}{2}$
(2) 0
(3) $\frac{1}{\mathrm{e}}$
(4) 1

Official Ans. by NTA (4)
Sol. Given limit is of 1^{∞} form
So, $l=\exp \left(\lim _{\mathrm{n} \rightarrow \infty} \frac{1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots . .+\frac{1}{\mathrm{n}}}{\mathrm{n}}\right)$
Now,
$0 \leq 1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{\mathrm{n}} \leq 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots .+\frac{1}{\sqrt{\mathrm{n}}}$

$$
\leq 2 \sqrt{n}-1
$$

So, $l=\exp (0)$ (from sandwich theorem)

$$
=1
$$

15. The coefficients a, b and c of the quadratic equation, $a^{2}+b x+c=0$ are obtained by throwing a dice three times. The probability that this equation has equal roots is:
(1) $\frac{1}{72}$
(2) $\frac{5}{216}$
(3) $\frac{1}{36}$
(4) $\frac{1}{54}$

Official Ans. by NTA (2)
Sol. $a^{2}+b x+c=0$
For equal roots $\mathrm{D}=0$
$\Rightarrow \mathrm{b}^{2}=4 \mathrm{ac}$
Case I : ac =1
$(\mathrm{a}, \mathrm{b}, \mathrm{c})=(1,2,1)$
Case II : ac = 4
$(\mathrm{a}, \mathrm{b}, \mathrm{c})=(1,4,4)$

$$
\begin{aligned}
& \text { or }(4,4,1) \\
& \text { or }(2,4,2)
\end{aligned}
$$

Case III : ac $=9$
$(a, b, c)=(3,6,3)$
Required probability $=\frac{5}{216}$
16. The total number of positive integral solutions ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) such that $\mathrm{xyz}=24$ is :
(1) 36
(2) 24
(3) 45
(4) 30

Official Ans. by NTA (4)
Sol. $\mathrm{xyz}=2^{3} \times 3^{1}$
Let $x=2^{\alpha_{1}} \times 3^{\beta_{1}}$
$\mathrm{y}=2^{\alpha_{2}} \times 3^{\beta_{2}}$
$\mathrm{z}=2^{\alpha_{3}} \times 3^{\beta_{2}}$
Now $\alpha_{1}+\alpha_{2}+\alpha_{3}=3$.
No. of non-negative intergal sol $={ }^{5} \mathrm{C}_{2}=10$
$\& \beta_{1}+\beta_{2}+\beta_{3}=1$
No. of non-negative intergal sol ${ }^{\mathrm{n}}={ }^{3} \mathrm{C}_{2}=3$
Total ways $=10 \times 3=30$.
17. The integer ' k ', for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every x in R, is :
(1) 3
(2) 2
(3) 0
(4) 4

Official Ans. by NTA (1)
Sol. $x^{2}-2(3 K-1) x+8 K^{2}-7>0$
Now, $\mathrm{D}<0$
$\Rightarrow 4(3 \mathrm{~K}-1)^{2}-4 \times 1 \times\left(8 \mathrm{~K}^{2}-7\right)<0$
$\Rightarrow 9 \mathrm{~K}^{2}-6 \mathrm{~K}+1-8 \mathrm{~K}^{2}+7<0$
$\Rightarrow \mathrm{K}^{2}-6 \mathrm{~K}+8<0$
$\Rightarrow(\mathrm{K}-4)(\mathrm{K}-2)<0$
$\Rightarrow \mathrm{K} \in(2,4)$
18. If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is $\frac{x^{2}-4 x+y+8}{x-2}$, then this curve also passes through the point:
(1) $(5,4)$
(2) $(4,5)$
(3) $(4,4)$
$(4)(5,5)$

Official Ans. by NTA (4)
Sol. Given
$y(0)=0$
$\& \frac{d y}{d x}=\frac{(x-2)^{2}+y+4}{x-2}$
$\Rightarrow \frac{d y}{d x}-\frac{y}{x-2}=(x-2)+\frac{4}{x-2}$
\Rightarrow I.F. $=\mathrm{e}^{-\int \frac{1}{\mathrm{x}-2} \mathrm{dx}}=\frac{1}{\mathrm{x}-2}$
Solution of L.D.E.
$\Rightarrow y \frac{1}{x-2}=\int \frac{1}{x-2}\left((x-2)+\frac{4}{x-2}\right) \cdot d x$
$\Rightarrow \frac{y}{x-2}=x-\frac{4}{x-2}+C$
Now, at $x=0, y=0 \Rightarrow C=-2$
$y=x(x-2)-4-2(x-2)$
$\Rightarrow y=x^{2}-4 x$
This curve passes through $(5,5)$
19. The statement $\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{A})$ is equivalent to :
(1) $\mathrm{A} \rightarrow(\mathrm{A} \wedge \mathrm{B})$
(2) $\mathrm{A} \rightarrow(\mathrm{A} \rightarrow \mathrm{B})$
(3) $\mathrm{A} \rightarrow(\mathrm{A} \leftrightarrow \mathrm{B})$
(4) $\mathrm{A} \rightarrow(\mathrm{A} \vee \mathrm{B})$

Official Ans. by NTA (4)
Sol. $\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{A})$
$\equiv \mathrm{A} \rightarrow(\sim \mathrm{B} \vee \mathrm{A})$
$\equiv \sim \mathrm{A} \vee(\sim \mathrm{B} \vee \mathrm{A})$
$\equiv(\sim \mathrm{A} \vee \mathrm{A}) \vee \sim \mathrm{B}$
$\equiv \mathrm{T} \vee \sim \mathrm{B} \equiv \mathrm{T}$
$\therefore \mathrm{T} \vee \mathrm{B}=\mathrm{T}$
$\equiv(\sim \mathrm{A} \vee \mathrm{A}) \vee \mathrm{B}$
$\equiv \sim A \vee(A \vee B)$
$\equiv \mathrm{A} \rightarrow(\mathrm{A} \vee \mathrm{B})$
20. If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f^{\prime}\left(\frac{4}{3}\right)=0$, then ordered pair (a, b) is equal to :
(1) $(5,8)$
(2) $(-5,8)$
(3) $(5,-8)$
(4) $(-5,-8)$

Official Ans. by NTA (1)
Sol. $f(1)=f(2)$
$\Rightarrow 1-\mathrm{a}+\mathrm{b}-4=8-4 \mathrm{a}+2 \mathrm{~b}-4$
$\Rightarrow 3 \mathrm{a}-\mathrm{b}=7$
Also $\mathrm{f}^{1}\left(\frac{4}{3}\right)=0 \quad$ (given)
$\Rightarrow\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+\mathrm{b}\right)_{\mathrm{x}=\frac{4}{3}}=0$
$\Rightarrow \frac{16}{3}-\frac{8 \mathrm{a}}{3}+\mathrm{b}=0$
$\Rightarrow 8 \mathrm{a}-3 \mathrm{~b}-16=0$
Solving (1) and (2)
$\mathrm{a}=5, \mathrm{~b}=8$

SECTION-B

1. Let $f(x)$ be a polynomial of degree 6 in x, in which the coefficient of x^{6} is unity and it has extrema at $x=-1$ and $x=1$. If $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=1$, then $5 \cdot f(2)$ is equal to \qquad .
Official Ans. by NTA (144)
Sol. Let $f(x)=x^{6}+a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f$ as $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=1$ non-zero finite
So, $d=e=f=0$
and $f(x)=x^{3}\left(x^{3}+a x^{2}+b x+c\right)$
Hence, $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=c=1$
Now, as $f(x)=x^{6}+a x^{5}+b x^{4}+x^{3}$
and $f^{\prime}(x)=0$ at $x=1$ and $x=-1$
i.e., $f^{\prime}(x)=6 x^{5}+5 a x^{4}+4 b x^{3}+3 x^{2}$
$\mathrm{f}^{\prime}(1)=0$
$\Rightarrow 6+5 \mathrm{a}+4 \mathrm{~b}+3=0$
$\Rightarrow 5 \mathrm{a}+4 \mathrm{~b}=-9$
$\& f^{\prime}(-1)=0$
$\Rightarrow-6+5 \mathrm{a}-4 \mathrm{~b}+3=0$
$\Rightarrow 5 \mathrm{a}-4 \mathrm{~b}=3$
Solving both we get,
$\mathrm{a}=\frac{-6}{10}=\frac{-3}{5} ; \quad \mathrm{b}=\frac{-3}{2}$
$\therefore f(x)=x^{6}-\frac{3}{5} x^{5}-\frac{3}{2} x^{4}+x^{3}$
$\therefore 5 f(2)=5\left[64-\frac{3}{5} \cdot 32-\frac{3}{2} \cdot 16+8\right]$
$=320-96-120+40$
$=144$
2. The number of points, at which the function $f(x)$ $=|2 \mathrm{x}+1|-3|\mathrm{x}+2|+\left|\mathrm{x}^{2}+\mathrm{x}-2\right|, \mathrm{x} \in \mathrm{R}$ is not differentiable, is \qquad .

Official Ans. by NTA (2)
Sol. $\mathrm{f}(\mathrm{x})=|2 \mathrm{x}+1|-3|\mathrm{x}+2|+\left|\mathrm{x}^{2}+\mathrm{x}-2\right|$

$$
\begin{aligned}
& =|2 \mathrm{x}+1|-3|\mathrm{x}+2|+|\mathrm{x}+2||\mathrm{x}-1| \\
& =|2 \mathrm{x}+1|+|\mathrm{x}+2|(|\mathrm{x}-1|-3)
\end{aligned}
$$

Critical points are $\mathrm{x}=\frac{-1}{2},-2,-1$
but $\mathrm{x}=-2$ is making a zero.
twice in product so, points of non differentability are $x=\frac{-1}{2}$ and $x=-1$
\therefore Number of points of non-differentiability $=2$
3. The graphs of sine and cosine functions, intersect each other at a number of points and between two consecutive points of intersection, the two graphs enclose the same area A. Then A^{4} is equal to \qquad _.
Official Ans. by NTA (64)

Sol.

$A=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x$

$$
=\left.(-\cos x-\sin x)\right|_{\pi / 4} ^{5 \pi / 4}
$$

$$
=\left(-\left(\frac{-1}{\sqrt{2}}\right)-\left(\frac{-1}{\sqrt{2}}\right)\right)-\left(-\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}\right)\right)
$$

$\Rightarrow \mathrm{A}=\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}=2 \sqrt{2}$
$\Rightarrow \mathrm{A}^{4}=(2 \sqrt{2})^{4}=16 \times 4=64$
4. Let $A_{1}, A_{2}, A_{3}, \ldots \ldots$. be squares such that for each $n \geq 1$, the length of the side of A_{n} equals the length of diagonal of A_{n+1}. If the length of A_{1} is 12 cm , then the smallest value of n for which area of A_{n} is less than one, is \qquad .
Official Ans. by NTA (9)
Sol. Let a_{n} be the side length of A_{n}.
So, $a_{n}=\sqrt{2} a_{n+1}, a_{1}=12$
$\Rightarrow \mathrm{a}_{\mathrm{n}}=12 \times\left(\frac{1}{\sqrt{2}}\right)^{\mathrm{n}-1}$

Now, $\left(\mathrm{a}_{\mathrm{n}}\right)^{2}<1 \Rightarrow \frac{144}{2^{(\mathrm{n}-1)}}<1$
$\Rightarrow 2^{(\mathrm{n}-1)}>144$
$\Rightarrow \mathrm{n}-1 \geq 8$
$\Rightarrow \mathrm{n} \geq 9$
5. Let $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$, where x, y and z are real numbers such that $x+y+z>0$ and $x y z=2$. If $A^{2}=I_{3}$, then the value of $x^{3}+y^{3}+z^{3}$ is \qquad .

Official Ans. by NTA (7)
Sol. $\mathrm{A}^{2}=\mathrm{I}$
$\Rightarrow \mathrm{AA}^{\prime}=\mathrm{I} \quad\left(\right.$ as $\left.\mathrm{A}^{\prime}=\mathrm{A}\right)$
$\Rightarrow \mathrm{A}$ is orthogonal
So, $x^{2}+y^{2}+z^{2}=1$ and $x y+y z+z x=0$
$\Rightarrow(\mathrm{x}+\mathrm{y}+\mathrm{z})^{2}=1+2 \times 0$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=1$
Thus,

$$
x^{3}+y^{3}+z^{3}=3 \times 2+1 \times(1-0)
$$

$$
=7
$$

6. If $A=\left[\begin{array}{c}0 \\ \tan \left(\frac{\theta}{2}\right)^{-\tan \left(\frac{\theta}{2}\right)} \\ 0\end{array}\right]$ and
$\left(I_{2}+A\right)\left(I_{2}-A\right)^{-1}=\left[\begin{array}{lr}a & -b \\ b & a\end{array}\right]$, then $13\left(a^{2}+b^{2}\right)$ is equal to \qquad .

Official Ans. by NTA (13)
Sol. $a^{2}+b^{2}=\left|I_{2}+A\right|\left|I_{2}-A\right|^{-1}$

$$
=\sec ^{2} \frac{\theta}{2} \times \cos ^{2} \frac{\theta}{2}=1
$$

7. The total number of numbers, lying between 100 and 1000 that can be formed with the digits $1,2,3,4,5$, if the repetition of digits is not allowed and numbers are divisible by either 3 or 5 , is \qquad _.

Official Ans. by NTA (32)
Sol. We need three digits numbers.
Since $1+2+3+4+5=15$
So, number of possible triplets for multiple of 15 is $1 \times 2 \times 2$
so Ans. $=4 \times \underline{3}+4 \times 3-1 \times 2 \times \underline{2}=32$
8. Let $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three given vectors. If $\overrightarrow{\mathrm{r}}$ is a vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b}=0$, then $\vec{r} \cdot \vec{a}$ is equal to \qquad _.

Official Ans. by NTA (12)
Sol. $\quad(\vec{r}-\vec{c}) \times \vec{a}=0$
$\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{c}}+\lambda \overrightarrow{\mathrm{a}}$
Now, $0=\vec{b} \cdot \vec{c}+\lambda \vec{a} \cdot \vec{b}$
$\Rightarrow \lambda=\frac{-\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}}{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}=-\frac{2}{-1}=2$

So, $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}+2 \mathrm{a}^{2}=12$
9. If the system of equations
$\mathrm{kx}+\mathrm{y}+2 \mathrm{z}=1$
$3 \mathrm{x}-\mathrm{y}-2 \mathrm{z}=2$
$-2 x-2 y-4 z=3$
has infinitely many solutions, then k is equal to \qquad _.

Official Ans. by NTA (21)

Sol. We observe $5 \mathrm{P}_{2}-\mathrm{P}_{1}=3 \mathrm{P}_{3}$
So, $15-K=-6$
$\Rightarrow \mathrm{K}=21$
10. The locus of the point of intersection of the lines
$(\sqrt{3}) k x+k y-4 \sqrt{3}=0$ and
$\sqrt{3} x-y-4(\sqrt{3}) k=0$ is a conic, whose eccentricity is \qquad _.

Official Ans. by NTA (2)
Sol. $K=\frac{4 \sqrt{3}}{\sqrt{3} x+y}=\frac{\sqrt{3} x-y}{4 \sqrt{3}}$
$\Rightarrow 3 \mathrm{x}^{2}-\mathrm{y}^{2}=48$
$\Rightarrow \frac{\mathrm{x}^{2}}{16}-\frac{\mathrm{y}^{2}}{48}=1$
Now, $48=16\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow \mathrm{e}=\sqrt{4}=2$

