FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021 (Held On Wednesday 24th February, 2021) TIME : 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

1. The product formed in the first step of the reaction of
 with
excess
$\mathrm{Mg} / \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{Et}=\mathrm{C}_{2} \mathrm{H}_{5}\right)$ is :
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Sol.

2. Consider the elements Mg . Al, S, P and Si, the correct increasing order of their first ionization enthalpy is :
(1) $\mathrm{Mg}<\mathrm{Al}<\mathrm{Si}<\mathrm{S}<\mathrm{P}$
(2) $\mathrm{Al}<\mathrm{Mg}<\mathrm{Si}<\mathrm{S}<\mathrm{P}$
(3) $\mathrm{Mg}<\mathrm{Al}<\mathrm{Si}<\mathrm{P}<\mathrm{S}$
(4) $\mathrm{Al}<\mathrm{Mg}<\mathrm{S}<\mathrm{Si}<\mathrm{P}$

Official Ans. by NTA (2)
Sol. In general from left to right in a period, ionistion enthalpy increases due to effective nuclear charge increases.
but due to extra stability of half filled and full filled electronic configuration, required ionisation enthalpy is more from neighbouring elements.
i.e. first ionisation enthalpy order is
$\mathrm{Al}<\mathrm{Mg}<\mathrm{Si}<\mathrm{S}<\mathrm{P}$

TEST PAPER WHL SOLUTON

3. ' A ' and ' B ' in the following reactions are :

(1) (A)

(B)

(2) (A)

(B)

(3)

(B)

(4)

(B)

Official Ans. by NTA (3)

Sol.

4. Which of the following ore is concentrated using group 1 cyanide salt ?
(1) Sphalerite
(2) Calamine
(3) Siderite
(4) Malachite

Official Ans. by NTA (1)
Sol. Sphalerite ore : ZnS
Calamine ore : ZnCO_{3}
Siderite ore : FeCO_{3}
Malachite ore : $\mathrm{Cu}(\mathrm{OH})_{2} . \mathrm{CuCO}_{3}$
It is possible to separate two sulphide ores by adjusting proportion of oil to water or by using 'depressants'. In case of an ore containing ZnS and PbS , the depressant used is NaCN .
5. $\mathrm{Al}_{2} \mathrm{O}_{3}$ was leached with alkali to get X . The solution of X on passing of gas Y , forms Z . X , Y and Z respectively are :
(1) $\mathrm{X}=\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right], \mathrm{Y}=\mathrm{SO}_{2}, \mathrm{Z}=\mathrm{Al}_{2} \mathrm{O}_{3}$
(2) $\mathrm{X}=\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right], \mathrm{Y}=\mathrm{CO}_{2}, \mathrm{Z}=\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$
(3) $\mathrm{X}=\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Y}=\mathrm{CO}_{2}, \mathrm{Z}=\mathrm{Al}_{2} \mathrm{O}_{3}$
(4) $\mathrm{X}=\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Y}=\mathrm{SO}_{2}, \mathrm{Z}=\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$

Official Ans. by NTA (2)

Sol. $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{NaOH}_{(99))}+3 \mathrm{H}_{2} \mathrm{O}_{(9)}$

So
$\mathrm{X}: \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$
$\mathrm{Y}: \mathrm{CO}_{2}$
$\mathrm{Z}: \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
6. Which of the following are isostructural pairs ?
A. SO_{4}^{2-} and CrO_{4}^{2-}
B. SiCl_{4} and TiCl_{4}
C. NH_{3} and NO_{3}^{-}
D. BCl_{3} and BrCl_{3}
BCl_{3} and BrCl_{3}
(1) C and D only
(2) A and B only
(3) A and C only
(4) B and C only

Official Ans. by NTA (2)

Sol. Isostructural means same structure
(A) SO_{4}^{2-}
 : Tetrahedral
(B) $\quad \mathrm{SiCl}_{4}$

TiCl_{4}

(C) NH_{3}

: Triagonal pyramidal
NO_{3}
 : Triagonal planar
(D) $\quad \mathrm{BCl}_{3}$
 : Triagonal planar

7. What is the final product (major) ' A ' in the given reaction?

(1)

(2)

(3)

(4)

Official Ans. by NTA (1)

Sol.

8. In the following reaction the reason why meta-nitro product also formed is

(1) low temperature
(2) $-\mathrm{NH}_{2}$ group is highly meta-directive
(3) Formation of anilinium ion
(4) $-\mathrm{NO}_{2}$ substitution always takes place at meta-position
Official Ans. by NTA (3)

Sol.

(Anilinium ion)
Aniline on protonation gives anilinium ion which is meta directing. So considerable amount of meta product is formed.
9. In Freundlich adsorption isotherm, slope of $A B$ line is :

(1) $\log \mathrm{n}$ with $(\mathrm{n}>1)$
(2) n with ($\mathrm{n}, 0.1$ to 0.5)
(3) $\log \frac{1}{n}$ with $(n<1)$
(4) $\frac{1}{n}$ with $\left(\frac{1}{n}=0\right.$ to 1$)$

Official Ans. by NTA (4)

Sol. $\frac{x}{m}=K(P)^{1 / n}$
$\log \left(\frac{x}{m}\right)=\log K+\frac{1}{n} \log P$
$y=c+m x$
$\mathrm{m}=1 / \mathrm{n}$ so slope will be equal to $1 / \mathrm{n}$.

Hence $0 \leq \frac{1}{\mathrm{n}} \leq 1$
10. (A) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$
(B) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Choose the correct option.
(1) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing and oxidising agent respectively in equation (A) and (B)
(2) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as oxidising agent in equation (A) and (B)
(3) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing agent in equation (A) and (B)
(4) $\mathrm{H}_{2} \mathrm{O}_{2}$ act as oxidizing and reducing agent respectively in equation (A) and (B)

Official Ans. by NTA (3)
(A) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$

In this equation, $\mathrm{H}_{2} \mathrm{O}_{2}$ is reducing chlorine from +1 to -1 .
(B) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ In this equation, $\mathrm{H}_{2} \mathrm{O}_{2}$ is reducing iodine from 0 to -1 .
Sol. In (A) reduction of HOCl occurs so it will be a oxidising agent hence $\mathrm{H}_{2} \mathrm{O}_{2}$ will be a reducing agent.
$\operatorname{In}(\mathrm{B})$ reduction of I_{2} occurs so it will be a oxidising agent and $\mathrm{H}_{2} \mathrm{O}_{2}$ will be a reducing agent.
11. What is the major product formed by HI on reaction with

(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
11. Official Ans. by NTA ()

Sol.

12. Which of the following reagent is used for the following reaction?

(1) Manganese acetate
(2) Copper at high temperature and pressure
(3) Molybdenum oxide
(4) Potassium permanganate

Official Ans. by NTA (3)
Sol.
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \xrightarrow{\mathrm{MO}_{2} \mathrm{O}_{3}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{O}$ The reagent used will be $\mathrm{MO}_{2} \mathrm{O}_{3}$
13. Given below are two statements :

Statement I : Colourless cupric metaborate is reduced to cuprous metaborate in a luminous flame.

Statement II : Cuprous metaborate is obtained by heating boric anhydride and copper sulphate in a non-luminous flame.

In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are false
(3) Statement I is false but Statement II is true
(4) Both Statement I and Statement II are true

Official Ans. by NTA (2)

Sol.

(i) Blue cupric metaborate is reduced to colourless cuprous metaborate in a luminous flame
$2 \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}+2 \mathrm{NaBO}_{2}+\mathrm{C}$
\downarrow Luminous flame
$2 \mathrm{CuBO}_{2}+\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+\mathrm{CO}$
(ii) Cupric metaborate is obtained by heating boric anhydride and copper sulphate in a non luminous flame.

$$
\begin{array}{r}
\mathrm{CuSO}_{4}+\mathrm{B}_{2} \mathrm{O}_{3} \frac{\text { Non-luminous }}{\text { Flame }} \downarrow \\
\begin{array}{c}
\mathrm{Cu}^{\mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}+\mathrm{SO}_{3}} \\
\text { Cupric metaborate } \\
\text { (Blue-green) }
\end{array}
\end{array}
$$

14. Out of the following, which type of interaction is responsible for the stabilisation of α-helix structure of proteins?
(1) Ionic bonding
(2) Hydrogen bonding
(3) Covalent bonding
(4) vander Waals forces

Official Ans. by NTA (2)
Sol. Hydrogen bonding is responsible for the stacking of α-helix structure of protein.
15. Match List I with List II.

List I

(Monomer Unit)
(a) Caprolactum
(b) 2-Chloro-1,3-butadiene
(c) Isoperene
(iii) Nylon 6
(d) Acrylonitrile

Choose the correct answer from the options given below :
(1) (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (ii), (d) \rightarrow (i)
(2) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iv), (d) \rightarrow (iii)
(3) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (i), (d) \rightarrow (ii)
(4) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iii), (d) \rightarrow (iv)

Official Ans. by NTA (3)

Sol. (a)
 unit of polymer Nylon-6 $\left[\begin{array}{ll}-\mathrm{HN}-\left(\mathrm{CH}_{2}\right)_{5}- & \mathrm{C} \\ & \mathrm{O}\end{array}\right]_{\mathrm{n}}$
(b) 2-Chlorobuta-1,3-diene is the monomeric unit of polymer neoprene.
(c) 2-Methylbuta-1,3-diene is the monomeric unit of polymer natural rubber.
(d) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ (Acrylonitrile) is the one of the monomeric unit of polymer Buna-N
16. The gas released during anaerobic degradation of vegetation may lead to :
(1) Ozone hole
(2) Acid rain
(3) Corrosion of metals
(4) Global warming and cancer

Official Ans. by NTA (4)
Sol. The gas CH_{4} evolved due to anaerobic degradation of vegetation which causes global warming and cancer.
17. The major components in "Gun Metal" are :
(1) Cu, Zn and Ni
(2) Cu, Sn and Zn
(3) $\mathrm{Al}, \mathrm{Cu}, \mathrm{Mg}$ and Mn
(4) Cu, Ni and Fe

Official Ans. by NTA (2)
The major components in "Gun Metal" are
Cu : 87\%
Zn : 3\%
Sn : 10\%
18. The electrode potential of $\mathrm{M}^{2+} / \mathrm{M}$ of 3 d -series elements shows positive value of :
(1) Zn
(2) Fe
(3) Co
(4) Cu

Official Ans. by NTA (4)
Sol. Only copper shows positive value for electrode potential of $\mathrm{M}^{2+} / \mathrm{M}$ of 3 d -series elements.
$\mathrm{E}^{\ominus} / \mathrm{V}_{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}:+0.34$
19. Identify products A and B :

(1) A :

B :

(2) A :

B :

(3) A :

(4) A :

(4)

Official Ans. by NTA (2)

Sol.

20. Which of the following compound gives pink colour on reaction with phthalic anhydride in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by treatment with NaOH ?
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Sol.

SECTION-B

1. When 9.45 g of $\mathrm{ClCH}_{2} \mathrm{COOH}$ is added to 500 mL of water, its freezing point drops by $0.5^{\circ} \mathrm{C}$. The dissociation constant of $\mathrm{ClCH}_{2} \mathrm{COOH}$ is $x \times 10^{-3}$. The value of x is \qquad _.
(Rounded off to the nearest integer)
$\left[\mathrm{K}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$

Official Ans. by NTA (35)
Official Ans. by ALLEN (36)
Sol. $\mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{\ominus}+\mathrm{H}^{+}$
$i=1+(2-1) \alpha$
$\mathrm{i}=1+\alpha$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik} \mathrm{m}$
$0.5=(1+\alpha)(1.86)\left(\frac{\left(\frac{9.45}{94.5}\right)}{\left(\frac{500}{1000}\right)}\right)$
$\frac{5}{3.72}=1+\alpha \quad \Rightarrow \alpha=\frac{1.28}{3.72}$
$\alpha=\frac{32}{93}$
$\mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{\ominus}+\mathrm{H}^{+}$
$\mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha \quad \mathrm{C} \alpha$
$\mathrm{K}_{\mathrm{a}}=\frac{(\mathrm{C} \alpha)^{2}}{\mathrm{C}-\mathrm{C} \alpha}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \quad \mathrm{C}=\frac{0.1}{500 / 1000}=0.2$
$K_{a}=\frac{0.2(32 / 93)^{2}}{(1-32 / 93)}=\frac{0.2 \times(32)^{2}}{93 \times 61}$
$=0.036$
$\mathrm{K}_{\mathrm{a}}=36 \times 10^{-3}$
2. 4.5 g of compound $\mathrm{A}(\mathrm{MW}=90)$ was used to make 250 mL of its aqueous solution. The molarity of the solution in M is $\mathrm{x} \times 10^{-1}$. The value of x is \qquad . (Rounded off to the nearest integer)

Official Ans. by NTA (2)
Sol. $M=\frac{4.5 / 90}{250 / 1000}=0.2$
$=2 \times 10^{-1}$
3. At 1990 K and 1 atm pressure, there are equal number of Cl_{2} molecules and Cl atoms in the reaction mixture. The value K_{P} for the reaction $\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{Cl}_{(\mathrm{g})}$ under the above conditions is $x \times 10^{-1}$. The value of x is \qquad (Rounded of to the nearest integer)

Official Ans. by NTA (5)
Sol. $\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{Cl}$
Let mol of both of Cl_{2} and Cl is x
$\mathrm{P}_{\mathrm{C} 1}=\frac{\mathrm{x}}{2 \mathrm{x}} \times 1=\frac{1}{2}$
$\mathrm{P}_{\mathrm{Cl}_{2}}=\frac{\mathrm{x}}{2 \mathrm{x}} \times 1=\frac{1}{2}$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\frac{1}{2}\right)^{2}}{\frac{1}{2}}=\frac{1}{2}=0.5 \Rightarrow 5 \times 10^{-1}$
4. Number of amphoteric compound among the following is \qquad
(A) BeO
(B) BaO
(C) $\mathrm{Be}(\mathrm{OH})_{2}$
(D) $\mathrm{Sr}(\mathrm{OH})_{2}$

Official Ans. by NTA (2)
Sol. Both compounds BeO and $\mathrm{Be}(\mathrm{OH})_{2}$ are amphoteric in nature.
and both compounds BaO and $\mathrm{Sr}(\mathrm{OH})_{2}$ are basic in nature.
5. The reaction of sulphur in alkaline medium is the below:
$\mathrm{S}_{8(\mathrm{~s})}+\mathrm{aOH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{bS} \mathrm{S}^{2-}{ }_{(\mathrm{aq})}+\mathrm{cSS}_{2} \mathrm{O}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{d} \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
The values of ' a ' is \qquad . (Integer answer)

Official Ans. by NTA (12)

$$
16 \mathrm{e}^{\ominus}+\mathrm{S}_{8} \longrightarrow 8 \mathrm{~S}^{2-}
$$

Sol.
$\frac{12 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{8} \longrightarrow 4 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+24 \mathrm{H}^{+}+16 \mathrm{e}^{\ominus}}{2 \mathrm{~S}_{8}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 8 \mathrm{~S}^{2-}+4 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+24 \mathrm{H}^{+}}$
for balancing in basic medium add equal number of OH^{\ominus} that of H^{+}
$2 \mathrm{~S}_{8}+12 \mathrm{H}_{2} \mathrm{O}+24 \mathrm{OH}^{\ominus} \longrightarrow 8 \mathrm{~S}^{2-}+4 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}$
$+24 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{~S}_{8}+24 \mathrm{OH}^{\ominus} \rightarrow 8 \mathrm{~S}^{2-}+4 \mathrm{~S}_{2} \mathrm{O}_{8}^{2-}+12 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{S}_{8}+12 \mathrm{OH}^{\ominus} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{8}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{a}=12$
6. For the reaction $\mathrm{A}_{(\mathrm{g})} \rightarrow(\mathrm{B})_{(\mathrm{g})}$, the value of the equilibrium constant at 300 K and 1 atm is equal to 100.0 . The value of $\Delta_{r} G$ for the reaction at 300 K and 1 atm in $\mathrm{J} \mathrm{mol}^{-1}$ is -xR , where x is \qquad (Rounded of to the nearest integer)
$\left(\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right.$ and $\left.\ln 10=2.3\right)$

Official Ans. by NTA (1380)
6. $\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{Kp}$

$$
\begin{aligned}
& =-\mathrm{R}(300)(2) \ln (10) \\
& =-\mathrm{R}(300 \times 2 \times 2.3)
\end{aligned}
$$

$\Delta \mathrm{G}^{0}=-1380 \mathrm{R}$
7. A proton and a Li^{3+} nucleus are accelerated by the same potential. If $\lambda_{L i}$ and λ_{P} denote the de Broglie wavelengths of Li^{3+} and proton respectively, then the value of $\frac{\lambda_{\mathrm{Li}}}{\lambda_{\mathrm{P}}}$ is $\mathrm{x} \times 10^{-}$ ${ }^{1}$. The value of x is \qquad .
(Rounded off to the nearest integer) (Mass of $\mathrm{Li}^{3+}=8.3$ mass of proton)

Official Ans. by NTA (2)

Sol. $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$

$$
\begin{aligned}
& \frac{\lambda_{\mathrm{Li}}}{\lambda_{\mathrm{p}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{p}}(\mathrm{e}) \mathrm{V}}{\mathrm{~m}_{\mathrm{Li}}(3 \mathrm{e})(\mathrm{V})}} \quad \mathrm{m}_{\mathrm{Li}}=8.3 \mathrm{~m}_{\mathrm{p}} \\
& \frac{\lambda_{\mathrm{Li}}}{\lambda_{\mathrm{p}}}=\sqrt{\frac{1}{8.3 \times 3}}=\frac{1}{5}=0.2=2 \times 10^{-1}
\end{aligned}
$$

8. The stepwise formation of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is given below

$$
\mathrm{Cu}^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)\right]^{2+}
$$

$$
\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)\right]^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{2}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}
$$

$$
\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{3}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}
$$

$$
\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{4}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
$$

The value of stability constants $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ and K_{4} are $10^{4}, 1.58 \times 10^{3}, 5 \times 10^{2}$ and 10^{2} respectively. The overall equilibrium constants for dissociation of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is $\mathrm{x} \times 10^{-12}$. The value of x is \qquad . (Rounded off to the nearest integer)

Official Ans. by NTA (1)
Sol. $\mathrm{Cu}^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)\right]^{2+}$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)\right]^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{2}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{3}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}+\mathrm{NH}_{3} \stackrel{\mathrm{~K}_{4}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \stackrel{\mathrm{~K}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
So
$\mathrm{K}=\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3} \times \mathrm{K}_{4}$ $=10^{4} \times 1.58 \times 10^{3} \times 5 \times 10^{2} \times 10^{2}$
$\mathrm{K}=7.9 \times 10^{11}$

Where $\mathrm{K} \rightarrow$ Equilibrium constant for formation of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
So equilibrium constant (K^{\prime}) for dissociation
of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is $\frac{1}{\mathrm{~K}}$
$\mathrm{K}^{\prime}=\frac{1}{\mathrm{~K}}$

$$
\begin{aligned}
\mathrm{K}^{\prime} & =\frac{1}{7.9 \times 10^{11}} \\
& =1.26 \times 10^{-12}=\left(\mathrm{x} \times 10^{-12}\right)
\end{aligned}
$$

So the value of $x=1.26$
OMR Ans $=1$ (After rounded off to the nearest integer)
9. The coordination number of an atom in a bodycentered cubic structure is \qquad _.
[Assume that the lattice is made up of atoms.]

Official Ans. by NTA (8)

Sol. 8
10. Gaseous cyclobutene isomerizes to butadiene in a first order process which has a ' k ' value of $3.3 \times 10^{-4} \mathrm{~s}^{-1}$ at $153^{\circ} \mathrm{C}$. The time in minutes it takes for the isomerization to proceed 40% to completion at this temperature is \qquad _. (Rounded off to the nearest integer)

Official Ans. by NTA (26)

Sol.

$K t=\ln \frac{[A]_{0}}{[A]_{t}}$
$3.3 \times 10^{-4} \times \mathrm{t}=\ln \left(\frac{100}{60}\right)$
$\mathrm{t}=1547.956 \mathrm{sec}$
$\mathrm{t}=25.799 \mathrm{~min}$
26 min

