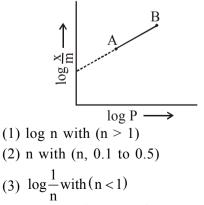


8. In the following reaction the reason why meta-nitro product also formed is :

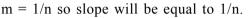

- (1) low temperature
- (2) -NH₂ group is highly meta-directive
- (3) Formation of anilinium ion
- (4) -NO₂ substitution always takes place at meta-position

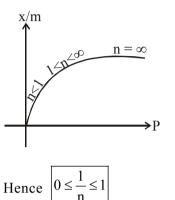
Official Ans. by NTA (3)

Sol.
$$\overset{\text{NH}_2}{\longrightarrow} \xrightarrow{\text{conc. HNO}_3} \overset{\text{NH}_3}{\longrightarrow} \overset{\text{VH}_3}{\longrightarrow} \overset{\text{(very high})}{\longrightarrow} \overset{\text{(very high})}{-\text{I effect}}$$

Aniline on protonation gives anilinium ion which is meta directing. So considerable amount of meta product is formed.

9. In Freundlich adsorption isotherm, slope of AB line is :



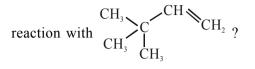

(4)
$$\frac{1}{n}$$
 with $\left(\frac{1}{n} = 0 \text{ to } 1\right)$

Official Ans. by NTA (4)

Sol.
$$\frac{x}{m} = K(P)^{\frac{1}{n}}$$

 $\log\left(\frac{x}{m}\right) = \log K + \frac{1}{n}\log P$

y = c + mx


- 10. (A) HOCl + $H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$ (B) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ Choose the correct option.
 - H₂O₂ acts as reducing and oxidising agent respectively in equation (A) and (B)
 - (2) H₂O₂ acts as oxidising agent in equation (A) and (B)
 - (3) H₂O₂ acts as reducing agent in equation (A) and (B)
 - (4) H₂O₂ act as oxidizing and reducing agent respectively in equation (A) and (B)

Official Ans. by NTA (3)

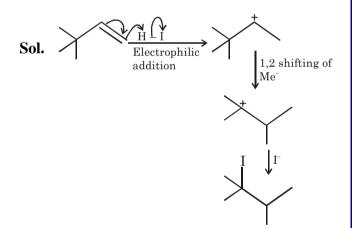
- (A) $HOC1 + H_2O_2 \rightarrow H_3O^+ + C1^- + O_2$ In this equation, H_2O_2 is reducing chlorine from +1 to -1.
- (B) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ In this equation, H_2O_2 is reducing iodine from 0 to -1.
- Sol. In (A) reduction of HOCl occurs so it will be a oxidising agent hence H_2O_2 will be a reducing agent. In(B) reduction of I_2 occurs so it will be a

oxidising agent and H_2O_2 will be a reducing agent.

11. What is the major product formed by HI on

(1)
$$CH_3 = CH_3$$

 $I = CH_3 - CH_2 H - CH_2 I$
 $I = I$
 $CH_3 H$


011

(2)
$$CH_3 \xrightarrow{I} C \xrightarrow{-} CH \xrightarrow{-} CH_3$$

 $CH_3 \xrightarrow{I} CH_3$
(3) $CH_3 \xrightarrow{-} C \xrightarrow{-} CH \xrightarrow{-} CH_3$
 $I \xrightarrow{I} CH_3$
 $I \xrightarrow{-} CH_3$
 I

(4)
$$\begin{array}{c} CH_3 - CH - CH - CH_2 - CH_3 \\ I \\ CH_3 \\ I \\ \end{array}$$

Official Ans. by NTA (3)

11. Official Ans. by NTA ()

12. Which of the following reagent is used for the following reaction ?

 $CH_3CH_2CH_3 \xrightarrow{?} CH_3CH_2CHO$

- (1) Manganese acetate
- (2) Copper at high temperature and pressure
- (3) Molybdenum oxide
- (4) Potassium permanganate
- Official Ans. by NTA (3)
- **Sol.** $CH_3-CH_2-CH_3 \xrightarrow{MO_2O_3} CH_3-CH_2-CH=O$ The reagent used will be MO_2O_3

13. Given below are two statements : Statement I : Colourless cupric metaborate is reduced to cuprous metaborate in a luminous flame.

> Statement II : Cuprous metaborate is obtained by heating boric anhydride and copper sulphate in a non-luminous flame.

> In the light of the above statements, choose the most appropriate answer from the options given below.

(1) Statement I is true but Statement II is false
 (2) Both Statement I and Statement II are false
 (3) Statement I is false but Statement II is true
 (4) Both Statement I and Statement II are true

Official Ans. by NTA (2)

Sol.

(i) Blue cupric metaborate is reduced to colourless cuprous metaborate in a luminous flame

 $2Cu(BO_2)_2 + 2NaBO_2 + C$ $\downarrow Luminous flame$

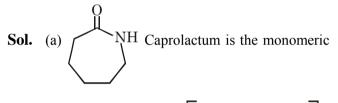
 $2CuBO_{2} + Na_{2}B_{4}O_{7} + CO$

(ii) Cupric metaborate is obtained by heating boric anhydride and copper sulphate in a non luminous flame.

$$CuSO_4 + B_2O_3 \xrightarrow[Flame]{Flame} Cu(BO_2)_2 + SO_3$$

Cupric metaborate
(Blue-green)

- 14. Out of the following, which type of interaction is responsible for the stabilisation of α -helix structure of proteins ?
 - (1) Ionic bonding
 - (2) Hydrogen bonding
 - (3) Covalent bonding
 - (4) vander Waals forces

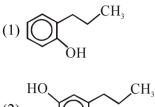

Official Ans. by NTA (2)

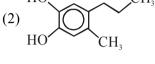
Sol. Hydrogen bonding is responsible for the stacking of α -helix structure of protein.

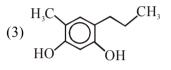
- **15.** Match List I with List II.
 - List I List II
 - (Monomer Unit) (Polymer)
 - (a) Caprolactum (i) Natural rubber
 - (b) 2-Chloro-1,3-butadiene (ii) Buna-N
 - (c) Isoperene (iii) Nylon 6
 - (d) Acrylonitrile (iv) Neoprene

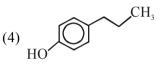
Choose the correct answer from the options given below :

(1) (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (ii), (d) \rightarrow (i) (2) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iv), (d) \rightarrow (iii) (3) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (i), (d) \rightarrow (ii) (4) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iii), (d) \rightarrow (iv) **Official Ans. by NTA (3)**

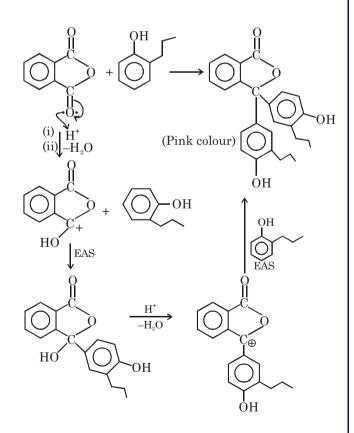

unit of polymer Nylon-6 -HN - (CH₂)₅.


- (b) 2-Chlorobuta-1, 3-diene is the monomeric unit of polymer neoprene.
- (c) 2-Methylbuta-1, 3-diene is the monomeric unit of polymer natural rubber.
- (d) CH₂ = CH CN (Acrylonitrile) is the one of the monomeric unit of polymer Buna-N
- **16.** The gas released during anaerobic degradation of vegetation may lead to :
 - (1) Ozone hole
 - (2) Acid rain
 - (3) Corrosion of metals
 - (4) Global warming and cancer


Official Ans. by NTA (4)


- **Sol.** The gas CH_4 evolved due to anaerobic degradation of vegetation which causes global warming and cancer.
- 17. The major components in "Gun Metal" are : (1) Cu, Zn and Ni (2) Cu, Sn and Zn (3) Al, Cu, Mg and Mn(4) Cu, Ni and Fe Official Ans. by NTA (2) The major components in "Gun Metal" are Cu: 87% Zn : 3% Sn : 10% The electrode potential of M^{2+} / M of 3d-series 18. elements shows positive value of : (1) Zn (2) Fe (3) Co (4) Cu Official Ans. by NTA (4) Only copper shows positive value for electrode Sol. potential of M^{2+}/M of 3d-series elements. $E^{\odot} / V_{(Cu^{2+}/Cu)}$: +0.34 19. Identify products A and B : $\frac{\text{dil. KMnO}_4}{273 \text{ K}} A \xrightarrow{\text{CrO}_3} B$ CH, ·ΟΗ OH (3) A : OHC—CH₂CH₂CH₂CH B: HOOC—CH₂CH₂CH₂-CH. CH₃ (4) A : (4)Official Ans. by NTA (2) dil.KMnO4 273 K Sol. ЭH CrO_{2} ОH

20. Which of the following compound gives pink colour on reaction with phthalic anhydride in conc. H_2SO_4 followed by treatment with NaOH ?



Official Ans. by NTA (1)

Sol.

SECTION-B

1. When 9.45 g of ClCH₂COOH is added to 500 mL of water, its freezing point drops by 0.5°C. The dissociation constant of ClCH₂COOH is $x \times 10^{-3}$. The value of x is _____. (Rounded off to the nearest integer)

 $\left[K_{f(H_2O)} = 1.86 \, \text{K kg mol}^{-1} \right]$

Official Ans. by NTA (35)

Official Ans. by ALLEN (36) Sol. $\operatorname{ClCH}_{2}\operatorname{COOH} \rightleftharpoons \operatorname{ClCH}_{2}\operatorname{COO}^{\circ} + \operatorname{H}^{+}$ $i = 1 + (2 - 1) \alpha$ $i = 1 + \alpha$ $\Delta T_{f} = \operatorname{ik}_{f} m$ $0.5 = (1 + \alpha)(1.86) \left(\frac{\left(\frac{9.45}{94.5}\right)}{\left(\frac{500}{1000}\right)} \right)$ $\frac{5}{3.72} = 1 + \alpha \implies \alpha = \frac{1.28}{3.72}$ $\alpha = \frac{32}{93}$ $\operatorname{ClCH}_{2}\operatorname{COOH} \rightleftharpoons \operatorname{ClCH}_{2}\operatorname{COO}^{\circ} + \operatorname{H}^{+}$ $\operatorname{C-C\alpha} \qquad \operatorname{C\alpha} \qquad \operatorname{C\alpha}$ $K_{a} = \frac{(\operatorname{C\alpha})^{2}}{\operatorname{C-C\alpha}} = \frac{\operatorname{C\alpha}^{2}}{1 - \alpha} \qquad \operatorname{C} = \frac{0.1}{500/1000} = 0.2$ $K_{a} = \frac{0.2(32/93)^{2}}{(1 - 32/93)} = \frac{0.2 \times (32)^{2}}{93 \times 61}$ = 0.036 $K_{a} = 36 \times 10^{-3}$ 2. 4.5 g of compound A (MW = 90) was used to

4.5 g of compound A (MW = 90) was used to make 250 mL of its aqueous solution. The molarity of the solution in M is $x \times 10^{-1}$. The value of x is _____. (Rounded off to the nearest integer)

Official Ans. by NTA (2)

Sol.
$$M = \frac{4.5 / 90}{250 / 1000} = 0.2$$

= 2 × 10⁻¹

At 1990 K and 1 atm pressure, there are equal number of Cl₂ molecules and Cl atoms in the reaction mixture. The value K_p for the reaction Cl_{2(g)} ⇒ 2Cl_(g) under the above conditions is x × 10⁻¹. The value of x is _____. (Rounded of to the nearest integer)

Official Ans. by NTA (5)

Sol. $Cl_2 \rightleftharpoons 2Cl$

Let mol of both of Cl₂ and Cl is x

 $P_{Cl} = \frac{x}{2x} \times 1 = \frac{1}{2}$

$$\mathbf{P}_{\mathrm{Cl}_2} = \frac{\mathbf{x}}{2\mathbf{x}} \times 1 = \frac{1}{2}$$

$$K_{p} = \frac{\left(\frac{1}{2}\right)^{2}}{\frac{1}{2}} = \frac{1}{2} = 0.5 \Longrightarrow 5 \times 10^{-1}$$

- 4. Number of amphoteric compound among the following is _____
 - (A) BeO (B) BaO

(C) $Be(OH)_2$ (D) $Sr(OH)_2$

Official Ans. by NTA (2)

Sol. Both compounds BeO and $Be(OH)_2$ are amphoteric in nature.

and both compounds BaO and $Sr(OH)_2$ are basic in nature.

5. The reaction of sulphur in alkaline medium is the below:

 $S_{8(s)} + a OH^{-}_{(aq)} \rightarrow b S^{2-}_{(aq)} + c S_2O_3^{2-}_{(aq)} + d H_2O_{(\ell)}$

The values of 'a' is _____. (Integer answer)

Official Ans. by NTA (12)

Sol.

$$\begin{array}{r} 16e^{\ominus} + S_8 \longrightarrow 8S^{2-} \\ 12H_2O + S_8 \longrightarrow 4S_2O_3^{2-} + 24H^+ + 16e^{\ominus} \\ \hline 2S_8 + 12H_2O \longrightarrow 8S^{2-} + 4S_2O_3^{2-} + 24H^+ \\ \end{array}$$

for balancing in basic medium add equal number of OH^{\odot} that of H^{+}

$$2S_{8} + 12H_{2}O + 24OH^{\odot} \longrightarrow 8S^{2-} + 4S_{2}O_{8}^{2-} + 24H_{2}O$$
$$2S_{8} + 24OH^{\odot} \rightarrow 8S^{2-} + 4S_{2}O_{8}^{2-} + 12H_{2}O$$
$$S_{8} + 12OH^{\odot} \rightarrow 4S^{2-} + 2S_{2}O_{8}^{2-} + 6H_{2}O$$
$$a = 12$$

6. For the reaction $A_{(g)} \rightarrow (B)_{(g)}$, the value of the equilibrium constant at 300 K and 1 atm is equal to 100.0. The value of $\Delta_r G$ for the reaction at 300 K and 1 atm in J mol⁻¹ is – xR, where x is ______ (Rounded of to the nearest integer) (R = 8.31 J mol⁻¹ K⁻¹ and ln 10 = 2.3)

Official Ans. by NTA (1380)

$$\Delta G^{\circ} = -RT \ln Kp$$

= -R(300) (2) ln(10)
= -R(300 × 2 × 2.3)
$$\Delta G^{\circ} = -1380 R$$

6.

7. A proton and a Li^{3+} nucleus are accelerated by the same potential. If λ_{Li} and λ_P denote the de Broglie wavelengths of Li^{3+} and proton

respectively, then the value of $\frac{\lambda_{\rm Li}}{\lambda_{\rm P}}$ is x \times 10–

¹. The value of x is _____.

(Rounded off to the nearest integer) (Mass of $Li^{3+} = 8.3$ mass of proton)

Official Ans. by NTA (2)

Sol.
$$\lambda = \frac{h}{\sqrt{2 \text{ mqV}}}$$
$$\frac{\lambda_{\text{Li}}}{\lambda_{\text{p}}} = \sqrt{\frac{m_{\text{p}}(e)V}{m_{\text{Li}}(3e)(V)}} \qquad m_{\text{Li}} = 8.3 \text{ m}$$
$$\frac{\lambda_{\text{Li}}}{\lambda} = \sqrt{\frac{1}{8.3 \times 3}} = \frac{1}{5} = 0.2 = 2 \times 10^{-1}$$

$$\pi_{p}$$
 volume to π_{p} The stepwise formation of [Cu(NH₂)

The stepwise formation of [Cu(NH₃)₄]²⁺ is given below

$$Cu^{2+} + NH_3 = [Cu(NH_3)]^{2+}$$

 $[\operatorname{Cu}(\operatorname{NH}_3)]^{2+} + \operatorname{NH}_3 \xleftarrow{\operatorname{K}_2} [\operatorname{Cu}(\operatorname{NH}_3)_2]^{2+}$

 $[Cu(NH_3)_2]^{2+} + NH_3 \xrightarrow{K_3} [Cu(NH_3)_3]^{2+}$

 $[Cu(NH_3)_3]^{2+} + NH_3 \underbrace{\overset{K_4}{\longleftarrow}} [Cu(NH_3)_4]^{2+}$

The value of stability constants K_1 , K_2 , K_3 and K_4 are 10⁴, 1.58 × 10³, 5 × 10² and 10² respectively. The overall equilibrium constants for dissociation of $[Cu(NH_3)_4]^{2+}$ is x × 10⁻¹². The value of x is ______. (Rounded off to the nearest integer)

Official Ans. by NTA (1)

Sol.
$$Cu^{2+} + NH_3 \xleftarrow{K_1} [Cu(NH_3)]^{2+}$$

 $[Cu(NH_3)]^{2+} + NH_3 \xleftarrow{K_2} [Cu(NH_3)_2]^{2+}$
 $[Cu(NH_3)_2]^{2+} + NH_3 \xleftarrow{K_3} [Cu(NH_3)_3]^{2+}$
 $[Cu(NH_3)_3]^{2+} + NH_3 \xleftarrow{K_4} [Cu(NH_3)_4]^{2+}$
 $Cu^{2+} + 4NH_3 \xleftarrow{K_1} [Cu(NH_3)_4]^{2+}$
So
 $K = K_1 \times K_2 \times K_3 \times K_4$
 $= 10^4 \times 1.58 \times 10^3 \times 5 \times 10^2 \times 10^2$
 $K = 7.9 \times 10^{11}$

Where $K \rightarrow$ Equilibrium constant for formation of $[Cu(NH_3)_4]^{2+}$ So equilibrium constant (K') for dissociation

of
$$[Cu(NH_3)_4]^{2+}$$
 is $\frac{1}{K}$
 $K' = \frac{1}{K}$
 $K' = \frac{1}{7.9 \times 10^{11}}$
 $= 1.26 \times 10^{-12} = (x \times 10^{-12})$
So the value of $x = 1.26$
OMR Ans = 1 (After rounded off
nearest integer)

9. The coordination number of an atom in a body-centered cubic structure is _____.

[Assume that the lattice is made up of atoms.]

to the

Official Ans. by NTA (8)

Sol. 8

10. Gaseous cyclobutene isomerizes to butadiene in a first order process which has a 'k' value of 3.3×10^{-4} s⁻¹ at 153°C. The time in minutes it takes for the isomerization to proceed 40 % to completion at this temperature is _____. (Rounded off to the nearest integer)

Official Ans. by NTA (26)

Sol.

$$\longrightarrow H_2C = HC-CH = CH_2$$

$$Kt = \ell n \frac{[A]_0}{[A]_t}$$

$$3.3 \times 10^{-4} \times t = \ell n \left(\frac{100}{60}\right)$$

$$t = 1547.956 \text{ sec}$$

$$t = 25.799 \text{ min}$$

$$26 \text{ min}$$