FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021

(Held On Wednesday 24th February, 2021) TIME: 3: 00 PM to 6:00 PM

CHEMISTRY

SECTION-A

1. What is the correct sequence of reagents used for converting nitrobenzene into m-dibromobenzene?

(1)

(2) $\xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} / \xrightarrow{\mathrm{Sn} / \mathrm{HCl}} / \xrightarrow{\mathrm{NaNO}_{2} / \mathrm{HCl}} / \xrightarrow{\mathrm{CuBr} / \mathrm{HBr}}$
(3)

(4)

Official Ans. by NTA (2)
Sol. Correct sequence of reagents for the following conversion.

2. Most suitable salt which can be used for efficient clotting of blood will be :-
(1) NaHCO_{3}
(2) FeSO_{4}
(3) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
(4) FeCl_{3}

Official Ans. by NTA (4)

TEST PAPER WITH SOLUTION

Sol. Blood : negatively charged sol
According to Hardly-schulz rule, for the negatively charged sol, most $(+)$ ve ion is needed for its efficient coagulation.

Ans. : FeCl_{3}
3. The correct order of the following compounds showing increasing tendency towards nucleophilic substitution reaction is :-

(i)

(ii)

(iii)

(iv)
(1) (iv) < (iii) < (ii) < (i)
(2) (iv) $<$ (i) < (ii) < (iii)
(3) (iv) < (i) < (iii) < (ii)
(4) (i) < (ii) < (iii) < (iv)

Official Ans. by NTA (4)
Sol. For nucleophile substitution in aromatic halides

(i)
(ii)

(iii)

Correct order is :

$$
(\text { i })<(\text { ii })<(\text { iii })<(\text { iv })
$$

More No. of NO_{2} substituted aromatic halide, increase the rate of nucleophile substitution reaction in aromatic halides.
4. According to Bohr's atomic theory :-
(A) Kinetic energy of electron is $\propto \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}$.
(B) The product of velocity (v) of electron and principal quantum number (n), 'vn' $\propto \mathrm{Z}^{2}$.
(C) Frequency of revolution of electron in an orbit is $\propto \frac{\mathrm{Z}^{3}}{\mathrm{n}^{3}}$.
(D) Coulombic force of attraction on the electron is $\propto \frac{Z^{3}}{n^{4}}$.

Choose the most appropriate answer from the options given below :
(1) (C) Only
(2) (A) Only
(3) (A), (C) and (D) only
(4) (A) and (D) only

Official Ans. by NTA (3)
Official Ans. by ALLEN (4)
Sol. According to Bohr's theory :
(A) $\mathrm{KE}=13.6 \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}} \frac{\mathrm{eV}}{\text { atom }} \Rightarrow \mathrm{KE} \alpha \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$
(B) speed of $\mathrm{e}^{-} \alpha \frac{\mathrm{z}}{\mathrm{n}}$
$\therefore \mathrm{v} \times \mathrm{n} \alpha \mathrm{z}$
(C) Frequency of revolution of $\mathrm{e}^{-}=\frac{\mathrm{v}}{2 \pi \mathrm{r}}$
\therefore frequency $\alpha \frac{\mathrm{z}^{2}}{\mathrm{n}^{3}}$
(D) $\mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}=\frac{\mathrm{kze}^{2}}{\mathrm{r}^{2}} \quad\left\{\mathrm{r} \alpha \frac{\mathrm{n}^{2}}{\mathrm{z}}\right.$

$$
\Rightarrow F \alpha \frac{\mathrm{z}}{\left(\frac{\mathrm{n}^{2}}{\mathrm{z}}\right)^{2}}
$$

$$
\Rightarrow \mathrm{F} \alpha \frac{\mathrm{z}^{3}}{\mathrm{n}^{4}}
$$

5. Match list - I and List - II.

List-I

List-II
(i) $\mathrm{Br}_{2} / \mathrm{NaOH}$
(b) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH} \rightarrow \mathrm{R}-\mathrm{CH}-\mathrm{COOH}$
(ii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
(c)

(d)

(iii) $\mathrm{Zn}(\mathrm{Hg}) /$ Conc. HCl
(iv) $\mathrm{Cl}_{2} / \operatorname{Red} \mathrm{P}, \mathrm{H}_{2} \mathrm{O}$

Choose the correct answer from the options given below :
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Official Ans. by NTA (3)
Sol. Match list-I \& list-II
(a)

(a) - (ii)

Rosenmund Reduction
(b)

HVZ reaction
(b)-(iv)
(c)

Hoffmann Bromamide reaction
(c)

(d) - (iii)

Clemmenson reduction
6. The calculated magnetic moments (spin only value) for species $\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ and MnO_{4}^{2-} respectively are :
(1) 5.82, 0 and 0 BM
(2) $4.90,0$ and 1.73 BM
(3) $5.92,4.90$ and 0 BM
(4) 4.90, 0 and 2.83 BM

Official Ans. by NTA (2)

Sol.
(i)

$$
\begin{aligned}
& \mu=\sqrt{n(n+2)} B M \\
& =\sqrt{4(4+2)} \mathrm{BM} \\
& =\sqrt{24} \mathrm{BM} \Rightarrow 4.90 \mathrm{BM}
\end{aligned}
$$

(ii) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-3}$

$\mu=0$
(iii) MnO_{4}^{-2}

$$
\begin{aligned}
\mathrm{Mn}^{+6} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{1} \quad \mu & =\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM} \\
& =\sqrt{1(1+2)} \mathrm{BM} \\
& =\sqrt{3} \mathrm{BM} \Rightarrow 1.73 \mathrm{BM}
\end{aligned}
$$

7. Match List-I with List-II :

List-I

 (Salt)
List-II

(Flame colour wavelength)

(a)	LiCl	(i)	455.5 nm
(b)	NaCl	(ii)	670.8 nm
(c)	RbCl	(iii)	780.0 nm
(d)	CsCl	(iv)	589.2 nm

Choose the correct answer from the options given below :
(1) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(3) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
(4) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)

Official Ans. by NTA (4)

Sol.		Colour	$\lambda / \mathbf{n m}$
	Li	Crimson red	670.8
Na	Yellow	589.2	
Rb	Red violet	780.0	
	Cs	Blue	455.5

8. Which one of the following carbonyl compounds cannot be prepared by addition of water on an alkyne in the presence of HgSO_{4} and $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Sol. Reaction of $\mathrm{HgSO}_{4} /$ dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with alkyne gives addition of water as per markonikoff's rule.
(1)

(2)

(3)

Hence $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}$ cannot be form.
(4)

9. In polymer Buna-S: 'S' stands for :-
(1) Sulphonation
(2) Strength
(3) Sulphur
(4) Styrene

Official Ans. by NTA (4)
Sol. BUN-S, 'S' stand for styrene.

Buta styrene
-1,3-diene
10.

Which of the following reagent is suitable for the preparation of the product in the above reaction ?
(1) NaBH_{4}
(2) $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \stackrel{\ominus}{\mathrm{O}} \stackrel{\oplus}{\mathrm{Na}}$
(3) $\mathrm{Ni} / \mathrm{H}_{2}$
(4) Red P $+\mathrm{Cl}_{2}$

Official Ans. by NTA (2)

Sol.

To reduce the carbonyl groups into alkane wolf - kischner reduction is used, without affecting the double bond.
11. Match List-I and List-II.

List-I

(a) Valium
(b) Morphine
(c) Norethindrone
(d) Vitamin B_{12}

List-II

(i) Antifertility drug
(ii) Pernicious anaemia
(iii) Analgesic
(iv) Tranquilizer
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(4) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Official Ans. by NTA (2)
Sol. (a) Valium - Tranquilizer (a)-(iv)
(b) Morphine - Analgesic (b)-(iii)
(c) Norethindrone - Antifertility Drug (c)-(i)
(d) Vitamin B_{12} - Pernicious anaemia (d)-(ii)
12. Match List-I with List-II.

List-I

(Metal)
(a) Aluminium
(b) Iron
(c) Copper
(d) Zinc

List-II

(Ores)
(i) Siderite
(ii) Calamine
(iii) Kaolinite
(iv) Malachite

Choose the correct answer from the options given below :
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(3) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Official Ans. by NTA (4)

Sol. Siderite $-\mathrm{FeCO}_{3}$
Calamine - ZnCO_{3}
Kaolinite $-\mathrm{Al}_{2}(\mathrm{OH})_{4} \cdot \mathrm{Si}_{2} \mathrm{O}_{5}$
Malachite $-\mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}$
13. Which one of the following compounds is nonaromatic?
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Sol. For the following ion/compounds
(1)

(2)
 - Aromatic
(3)

(4)

14. What is the correct order of the following elements with respect to their density ?
(1) $\mathrm{Cr}<\mathrm{Zn}<\mathrm{Co}<\mathrm{Cu}<\mathrm{Fe}$
(2) $\mathrm{Zn}<\mathrm{Cu}<\mathrm{Co}<\mathrm{Fe}<\mathrm{Cr}$
(3) $\mathrm{Zn}<\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Cu}$
(4) $\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Cu}<\mathrm{Zn}$

Official Ans. by NTA (3)

Sol.

15. Given below are two statements :-

Statement I : The value of the parameter "Biochemical Oxygen Demand (BOD)" is important for survival of aquatic life.
Statement II : The optimum value of BOD is 6.5 ppm .

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are false

Official Ans. by NTA (3)
Sol. Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
16. The incorrect statement among the following is :-
(1) VOSO_{4} is a reducing agent
(2) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is an amphoteric oxide
(3) RuO_{4} is an oxidizing agent
(4) Red colour of ruby is due to the presence of Co^{3+}

Official Ans. by NTA (4)
Sol.
(i) In $\mathrm{VOSO}_{4}, ~ ' V$ ' is in +4 oxidation state.

So it act as oxidising agent.
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is an amphoteric oxide.
(iii) In RuO_{4}, ' Ru^{\prime} is in +8 oxidation state.

So it act as oxidising agent.
(iv) Red colour of ruby is due to the presence of Cr^{+3} ions in $\mathrm{Al}_{2} \mathrm{O}_{3}$.
17. The correct shape and I-I-I bond angles respectively in I_{3}^{-}ion are :-
(1) Distorted trigonal planar; 135° and 90°
(2) T-shaped; 180° and 90°
(3) Trigonal planar; 120°
(4) Linear; 180°

Official Ans. by NTA (4)

Sol.

Shape : Linear, I-I-I Bond angle $\Rightarrow 180^{\circ}$
18. Given below are two statements: one is labelled as Assertion \mathbf{A} and the other is labelled as Reason R.

Assertion A : Hydrogen is the most abundant element in the Universe, but it is not the most abundant gas in the troposphere.

Reason R:Hydrogen is the lightest element. In the light of the above statements, choose the correct answer from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false
(2) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(3) \mathbf{A} is false but \mathbf{R} is true
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}

Official Ans. by NTA (2)
Sol. Most abundant gas in the troposphere is nitrogen.
19. The diazonium salt of which of the following compounds will form a coloured dye on reaction with β-Naphthol in NaOH ?
(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Sol.

1° aromatic amine

β-naphthol

Orange-Red. dye
20. The correct set from the following in which both pairs are in correct order of melting point is :-
(1) $\mathrm{LiF}>\mathrm{LiCl} ; \mathrm{MgO}>\mathrm{NaCl}$
(2) $\mathrm{LiCl}>\mathrm{LiF} ; \mathrm{NaCl}>\mathrm{MgO}$
(3) $\mathrm{LiF}>\mathrm{LiCl} ; \mathrm{NaCl}>\mathrm{MgO}$
(4) $\mathrm{LiCl}>\mathrm{LiF} ; \mathrm{MgO}>\mathrm{NaCl}$

Official Ans. by NTA (1)
Sol. L.E. \propto M.P.
L.E. : $\mathrm{LiF}>\mathrm{LiCl}, \mathrm{MgO}>\mathrm{NaCl}$

SECTION-B

1. The total number of amines among the following which can be synthesized by Gabriel synthesis is \qquad -.
(A)

(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(C)

(D)

Official Ans. by NTA (3)
Sol. Gabriel phthalimide synthesis is used to prepare 1° aliphatic/alicyclic amine in common.
Hence amine which can synthesised by Gabriel phthalimide synthesis method is :
(A) $\mathrm{Me}_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(C) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
2. Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is \qquad _.
(A) α-sulphur
(B) β-sulphur
(C) S_{2}-form

Official Ans. by NTA (1)
Sol. α-sulphur and β-sulphur are diamagnetic.
S_{2}-form is paramagnetic.
3. The formula of a gaseous hydrocarbon which requires 6 times of its own volume of O_{2} for complete oxidation and produces 4 times its own volume of CO_{2} is $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$. The value of y is
\qquad -.

Official Ans. by NTA (8)

Sol. Combustion rx^{n} :
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}(\mathrm{g})}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{xCO}_{2}(\mathrm{~g})+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}(\ell)$
V 6V
$\begin{array}{lll}- & - & \mathrm{Vx}=4 \mathrm{~V}\end{array}$

$$
\Rightarrow x=4
$$

Sinc: (I) $\mathrm{Vo}_{2}=6 \times \mathrm{V}_{\mathrm{C}_{x} \mathrm{H}_{y}}$
$\Rightarrow V\left(x+\frac{y}{4}\right)=6 V$
$\Rightarrow\left(x+\frac{y}{4}\right)=6 \Rightarrow 4+\frac{y}{4}=6$
$\Rightarrow \mathrm{y}=8$
4. The volume occupied by 4.75 g of acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mmHg pressure is \qquad L.
(Rounded off to the nearest integer)
[Given $\mathrm{R}=0.0826 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
Official Ans. by NTA (5)
Sol. Given Mass $=4.75 \mathrm{~g} \Rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
\Rightarrow Moles $=\frac{4.75}{26} \mathrm{~mol}$
Temp $=50+273=323 \mathrm{~K}$
$\mathrm{P}=\frac{740}{760} \mathrm{~atm}$
$\mathrm{R}=0.0826 \frac{\ell \mathrm{~atm}}{\mathrm{molK}}$
$\Rightarrow \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{4.75}{26} \times \frac{0.0826 \times 323}{\left(\frac{740}{760}\right)}$
$\Rightarrow \mathrm{V}=\frac{96314.078}{19240}=5.0059 \ell \simeq 5 \ell$
5. $\mathrm{C}_{6} \mathrm{H}_{6}$ freezes at $5.5^{\circ} \mathrm{C}$. The temperature at which a solution 10 g of $\mathrm{C}_{4} \mathrm{H}_{10}$ in 200 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ freeze is \qquad ${ }^{\circ} \mathrm{C}$. (The molal freezing point depression constant of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $5.12^{\circ} \mathrm{C} / \mathrm{m}$.)
Official Ans. by NTA (1)
Sol. Pure Solvent : $\mathrm{C}_{6} \mathrm{H}_{6}(\ell)$
Given : $\mathrm{T}_{\mathrm{f}}^{\circ}=5.5^{\circ} \mathrm{C}$
$\mathrm{K}_{\mathrm{f}}=5.12{ }^{\circ} \mathrm{C} / \mathrm{m}$

$\because \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$\Rightarrow\left(\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}^{\prime}\right)=5.12 \times \frac{\left(\frac{10}{58}\right)}{\left(\frac{200}{1000}\right) \mathrm{kg}} \mathrm{mol}$
$\Rightarrow 5.5-\mathrm{T}_{\mathrm{f}}^{\prime}=\frac{5.12 \times 5 \times 10}{58}$
$\Rightarrow \mathrm{T}_{\mathrm{f}}^{\prime}=1.086^{\circ} \mathrm{C} \simeq 1^{\circ} \mathrm{C}$
6. The magnitude of the change in oxidising power of the $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$ couple is $\mathrm{x} \times 10^{-4} \mathrm{~V}$, if the H^{+}concentration is decreased from 1 M to $10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. (Assume concentration of MnO_{4}^{-}and Mn^{2+} to be same on change in H^{+} concentration). The value of x is \qquad -.
(Rounded off to the nearest integer)
[Given : $\left.\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059\right]$
Official Ans. by NTA (3776)
Sol. Eqn is-
$\mathrm{MnO}_{4}^{-}+\mathrm{H}^{\oplus}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
Nernst equation:

$$
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{Cell}}^{0}-\frac{0.059}{5} \log \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}\left[\frac{1}{\mathrm{H}^{+}}\right]^{8}
$$

(I) Given $\left[\mathrm{H}^{\oplus}\right]=1 \mathrm{M}$
$\mathrm{E}_{1}=\mathrm{E}^{0}-\frac{0.059}{5} \log \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}$
(II) Now : $\left[\mathrm{H}^{\oplus}\right]=10^{-4} \mathrm{M}$
$\mathrm{E}_{2}=\mathrm{E}^{0}-\frac{0.059}{5} \log \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]} \times \frac{1}{\left(10^{-4}\right)^{8}}$
$=\mathrm{E}^{0}-\frac{0.059}{5} \log \frac{\mathrm{Mn}^{+2}}{\left[\mathrm{MnO}_{4}^{-}\right]}+\frac{0.059}{5} \log 10^{-32}$
therefore : $\left|\mathrm{E}_{1}-\mathrm{E}_{2}\right|=\frac{0.059}{5} \times 32$
$=0.3776 \mathrm{~V}=3776 \times 10^{-4}$
$x=3776$
7. The solubility product of PbI_{2} is 8.0×10^{-9}. The solubility of lead iodide in 0.1 molar solution of lead nitrate is $x \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. The value of x is \qquad . (Rounded off to the nearest integer)
[Given: $\sqrt{2}=1.41$]
Official Ans. by NTA (141)
Sol. Given : $\left[\mathrm{K}_{\mathrm{sp}}\right]_{\mathrm{Pb}_{2}}=8 \times 10^{-9}$
To calculate : solubility of PbI_{2} in 0.1 M sol of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(I) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{~Pb}_{\text {(aq) }}^{+2}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$

$$
0.1 \mathrm{M}
$$

$$
0.1 \mathrm{M} \quad 0.2 \mathrm{M}
$$

(II) $\mathrm{PbI}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})$

$$
\mathrm{S} \quad 2 \mathrm{~s}
$$

$$
=\mathrm{s}+0.1
$$

$$
\simeq 0.1
$$

Now : $\mathrm{K}_{\text {sp }}=8 \times 10^{-9}=\left[\mathrm{Pb}^{+2}\right][\mathrm{I}]^{2}$
$\Rightarrow 8 \times 10^{-9}=0.1 \times(2 \mathrm{~s})^{2}$
$\Rightarrow 8 \times 10^{-8}=4 \mathrm{~s}^{2} \Rightarrow \mathrm{~s}=\sqrt{2} \times 10^{-4}$
$\Rightarrow \quad \mathrm{S}=141 \times 10^{-6} \mathrm{M}$
$\Rightarrow \mathrm{x}=141$
8. Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at $25^{\circ} \mathrm{C}$. After 9 h , the fraction of sucrose remaining is f. The value of $\log _{10}\left(\frac{1}{f}\right)$ is \qquad $\times 10^{-2}$. (Rounded
off to the nearest integer)
[Assume $: \ln 10=2.303, \ln 2=0.693$]
Official Ans. by NTA (81)
Sol. Given :
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{t}_{1 / 2}=\frac{10}{3} \mathrm{hr}]{\text { I order }} \mathrm{Cl}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\underset{\text { Fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
$\mathrm{t}=0 \quad \mathrm{a}=[\mathrm{A}]_{0}$
$\mathrm{t}=9 \mathrm{hr} \quad \mathrm{a}-\mathrm{x}=[\mathrm{A}]_{\mathrm{t}}$
from I order kinetic : $\frac{\mathrm{k} \times \mathrm{t}}{2.303}=\log \frac{|\mathrm{A}|_{0}}{|\mathrm{~A}|_{\mathrm{t}}}$

$$
\begin{aligned}
& \Rightarrow \frac{\ln 2 \times 9}{\frac{10}{3} \times 2.303}=\log \left(\frac{1}{\mathrm{f}}\right) \\
& \Rightarrow \frac{0.693 \times 9 \times 3}{23.03}=\log \left(\frac{1}{\mathrm{f}}\right) \\
& \Rightarrow \log \left(\frac{1}{\mathrm{f}}\right)=0.81246=81.24 \times 10^{-2} \\
& \Rightarrow x=81
\end{aligned}
$$

9. 1.86 g of aniline completely reacts to form acetanilide. 10% of the product is lost during purification. Amount of acetanilide obtained after purification (in g) is \qquad $\times 10^{-2}$.
Official Ans. by NTA (243)

$$
\begin{array}{|l|l|}
\hline \mathrm{M}=98 & \mathrm{M}=135 \\
\hline
\end{array}
$$

Sol.

Given 1.86 g
$\Rightarrow 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ give $1{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCCH}_{3}}_{\stackrel{\mathrm{O}}{\mathrm{O}}{ }^{-1}}$
\therefore moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}=$ moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCCH}_{3}$
$\Rightarrow \frac{1.86}{93}=\frac{\mathrm{W}_{\text {ace tanilide }}}{135}$
$\Rightarrow \mathrm{W}_{\text {acelanilide }}=\frac{1.86 \times 135}{93} \mathrm{~g}=2.70 \mathrm{~g}$
But efficiency of reaction is 90% only
\therefore Mass of acetanilide produced $=2.70 \times \frac{90}{100} \mathrm{~g}$
$=2.43 \mathrm{~g}$
$=243 \times 10^{-2} \mathrm{~g}$
$\Rightarrow \mathrm{x}=243$
10. Assuming ideal behaviour, the magnitude of $\log \mathrm{K}$ for the following reaction at $25^{\circ} \mathrm{C}$ is $x \times 10^{-1}$. The value of x is \qquad . (Integer answer)

$$
3 \mathrm{HC} \equiv \mathrm{CH}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6(\ell)}
$$

[Given: $\Delta_{f} \mathrm{G}^{\mathrm{o}}(\mathrm{HC} \equiv \mathrm{CH})=-2.04 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$; $\Delta_{f} \mathrm{G}^{\mathrm{o}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=-1.24 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} ; \mathrm{R}=8.314$ J K ${ }^{-1} \mathrm{~mol}^{-1}$]

Official Ans. by NTA (855)
Sol. $3 \mathrm{HC} \equiv \mathrm{CH}_{(\mathrm{g})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\ell): \Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{k}$
$\Delta \mathrm{G}_{\mathrm{f}}^{0}-2.04 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}-1.24 \times 10^{5} \mathrm{~J} / \mathrm{mol}$
$\Rightarrow \Delta \mathrm{G}^{0}=\sum\left(\Delta \mathrm{G}_{\mathrm{f}}^{0}\right)_{\mathrm{P}}-\sum\left(\Delta \mathrm{G}_{\mathrm{f}}^{0}\right)_{\mathrm{R}}$
$\Rightarrow-\mathrm{RT} \ell \mathrm{nk}=1 \times\left(-124 \times 10^{5}\right)-\left(-3 \times 2.04 \times 10^{5}\right)$
$\Rightarrow-2.303 \times \mathrm{R} \times \mathrm{T} \log \mathrm{k}=4.88 \times 10^{5}$
$\Rightarrow \log \mathrm{k}=-\frac{4.88 \times 10^{5}}{2.303 \times \mathrm{R} \times \mathrm{T}}=-\frac{488000}{5705.848}=-85.52$
$=855 \times 10^{-1}$
$\Rightarrow \mathrm{x}=855$

