FINAL JEE-MAIN EXAMINATION – FEBRUARY, 2021 (Held On Wednesday 24th February, 2021) TIME : 3 : 00 PM to 6 : 00 PM

Sol. Correct sequence of reagents for the following conversion.

- 2. Most suitable salt which can be used for efficient clotting of blood will be :-
 - (1) NaHCO₃ (2) FeSO₄ (3) Mg(HCO₃)₂ (4) FeCl₃

Official Ans. by NTA (4)

TEST PAPER WITH SOLUTION

ol. Blood : negatively charged sol According to Hardly-schulz rule, for the negatively charged sol, most (+) ve ion is needed for its efficient coagulation.

Ans. : FeCl₃

3. The correct order of the following compounds showing increasing tendency towards nucleophilic substitution reaction is :-

(1) (iv) < (iii) < (ii) < (i)
 (2) (iv) < (i) < (ii) < (iii)
 (3) (iv) < (i) < (iii) < (iii)
 (4) (i) < (ii) < (iii) < (iv)

- Official Ans. by NTA (4)
- Sol. For nucleophile substitution in aromatic halides

Correct order is :

(i) < (ii) < (iii) < (iv)

More No. of NO_2 substituted aromatic halide, increase the rate of nucleophile substitution reaction in aromatic halides.

- 4. According to Bohr's atomic theory :-
 - (A) Kinetic energy of electron is $\propto \frac{Z^2}{n^2}$.
 - (B) The product of velocity (v) of electron and principal quantum number (n), 'vn' $\propto Z^2$.
 - (C) Frequency of revolution of electron in an

orbit is
$$\propto \frac{Z^3}{n^3}$$

(D) Coulombic force of attraction on the

electron is
$$\propto \frac{Z^3}{n^4}$$

Choose the most appropriate answer from the options given below :

- (1) (C) Only
- (2) (A) Only
- (3) (A), (C) and (D) only
- (4) (A) and (D) only

Official Ans. by NTA (3) Official Ans. by ALLEN (4)

Sol. According to Bohr's theory :

(A) KE =
$$13.6 \frac{z^2}{n^2} \frac{eV}{atom} \Rightarrow KE\alpha \frac{z^2}{n^2}$$

(B) speed of $e^- \alpha \frac{-\pi}{n}$

 \therefore v×n\alphaz

(C) Frequency of revolution of $e^- = \frac{v}{2\pi r}$

$$\therefore \quad \boxed{\text{frequency}\,\alpha \frac{z^2}{n^3}}$$
(D) $F = \frac{kq_1q_2}{r^2} = \frac{kze^2}{r^2} \quad \left\{ rcc \right\}$

$$\Rightarrow F\alpha \frac{z}{\left(\frac{n^2}{z}\right)^2}$$

$$\Rightarrow \boxed{F\alpha \frac{z^3}{n^4}}$$

5. Match list - I and List - II.

List-IList-IIO
(a)
$$R-C-CI\rightarrow R-CHO$$
(i) $Br_2/NaOH$ (b) $R-CH_2-COOH\rightarrow R-CH-COOH$ (ii) $H_2/Pd-BaSO_4$ ClCl(c) $R-C-NH_2\rightarrow R-NH_2$ (iii) $Zn(Hg)/Conc.HCH$ O
(d) $R-C-CH_3\rightarrow R-CH_2-CH_3$ (iv) $Cl_2/Red P, H_2O$

Choose the correct answer from the options given below : (1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)

(2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
Official Ans. by NTA (3)

Official Ans. by NTA (3

Sol. Match list-I & list-II

(a)
$$\underset{\text{R-C-Cl}}{\overset{\text{H}}{\text{Pd-BaSO}_{4}}} \underset{\text{R-CH}}{\overset{\text{O}}{\text{R-CH}}}$$
 (a) – (ii)

Rosenmund Reduction

(b)
$$R-CH_2-COOH \xrightarrow{Cl_2/P}_{H_2O} R-CH-COOH \overset{I}{Cl}$$

HVZ reaction (b)-(iv)

(c)
$$R-C-NH_2 \xrightarrow{Br_2} R-NH_2$$
 (c) - (i)

Hoffmann Bromamide reaction

(c)
$$R-C-CH_3 \xrightarrow{Zn(Hg)} R-CH_2-CH_3$$
 (d) - (iii)

Clemmenson reduction

6. The calculated magnetic moments (spin only value) for species $[FeCl_4]^{2-}$, $[Co(C_2O_4)_3]^{3-}$ and

 MnO_4^{2-} respectively are : (1) 5.82, 0 and 0 BM

(2) 4.90, 0 and 1.73 BM

(3) 5.92, 4.90 and 0 BM(4) 4.90, 0 and 2.83 BM

Official Ans. by NTA (2)

Sol.

(i)
$$[\operatorname{FeCl}_{4}]^{-2} \Rightarrow \underbrace{[4! 1 1 1 1]}_{\operatorname{Fe}^{+2} \Rightarrow [\operatorname{Ar}] 3d^{6}} \underbrace{[4! 1]}_{t_{2}} \underbrace{1}_{t_{2}} \\ \mu = \sqrt{n(n+2)} \operatorname{BM} \\ = \sqrt{4(4+2)} \operatorname{BM} \\ = \sqrt{4(4+2)} \operatorname{BM} \\ = \sqrt{24} \operatorname{BM} \Rightarrow 4.90 \operatorname{BM} \\ (ii) \quad [\operatorname{Co}(\operatorname{C}_{2}\operatorname{O}_{4})_{3}]^{-3} \\ \underbrace{[4! 1 1 1 1]}_{\operatorname{Co}^{+3} \Rightarrow [\operatorname{Ar}] 3d^{6}} \underbrace{[4! 1 4! 4!]}_{t_{2g}} \\ \mu = 0 \\ (iii) \quad \operatorname{MnO}_{4}^{-2} \\ \operatorname{Mn}^{+6} \Rightarrow [\operatorname{Ar}] 3d^{1} \quad \mu = \sqrt{n(n+2)} \operatorname{BM} \\ = \sqrt{1(1+2)} \operatorname{BM} \\ \end{aligned}$$

$$=\sqrt{3}$$
 BM \Rightarrow 1.73 BM

7. Match List-I with List-II :

	List-I (Salt)		List-II (Flame colour
	()		wavelength)
(a)	LiCl	(i)	455.5 nm
(b)	NaCl	(ii)	670.8 nm
(c)	RbCl	(iii)	780.0 nm
(d)	CsCl	(iv)	589.2 nm

Choose the correct answer from the options given below :

(1) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
 (2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
 (3) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
 (4) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)

Official Ans. by NTA (4)

Sol.		Colour	λ/nm
	Li	Crimson red	670.8
	Na	Yellow	589.2
	Rb	Red violet	780.0
	Cs	Blue	455.5

8. Which one of the following carbonyl compounds cannot be prepared by addition of water on an alkyne in the presence of $HgSO_4$ and H_2SO_4 ?

(1)
$$CH_3-C-H$$
 (2) CH_3-C-H_3

(3) CH_3-CH_2-C-H (4) $CH_3-C-CH_2CH_3$ Official Ans. by NTA (3)

Sol. Reaction of $HgSO_4/dil.H_2SO_4$ with alkyne gives addition of water as per markonikoff's rule.

(1) HC=CH
$$\frac{\text{HgSO}_4}{\text{H}_2\text{SO}_4}$$
+CH₂-CH \rightleftharpoons CH₃-CH

(2)
$$\sim -C \equiv CH \frac{HgSO_4}{H_2SO_4}$$

$$\bigcirc -C = CH_2 \Rightarrow \bigcirc 0$$

Hence CH₃-CH₂-CHO cannot be form.

(4)
$$CH_3-C \equiv C-CH_3 \xrightarrow{HgSO_4} CH_3-C = CH-CH_3$$

OH
 $H_2SO_4 \xrightarrow{H_2SO_4} CH_3-C = CH-CH_3$
OH
 $H_3-C = CH_2-CH_3$
OH

- 9. In polymer Buna-S: 'S' stands for :
 (1) Sulphonation
 (2) Strength
 (3) Sulphur
 (4) Styrene

 Official Ans. by NTA (4)
- Sol. BUN-S, 'S' stand for styrene.

-kischner reduction is used, without affecting the double bond.

11. Match List-I and List-II.

winte	Maten Eist-i and Eist-ii.						
	List-I		List-II				
	Valium	(i)					
	Morphine		Pernicious anaemia				
	Norethindrone		-				
(d)	Vitamin B ₁₂	(iv)	Tranquilizer				
(1) (a	(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)						
(2) (a	(2) (a)–(iv), (b)–(iii), (c)–(i), (d)–(ii)						
(3) (a	(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)						
(4) (a)–(i), (b)–(iii), (c)–(iv), (d)–(ii)							
Official Ans. by NTA (2)							
(a) V	(a) Valium – Tranquilizer (a)-(iv)						
(b) N	(b) Morphine – Analgesic (b)-(iii)						
(c) Norethindrone – Antifertility Drug (c)-(i)							
(d) Vitamin B ₁₂ – Pernicious anaemia (d)-(ii)							
Match List-I with List-II.							
	List-I		List-II				
	(Metal)		(Ores)				
(a)	Aluminium	(i)	Siderite				
(b)	Iron	(ii) Calamine				
(c)	Copper	(ii	i) Kaolinite				
(d)	Zinc	(iv	() Malachite				
Choose the correct answer from the options							
U	given below :						
(1) (a)–(iv), (b)–(iii), (c)–(ii), (d)–(i)							

12.

Sol.

(2) (a)–(ii), (b)–(iv), (c)–(i), (d)–(iii) (3) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv) (4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii) Official Ans. by NTA (4)

- **Sol.** Siderite FeCO₂ Calamine – ZnCO₃ Kaolinite – $Al_2(OH)_4$.Si_2O₅ Malachite $- Cu(OH)_2.CuCO_3$
- 13. Which one of the following compounds is nonaromatic ?

Official Ans. by NTA (1)

14. What is the correct order of the following elements with respect to their density ? (1) Cr < Zn < Co < Cu < Fe

- (2) Zn < Cu < Co < Fe < Cr
- (3) Zn < Cr < Fe < Co < Cu
- (4) Cr < Fe < Co < Cu < Zn

Official Ans. by NTA (3)

Sol.

Zn < Cr < Fe < Co < CuDensity/g cm⁻³ 7.1 7.19 7.8 8.7 8.9

15. Given below are two statements :-

Statement I : The value of the parameter "Biochemical Oxygen Demand (BOD)" is important for survival of aquatic life.

Statement II : The optimum value of BOD is 6.5 ppm.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but Statement II is false(4) Both Statement I and Statement II are false

Official Ans. by NTA (3)

- **Sol.** Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
- **16.** The **incorrect** statement among the following is :-
 - (1) VOSO₄ is a reducing agent
 - (2) Cr_2O_3 is an amphoteric oxide
 - (3) RuO_4 is an oxidizing agent
 - (4) Red colour of ruby is due to the presence of Co^{3+}

Official Ans. by NTA (4)

Sol.

- (i) In $VOSO_4$, 'V' is in +4 oxidation state. So it act as oxidising agent.
- (ii) Cr_2O_3 is an amphoteric oxide.
- (iii) In RuO_4 , 'Ru' is in +8 oxidation state. So it act as oxidising agent.
- (iv) Red colour of ruby is due to the presence of Cr^{+3} ions in Al₂O₃.
- 17. The correct shape and I–I–I bond angles respectively in I_3^- ion are :-
 - (1) Distorted trigonal planar; 135° and 90°
 - (2) T-shaped; 180° and 90°
 - (3) Trigonal planar; 120°
 - (4) Linear; 180°

Official Ans. by NTA (4)

Shape : Linear, I–I–I Bond angle $\Rightarrow 180^{\circ}$

 Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Hydrogen is the most abundant element in the Universe, but it is not the most abundant gas in the troposphere.

Reason R : Hydrogen is the lightest element. In the light of the above statements, choose the correct answer from the options given below :

- (1) **A** is true but **R** is false
- (2) Both A and R are true and R is the correct explanation of A
- (3) A is false but R is true
- (4) Both A and R are true but R is NOT the correct explanation of A

Official Ans. by NTA (2)

- **Sol.** Most abundant gas in the troposphere is nitrogen.
- 19. The diazonium salt of which of the following compounds will form a coloured dye on reaction with β -Naphthol in NaOH ?

Official Ans. by NTA (3)

Sol.

The correct set from the following in which both 20. pairs are in correct order of melting point is :-(1) LiF > LiCl; MgO > NaCl (2) LiCl > LiF; NaCl > MgO(3) LiF > LiCl; NaCl > MgO(4) LiCl > LiF; MgO > NaCl Official Ans. by NTA (1) Sol. L.E. \propto M.P. L.E. : LiF > LiCl, MgO > NaCl**SECTION-B** 1. The total number of amines among the following which can be synthesized by Gabriel synthesis is _____ (A) $\underset{CH_2}{\overset{CH_3}{\longrightarrow}}$ CH-CH₂-NH₂(B) CH₃CH₂NH₂ (C) CH₂-NH₂ (D) [🎽

Official Ans. by NTA (3)

Sol. Gabriel phthalimide synthesis is used to prepare 1° aliphatic/alicyclic amine in common.

Hence amine which can synthesised by Gabriel phthalimide synthesis method is :

- (A) Me₂CH-CH₂-NH₂
 (B) CH₃CH₂NH₂
 (C) Ph-CH₂-NH₂
- 2. Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is
 - (A) α -sulphur (B) β -sulphur
 - (C) S₂-form

Official Ans. by NTA (1)

- **Sol.** α -sulphur and β -sulphur are diamagnetic. S₂-form is paramagnetic.
- 3. The formula of a gaseous hydrocarbon which requires 6 times of its own volume of O_2 for complete oxidation and produces 4 times its own volume of CO_2 is C_xH_v . The value of y is

Official Ans. by NTA (8)

Sol. Combustion rx^n :

$$C_{x}H_{y(g)} + \left(x + \frac{y}{4}\right)O_{2}(g) \rightarrow xCO_{2}(g) + \frac{y}{2}H_{2}O(\ell)$$

$$V \qquad 6V \qquad -$$

$$- \qquad - \qquad Vx = 4V$$

$$\Rightarrow \boxed{x = 4}$$

Sinc : (I) $Vo_2 = 6 \times V_{C_xH_y}$

$$\Rightarrow V\left(x + \frac{y}{4}\right) = 6V$$
$$\Rightarrow \left[\left(x + \frac{y}{4}\right) = 6\right] \Rightarrow 4 + \frac{y}{4} = 6$$

 \Rightarrow y = 8

4. The volume occupied by 4.75 g of acetylene gas at 50°C and 740 mmHg pressure is _____ L. (Rounded off to the nearest integer)
[Given R = 0.0826 L atm K⁻¹ mol⁻¹]
Official Ans. by NTA (5)

Sol. Given Mass = 4.75 g
$$\Rightarrow$$
 C₂H₂(g)

$$\Rightarrow$$
 Moles = $\frac{4.75}{26}$ mol

Temp = 50 + 273 = 323 K

$$P = \frac{740}{760} atm$$

$$R = 0.0826 \quad \frac{\ell \text{ atm}}{\text{mol K}}$$

$$\Rightarrow V = \frac{nRT}{P} = \frac{4.75}{26} \times \frac{0.0826 \times 323}{\left(\frac{740}{760}\right)}$$

$$\Rightarrow V = \frac{96314.078}{19240} = 5.0059\,\ell \simeq 5\ell$$

- 5. C_6H_6 freezes at 5.5°C. The temperature at which a solution 10 g of C_4H_{10} in 200 g of C_6H_6 freeze is ______ °C. (The molal freezing point depression constant of C_6H_6 is 5.12°C/m.) Official Ans. by NTA (1)
- **Sol.** Pure Solvent : $C_6H_6(\ell)$ Given : $T_f^\circ = 5.5^\circ C$

 $K_{f} = 5.12 \,^{\circ}C / m$

10g $200 \text{ g } C_6H_6$: Solute is non dissociative

(10)

$$\therefore \Delta I_f - K_f \times m$$

$$\Rightarrow (T_{\rm f}^0 - T_{\rm f}^{'}) = 5.12 \times \frac{\left(\frac{10}{58}\right)}{\left(\frac{200}{1000}\right) \text{kg}} \text{mol}$$

$$\Rightarrow 5.5 - T_{f} = \frac{5.12 \times 5 \times 10}{58}$$
$$\Rightarrow T_{f} = 1.086 \text{ °C} \approx 1 \text{ °C}$$

6. The magnitude of the change in oxidising power of the MnO_4^-/Mn^{2+} couple is $x \times 10^{-4}$ V, if the H⁺ concentration is decreased from 1 M to 10^{-4} M at 25°C. (Assume concentration of MnO_4^- and Mn^{2+} to be same on change in H⁺ concentration). The value of x is _____. (Rounded off to the nearest integer)

$$\left[\text{Given} : \frac{2.303 \text{ RT}}{\text{F}} = 0.059 \right]$$
Official Ans. by NTA (3776)
Eqn is-
 $\text{MnO}_4^- + \text{H}^{\oplus} + 5\text{e}^- \rightarrow \text{Mn}^{+2} + 4\text{H}_2\text{O}$

Nernst equation:

Sol.

$$E_{cell} = E_{Cell}^{0} - \frac{0.059}{5} \log \frac{[Mn^{+2}]}{[MnO_{4}^{-}]} \left[\frac{1}{H^{+}}\right]^{8}$$

(I) Given $[H^{\oplus}]=1M$

$$E_{1} = E^{0} - \frac{0.059}{5} \log \frac{[Mn^{+2}]}{[MnO_{4}^{-}]}$$

(II) Now : $[H^{\oplus}] = 10^{-4} M$

$$E_{2} = E^{0} - \frac{0.059}{5} \log \frac{[Mn^{+2}]}{[MnO_{4}^{-}]} \times \frac{1}{(10^{-4})^{8}}$$

$$= \mathrm{E}^{0} - \frac{0.059}{5} \log \frac{\mathrm{Mn}^{+2}}{\left[\mathrm{MnO}_{4}^{-}\right]} + \frac{0.059}{5} \log 10^{-32}$$

therefore : $|E_1 - E_2| = \frac{0.059}{5} \times 32$ = 0.3776 V = 3776 × 10⁻⁴ x = 3776

7. The solubility product of PbI_2 is 8.0×10^{-9} . The solubility of lead iodide in 0.1 molar solution of lead nitrate is $x \times 10^{-6}$ mol/L. The value of x is ______. (Rounded off to the nearest integer)

 $\left[\text{Given}: \sqrt{2} = 1.41\right]$

Official Ans. by NTA (141)

Sol. Given : $[K_{sp}]_{PbI_2} = 8 \times 10^{-9}$

To calculate : solubility of PbI_2 in 0.1 M sol of Pb (NO₃)₂

(I) Pb $(NO_3)_2 \rightarrow Pb_{(aq)}^{+2} + 2NO_3^{-}(aq)$ 0.1 M - - -- 0.1M 0.2M (II) PbI₂(s) $\rightleftharpoons Pb^{+2}(aq) + 2I^{-}(aq)$ s 2s = s + 0.1 ≈ 0.1 Now : K_{sp} = 8 × 10⁻⁹ = [Pb^{+2}] [I^{-}]^2 $\Rightarrow 8 × 10^{-9} = 0.1 × (2s)^2$ $\Rightarrow 8 × 10^{-8} = 4s^2 \Rightarrow s = \sqrt{2} \times 10^{-4}$ $\Rightarrow [S = 141 \times 10^{-6} M]$ $\Rightarrow x = 141$

8. Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at 25°C. After 9 h, the fraction of sucrose remaining is *f*. The

value of
$$\log_{10}\left(\frac{1}{f}\right)$$
 is _____ × 10⁻². (Rounded

off to the nearest integer) [Assume : $\ln 10 = 2.303$, $\ln 2 = 0.693$] Official Ans. by NTA (81)

Sol. Given :

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{I \text{ order}}_{t_{12} = \frac{10}{3}\text{ hr}} C_6H_{12}O_6 + C_6H_{12}O_6$$

Fructose

 $t = 0 \quad a = [A]_0$ $t = 9hr \quad a - x = [A]_t$

from I order kinetic :
$$\frac{\mathbf{k} \times \mathbf{t}}{2.303} = \log \frac{|\mathbf{A}|_0}{|\mathbf{A}|_1}$$

$$\Rightarrow \frac{\ln 2 \times 9}{\frac{10}{3} \times 2.303} = \log\left(\frac{1}{f}\right)$$
$$\Rightarrow \frac{0.693 \times 9 \times 3}{23.03} = \log\left(\frac{1}{f}\right)$$
$$\Rightarrow \log\left(\frac{1}{f}\right) = 0.81246 = 81.24 \times 10^{-2}$$
$$\Rightarrow x = 81$$

9. 1.86 g of aniline completely reacts to form acetanilide. 10% of the product is lost during purification. Amount of acetanilide obtained after purification (in g) is _____ \times 10⁻². Official Ans. by NTA (243)

Sol.
$$\begin{array}{c} M = 98 \\ \hline M = 135 \\ \hline M = 135 \\ \hline M = 135 \\ \hline O \\ C_6H_5 - NH_2 \\ \hline C_6$$

$$\Rightarrow \frac{1.86}{93} = \frac{W_{ace \tan ilide}}{135}$$
$$\Rightarrow W_{acelanilide} = \frac{1.86 \times 135}{93} g = 2.70 g$$

But efficiency of reaction is 90% only

:. Mass of acetanilide produced = $2.70 \times \frac{90}{100}$ g

= 2.43 g $= 243 \times 10^{-2} \text{g}$ $\Rightarrow x = 243$

10. Assuming ideal behaviour, the magnitude of log K for the following reaction at 25°C is $x \times 10^{-1}$. The value of x is _____. (Integer answer)

$$3HC \equiv CH_{(g)} \rightleftharpoons C_6H_{6(\ell)}$$

[Given: $\Delta_f G^o(HC \equiv CH) = -2.04 \times 10^5 \text{ J mol}^{-1}$; $\Delta_f G^o(C_6H_6) = -1.24 \times 10^5 \text{ J mol}^{-1}$; R = 8.314 J K⁻¹ mol}^{-1}]

Official Ans. by NTA (855)

Sol.
$$3HC \equiv CH_{(g)} \rightarrow C_6H_6(\ell): \Delta G^0 = -RT \ln k$$

$$\Delta G_{f}^{0} - 2.04 \times 10^{5} \frac{J}{mol} - 1.24 \times 10^{5} J / mol$$

$$\Rightarrow \Delta G^{0} = \sum (\Delta G_{f}^{0})_{p} - \sum (\Delta G_{f}^{0})_{R}$$

$$\Rightarrow -RT \ell nk = 1 \times (-124 \times 10^{5}) - (-3 \times 2.04 \times 10^{5})$$

$$\Rightarrow -2.303 \times R \times T \log k = 4.88 \times 10^{5}$$

$$\Rightarrow \log k = -\frac{4.88 \times 10^{5}}{2.303 \times R \times T} = -\frac{488000}{5705.848} = -85.52$$
$$= 855 \times 10^{-1}$$
$$\Rightarrow x = 855$$