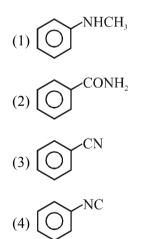
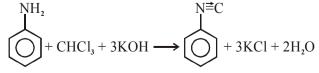
FINAL JEE-MAIN EXAMINATION – FEBRUARY, 2021 (Held On Thursday 25th February, 2021) TIME : 3 : 00 PM to 6 : 00 PM

TEST

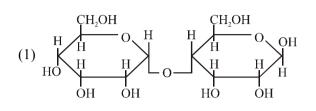

CHEN	IISTRY
SECTION-A	

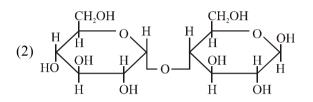
- 1. Which among the following species has unequal bond lengths ?
 - (1) BF_4^- (2) XeF_4
 - (3) SF_4 (4) SiF_4
 - Official Ans. by NTA (3)

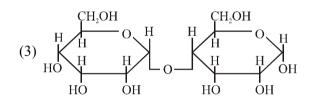

Sol.

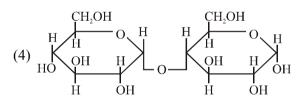
Species	Hybridisation	Bond length
BF_4^{Θ}	sp ³ (Tetrahedral)	All bond lengths equal
XeF ₄	$sp^{3}d^{2}(sq. planar)$	All bond lengths equal
SF_4 $sp^3d(see-saw)$	axial bond length >	
	equitorial bond length	
SiF ₄	sp ³ (Tetrahedral)	all bond lengths equal

2. Carbylamine test is used to detect the presence of primary amino group in an organic compound. Which of the following compound is formed when this test is performed with aniline?

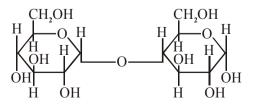


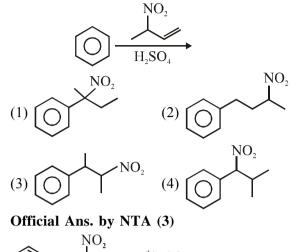

Official Ans. by NTA (4) Sol. CARBYL amine given by 1° amine

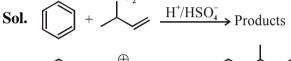



3. Which of the following is correct structure of α -anomer of maltose ?

PAPER WITH ANSWER & SOLUTION

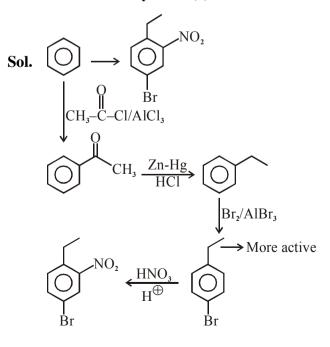



Official Ans. by NTA (4)


Sol. α -ANOMER OF MALTOSE

maltose is disaccharides of α -D-glucopyranose by C₁-C₄ glycosidic linkage

4. The major product of the following reaction is:



5. The correct sequence of reagents used in the preparation of 4-bromo-2-nitroethyl benzene from benzene is :

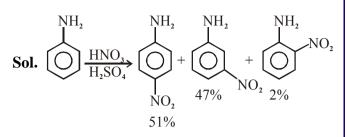
- (1) HNO₃/H₂SO₄, Br₂/AlCl₃, CH₃COCl/AlCl₃, Zn-Hg/HCl
- (2) Br₂/AlBr₃, CH₃COCl/AlCl₃, HNO₃/H₂SO₄, Zn/HCl
- (3) CH₃COCl/AlCl₃, Br₂/AlBr₃, HNO₃/H₂SO₄, Zn/HCl
- (4) CH₃COCl/AlCl₃, Zn-Hg/HCl, Br₂/AlBr₃, HNO₃/H₂SO₄

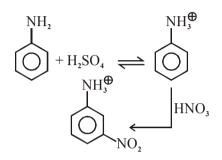
Official Ans. by NTA (4)

- 6. Water does not produce CO on reacting with: (1) CO₂ (2) C (3) CH₄ (4) C₃H₈ Official Ans. by NTA (1)
- Sol. $CO_2 + H_2O \rightarrow H_2CO_3$ $C + H_2O(steam) \rightarrow CO + H_2$

 $CH_4 + H_2O \rightarrow CO + 3H_2$ $C_3H_8 + H_2O \rightarrow 3CO + H_2$ both reactions are carried out at 1270K temp. with Ni catalyst

Thus CO₂ does not produce CO.


7. The correct order of acid character of the following compounds is :


Correct statement about the given chemical reaction is :

- (1) $-\dot{N}H_2$ group is *ortho* and *para* directive, so product (B) is not possible.
- (2) Reaction is possible and compound (B) will be the major product.
- (3) The reaction will form sulphonated product instead of nitration.
- (4) Reaction is possible and compound (A) will be major product.

Official Ans. by NTA (4)

Due to formation of anilinium ion by acid base reaction m-product is form as considerable amount.

- **9.** The correct order of bond dissociation enthalpy of halogens is :
 - (1) $Cl_2 > F_2 > Br_2 > I_2$ (2) $I_2 > Br_2 > Cl_2 > F_2$ (3) $Cl_2 > Br_2 > F_2 > I_2$ (4) $F_2 > Cl_2 > Br_2 > I_2$ Official Ans. by NTA (3)
- **Sol.** Correct order of bond dissociation enthalpy of halogens is $Cl_2 > Br_2 > F_2 > I_2$. Due to inter electronic repulsions F–F bond becomes weak and easily broken.
- 10. Given below are two statements :

Statement I :

The pH of rain water is normally \sim 5.6.

Statement II :

If the pH of rain water drops below 5.6, it is called acid rain.

In the light of the above statements, choose the

- correct answer from the options given below:
- (1) Statement I is true but Statement II is false.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is false but Statement II is true.
- (4) Both Statement I and Statement II are true. Official Ans. by NTA (4)
- Sol. Both statements are correct.

Normally rain water has pH of 5.6 due to the presence of H^+ ions formed by the reaction of rain water with carbon dioxide present in the atmosphere.

- 11. The major components of German Silver are :
 (1) Ge, Cu and Ag
 (2) Zn, Ni and Ag
 (3) Cu, Zn and Ni
 (4) Cu, Zn and Ag
 Official Ans. by NTA (3)

 Sol Major components of German silver are:
- Sol. Major components of German silver are: Cu, Zn, Ni (50%) (30%) (20%)
- 12. In which of the following order the given complex ions are arranged correctly with respect to their decreasing spin only magnetic moment ?

(i)
$$[FeF_6]^{3-}$$
 (ii) $[Co(NH_3)_6]^{3+}$
(iii) $[NiCl_4]^{2-}$ (iv) $[Cu(NH_3)_4]^{2+}$
(1) (i) > (iii) > (iv) > (ii)
(2) (ii) > (iii) > (i) > (iv)
(3) (iii) > (iv) > (ii) > (i)
(4) (ii) > (i) > (iii) > (iv)
Official Ans. by NTA (1)

Sol. Complex

(i)
$$[FeF_6]^{3-}$$
 $Fe^{3+} \Rightarrow [Ar]3d^5, F^-$ is WFL
 Fe^{3+} $\boxed{1111111}$
 $3d$
 $n = 5, \mu = \sqrt{35}$ B.M.
(ii) $[Co(NH_3)_6]^{3+} \Rightarrow Co^{3+}[Ar]3d^6, NH_3$ is SFL
 Co^{3+} $\boxed{1111111}$
 $3d$
 $n = 0, \mu = 0$
(iii) $[NiCl_4]^{2-}$ $Ni^{2+} \Rightarrow [Ar]3d^8, C\Gamma \rightarrow WFL$
 Ni^{2+} $\boxed{11111111}$
 $3d$
 $n = 2, \mu = \sqrt{8}$ B.M.
(iv) $[Cu(NH_3)_4]^{2+}$ $Cu^{2+} \Rightarrow [Ar] 3d^9, NH_3 \rightarrow SFL$
 Cu^{2+} $\boxed{11111111}$
 $3d$
 $n = 1, \mu = \sqrt{3}$ B.M.

Thus correct order of spin only magnetic moment is (i) > (iii) > (iv) > (ii)

- 13. Which of the following compound is added to the sodium extract before addition of silver nitrate for testing of halogens?
 - (1) Nitric acid
 (2) Ammonia
 (3) Hydrochloric acid
 (4) Sodium hydroxide
 Official Ans. by NTA (1)
- Sol. For testing of halogens, Nitric acid is added to the sodium extract because if CN^- or S^{2-} are present then they will be oxidised and removed before the test of halides.

14.Which one of the following statements is
FALSE for hydrophilic sols ?
(1) Their viscosity is of the order of that of H2O.
(2) The sols cannot be easily coagulated.
(3) They do not require electrolytes for
stability.
(4) These sols are reversible in nature.
Official Ans. by NTA (1)17.Sol.
$$\rightarrow$$
 Viscosity of hydrophilic sol > viscosity of H2O
 \rightarrow Hydrophilic sol is more stable so can't be
easily coagulated.
 \rightarrow Hydrophilic sols are reversible sols.
 \rightarrow No electrolytes are required to stabilise
hydrophilic sol.Sol.15.The solubility of Ca(OH)2 in water is :
[Given : The solubility product of Ca(OH)2 in
water = 5.5×10^{-6}]
(1) 1.77×10^{-6} (2) 1.11×10^{-6}
(3) 1.11×10^{-2} (4) 1.77×10^{-2}
Official Ans. by NTA (3)18.Sol.Ca(OH)2 \rightleftharpoons Ca²⁺(aq) + 2OH⁻(aq)
s = $(\frac{5.5}{4})^{\frac{1}{3}} \times 10^{-2} = 1.11 \times 10^{-2}$
 \Rightarrow s = $(\frac{5.5}{4})^{\frac{1}{3}} \times 10^{-2} = 1.11 \times 10^{-2}$ Sol.

Statement I :

The identification of Ni^{2+} is carried out by dimethyl glyoxime in the presence of NH_4OH .

Statement II :

The dimethyl glyoxime is a bidentate neutral ligand.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is true but Statement II is false.
- (4) Both Statement I and Statement II are true. Official Ans. by NTA (3)
- Sol. Neutral dimethyl glyoxime does not act as ligand.

When Ni^{2+} reacts with dimethyl glyoxime in presence of NH_4OH , it produce dimethyl glyoximate then it form rozy red ppt.

$$Ni^{2+}_{(aq)} + 2dmg^{-} \rightarrow [Ni(dmg)_{2}]_{Rosyred ppt.}$$

17. The major product of the following reaction is:

$$CH_{3}CH_{2}CH = CH_{2} \xrightarrow{H_{2}/CO}_{Rh \text{ catalyst}}$$
(1)
$$CH_{3}CH_{2}CH = CH - CHO$$
(2)
$$CH_{3}CH_{2}C = CH_{2}$$

$$CHO$$
(3)
$$CH_{3}CH_{2}CH_{2}CH_{2}CHO$$
(4)
$$CH_{3}CH_{2}CH_{2}CH_{2}CHO$$
Official Ans. by NTA (3)
OXO PROCESS (Hydroformylation) :

$$CH_{3} - CH_{2} - CH = CH_{2} + CO + H_{2} \xrightarrow{Rh}_{CHO}$$

- **18.** The method used for the purification of Indium is :
 - (1) van Arkel method
 - (2) liquation
 - (3) zone refining
 - (4) vapour phase refining

Official Ans. by NTA (3)

- **Sol.** Zone refining is used for the purification of indium.
- **19.** What is 'X' in the given reaction?

 $\begin{array}{c} CH_2OH \\ | & + \text{ oxalic acid } \underline{210^\circ C} \\ CH_2OH \end{array} X \\ (major product) \end{array}$

(1)
$$\underset{\text{CH}_2}{\overset{\text{CH}_2}{\parallel}}$$
 (2) $\underset{\text{CH}_2}{\overset{\text{CH}_2}{\parallel}}$

$$\begin{array}{ccc} \text{CHO} & \text{CH}_2\text{OH} \\ \text{(3)} & & \text{(4)} & \\ \text{CHO} & & \text{CHO} \end{array}$$

Official Ans. by NTA (1)

Sol.
$$\begin{array}{c} CH_2OH \\ | \\ CH_2OH \end{array}^+ + \begin{array}{c} COOH \\ | \\ COOH \end{array} \xrightarrow{110^{\circ}C} + \begin{array}{c} CH_2 \\ | \\ CH_2 \\ | \\ CH_2 \\ CH_2 = CH_2 + 2CO_2 \end{array}$$

3.

20. Given below are two statements :
 Statement-I : α and β forms of sulphur can change reversibly between themselves with slow heating or slow cooling.

Statement-II : At room temperature the stable crystalline form of sulphur is monoclinic sulphur.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true.
- (2) Both Statement I and Statement II are true.
- (3) Both Statement I is true but Statement II is false.

(4) Both Statement I and Statement II are false.Official Ans. by NTA (3)

Sol.
$$\alpha - \text{sulphur} \xrightarrow[<369K]{>369K} \beta - \text{sulphur}$$

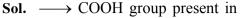
at room temperature α -sulphur (Rhombic) is most stable form.

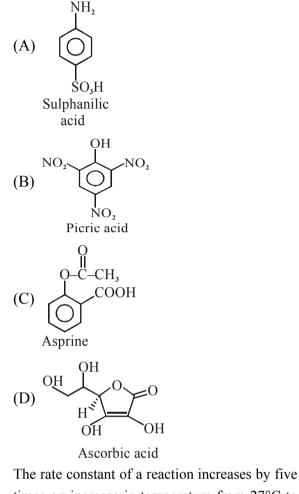
SECTION-B

 If a compound AB dissociates to the extent of 75% in an aqueous solution, the molality of the solution which shows a 2.5 K rise in the boiling point of the solution is _____ molal. (Rounded-off to the nearest integer)

 $[K_{\rm b} = 0.52 \text{K kg mol}^{-1}]$

Official Ans. by NTA (3)


Sol. $\alpha = 0.75$, n = 2 $i = 1 - \alpha + n\alpha = 1 - 0.75 + 2 \times 0.75 = 1.75$ $\Delta T_b = ik_b m$ or, 2.5 = 1.75 × 0.52 × m 2.5


or, m =
$$\frac{2.5}{1.75 \times 0.52} = 2.74$$

: nearest integer answer will be 3

- 2. The number of compound/s given below which contain/s –COOH group is _____.
 - (A) Sulphanilic acid
 (B) Picric acid
 (C) Aspirin
 (D) Ascorbic acid
 Official Ans. by NTA (1)

Official Ans. by NTA (1)

- times on increase in temperature from 27°C to 52°C. The value of activation energy in kJ mol⁻¹ is (Rounded-off to the nearest integer) $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$ Official Ans. by NTA (52) **Sol.** $T_1 = 300K$, $T_2 = 325K$, $K_2 = 5K$, $\ln \frac{K_2}{K_1} = \frac{Ea}{R} \left| \frac{1}{T_1} - \frac{1}{T_2} \right|$ or, $\ln 5 = \frac{\text{Ea}}{8.314} \left[\frac{1}{300} - \frac{1}{325} \right]$ or. Ea = $0.7 \times 2.303 \times 8.314 \times 12 \times 325$ = 52271 J = 52.271 kJNearest integer answer will be 52 kJ 4. Among the following, number of metal/s which can be used as electrodes in the photoelectric cell is _____ (Integer answer) (A) Li (B) Na (C) Rb (D) Cs Official Ans. by NTA (1)
- Sol. Cs is used as electrodes in the photoelectric cell.

The spin only magnetic moment of a divalent ion 5. in aqueous solution (atomic number 29) is BM. Official Ans. by NTA (2) Z = 29 (Cu) Sol. Cu^{2+} form $[Cu(H_2O)_4]^{2+}$ complex ion with H₂O. $[Cu(H_2O)_4]^{2+} \Rightarrow Cu^{2+} [Ar]3d^9, H_2O \rightarrow WFL$ Cu²⁺ 11 11 11 11 1 number of unpaired $e^- = 1$ $\mu = \sqrt{1(1+2)}$ B.M. $\mu = \sqrt{3} \implies 1.73$ B.M. \implies round off ans. $\implies 2$ 6. Electromagnetic radiation of wavelength 663 nm is just sufficient to ionise the atom of metal A. The ionization energy of metal A in kJ mol⁻¹ is . (Rounded-off to the nearest integer) $h = 6.63 \times 10^{-34} \text{ Js, } c = 3.00 \times 10^8 \text{ ms}^{-1},$ $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$] Official Ans. by NTA (180) **Sol.** $E = \frac{hc}{\lambda} \times \frac{N_A}{1000}$ $= \frac{6.63 \times 10^{-34} \times 3 \times 10^8 \times 6.02 \times 10^{23}}{663 \times 10^{-9} \times 1000}$ $= 3 \times 6.02 \times 10 \text{ kJ}$ = 180.6 kJ7. Consider titration of NaOH solution versus 1.25M oxalic acid solution. At the end point following burette readings were obtained. (i) 4.5 mL (ii) 4.5 mL (iii) 4.4 mL (iv) 4.4 mL (v) 4.4 mL If the volume of oxalic acid taken was 10.0 mL then the molarity of the NaOH solution is M. (Rounded-off to the nearest integer) Official Ans. by NTA (6)

Sol. $V_{\text{NaOH}} = 4.4 \text{ ml}$ eq. of NaOH = eq. of $H_2C_2O_4$ or, $M \times 4.4 \times 1 = 1.25 \times 10 \times 2$ or, M = 5.68 M

$$\therefore$$
 Nearest integer answer is 6

8. Five moles of an ideal gas at 293 K is expanded isothermally from an initial pressure of 2.1 MPa to 1.3 MPa against at constant external pressure 4.3 MPa. The heat transferred in this process is kJ mol⁻¹. (Rounded-off to the nearest

integer) [Use $R = 8.314 \text{ J mol}^{-1}\text{K}^{-1}$]

Official Ans. by NTA (15)

Sol. n = 5, T = 293K = const,
$$\Delta U = 0$$
,
P₁ = 2.1 MPa, P₂ = 1.3 MPa
P_{ext} = 4.3 MPa = const.
W = -P_{ext}(V₂ - V₁) = -P_{ext} $\left(\frac{nRT}{P_2} - \frac{nRT}{P_1}\right)$
or, W = -P_{ext} nRT $\left(\frac{1}{P_2} - \frac{1}{P_1}\right)$
= -4.3 × 5 × 8.314 × 293 $\left(\frac{1}{1.3} - \frac{1}{2.1}\right)$
= -4.3 × 5 × 8.314 × 293 $\left(\frac{2.1 - 1.3}{1.3 \times 2.1}\right)$
= -15347.7J
or, W = -15.35 kJ
 $\Delta U^0 = q + W$
 $\therefore q = -W$
or, q = 15.35 kJ (for 5 moles)
 $\therefore q/mole = \frac{15.35}{5} = 3kJ mol^{-1}$

Copper reduces NO_3^- into NO and NO_2 depending upon the concentration of HNO₃ in solution. (Assuming fixed $[Cu^{2+}]$ and $P_{NO_2} = P_{NO_2}$), the HNO₃ concentration at which the thermodynamic

9.

tendency for reduction of NO_3^- into NO and $NO_2^$ by copper is same is 10^{x} M. The value of 2x is _____. (Rounded-off to the nearest integer)

[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34$ V, $E_{NO_{2}^{-}/NO}^{\circ} = 0.96$ V, $E^{o}_{NO_{3}^{-}/NO_{2}} = 0.79 \text{ V} \text{ and at } 298 \text{ K},$

 $\frac{\text{RT}}{\text{F}}(2.303) = 0.059$]

Official Ans. by NTA (1)

bonus. $NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$ $E_{NO_{2}^{-}/NO}^{\circ} = 0.96V$ $NO_3^- + 2H^+ + e^- \longrightarrow NO_2^- + H_2O$ $E^{o}_{NO_{3}^{-}/NO_{2}=0.79}$ Let $[HNO_3] = y \Rightarrow [H^+] = y$ and $[NO_3^-] = y$ for same thermodynamic tendency $E_{NO_{3}^{-}/NO} = E_{NO_{3}^{-}/NO_{3}}$ or, $E_{NO_3^-/NO}^{\circ} - \frac{0.059}{3} \log \frac{P_{NO}}{v \times v^4}$ $= E_{NO_{3}^{-}/NO_{2}}^{o} - \frac{0.059}{1} \log \frac{P_{NO_{2}}}{v \times v^{2}}$ or, $0.96 - \frac{0.059}{3} \log \frac{P_{NO}}{v^5} = 0.79 - \frac{0.059}{1} \log \frac{P_{NO_2}}{v^3}$ or, $0.17 = -\frac{0.059}{1}\log\frac{P_{NO_2}}{v^3} + \frac{0.059}{3}\log\frac{P_{NO}}{v^5}$ $0.17 = -\frac{0.0591}{1}\log\frac{P_{NO_2}}{v^3} + \frac{0.0591}{3}\log\frac{P_{NO}}{v^5}$ $0.17 = -\frac{0.0591}{3}\log\frac{P_{NO_2}^3}{v^9} + \frac{0.0591}{3}\log\frac{P_{NO}}{v^5}$ $0.17 = \frac{0.0591}{3} \log \frac{P_{NO}}{v^5} - \log \frac{P_{NO_2}^3}{v^9}$ $0.17 = \frac{0.0591}{3} \left[\log \frac{P_{NO}}{v^5} \times \frac{y^9}{P_{NO}^3} \right]$ Assume $P_{NO} \simeq P_{NO_2} = 1$ bar $\frac{0.17 \times 3}{0.059} = \log y^4 = 8.644$ $\log y = \frac{8.644}{4}$ log y = 2.161 $y = 10^{2.16}$ $\therefore 2x = 2 \times 2.161 = 4.322$ Answer (4)

If the partial pressure of NO and NO₂ gas is taken

as 1 bar, then Answer is 4, else the question is

Sol.

10. The unit cell of copper corresponds to a face centered cube of edge length 3.596 Å with one copper atom at each lattice point. The calculated density of copper in kg/m³ is _____. [Molar mass of Cu : 63.54 g ; Avogadro Number = 6.022 $\times 10^{23}$]

Official Ans. by NTA (9077) Sol. FCC,

$$d = \frac{Z \times M}{N_A \times a^3} = \frac{4 \times 63.54}{1000 \times 6.022 \times 10^{23} \times (3.596 \times 10^{-10})^3}$$

= 9076 kg/m³