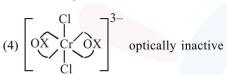


FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Thursday 03rd SEPTEMBER, 2020) TIME: 9 AM to 12 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION


- 1. The complex that can show optical activity is:
 - (1) trans- $[Fe(NH_3)_2(CN)_4]^-$
 - (2) cis- $[Fe(NH_3)_2(CN)_4]^{-1}$
 - (3) cis- $[CrCl_2(ox)_2]^{3-}$ (ox = oxalate)
 - (4) trans- $[Cr(Cl_2)(ox)_2]^{3-}$

Official Ans. by NTA (3)

Sol. (1) $\begin{bmatrix} NC & NH_3 & O \\ NC & CN & O \\ NC & NH_3 & O \end{bmatrix}$ optically inactive

(2) $\begin{bmatrix} NC & NH_3 & \Theta \\ NC & NH_3 & \Theta \\ NC & CN \end{bmatrix}$ optically inactive

(3) $\left[\begin{array}{c} Cl \\ OX \\ Cr \end{array}\right]^{3-}$ optically active

- 2. An organic compound [A], molecular formula C₁₀H₂₀O₂ was hydrolyzed with dilute sulphuric acid to give a carboxylic acid [B] and alcohol [C]. Oxidation of [C] with CrO₃ H₂SO₄ produced [B]. Which of the following structures are not possible for [A]?
 - (1) $(CH_3)_3$ -C-COOCH₂C(CH₃)₃
 - (2) CH₃CH₂CH₂COOCH₂CH₂CH₂CH₃

(3) CH₃-CH₂-CH-OCOCH₂CH-CH₂CH₃
CH₃

CH₃
(4) CH₃-CH₂-CH-COOCH₂-CH-CH₂CH₃
CH₃

Official Ans. by NTA (3)

Sol. (1)
$$\underset{m_e}{\overset{m_e}{\sim}} C - \overset{O}{\overset{H}{\sim}} O - CH_{\overline{2}} - C \underset{m_e}{\overset{m_e}{\sim}} \xrightarrow{\overset{H^+/H_2O}{\sim}} \overset{O}{\overset{H}{\sim}} (B)$$

$$+ \overset{C}{\overset{H}{\sim}} KMnO_4$$

$$+ O - CH_{\overline{2}} \overset{(C)}{\overset{(C)}{\sim}} (C)$$

Total 8 'C' \rightarrow so molecular formula not matched.

(3)
$$m_e$$
— CH_2 — CH — O — C — CH_2 — CH — Et
 m_e
 M_e — M_e

- 3. If the boiling point of H₂O is 373 K, the boiling point of H₂S will be:
 - (1) Greater than 300 K but less than 373 K
 - (2) Less than 300 K
 - (3) Equal to 373 K
 - (4) More than 373 K

Official Ans. by NTA (2)

Sol. Boiling point of H_2S < Boiling point of H_2O (213 K) (373 K)

- **4.** In a molecule of pyrophosphoric acid, the number of P-OH, P=O and P-O-P bonds/moiety(ies) respectively are:
 - (1) 3, 3 and 3

(2) 2, 4 and 1

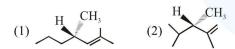
(3) 4, 2 and 0

(4) 4, 2 and 1

Official Ans. by NTA (4)

Sol. Pyrophosphoric acid.

P - OH linkages = 4


P = O linkages = 2

P-O-P linkages = 1

- 5. It is true that:
 - (1) A zero order reaction is a single step reaction
 - (2) A second order reaction is always a multistep reaction
 - (3) A first order reaction is always a single step reaction
 - (4) A zero order reaction is a multistep reaction Official Ans. by NTA (4)

Sol. Zero order reaction is multiple step reaction.

6. Which of the following compounds produces an optically inactive compound on hydrogenation?

Official Ans. by NTA (2)

Sol. Optically active H_2/Ni Optically inactive

7. Henry's constant (in kbar) for four gases α , β , γ and δ in water at 298 K is given below :

(density of water = 10^3 kg m⁻³ at 298 K)

This table implies that:

- (1) The pressure of a 55.5 molal solution of γ is 1 bar
- (2) The pressure of a 55.5 molal solution of δ is 250 bar
- (3) Solubility of γ at 308 K is lower than at 298 K
- (4) α has the highest solubility in water at a given pressure

Official Ans. by NTA (2)

Sol. (1) $P_{\gamma} = K_H X_Y$

$$P_{\gamma} = 2 \times 10^{-15} \times \frac{55.5}{55.5 + \frac{1000}{18}} = 2 \times 10^{-5} \text{K bar}$$

$$= 2 \times 10^{-2} \text{ bar}$$

(2)
$$P_{\delta} = K_H X_{\delta}$$

$$P_{\delta} = 0.5 \times \frac{55.5}{55.5 + \frac{1000}{18}} = .249 \text{ K bar} = 249 \text{ bar}$$

- (3) On increasing temperature solubility of gases decreases
- (4) $K_H \downarrow$ solubility \uparrow and lowest K_H is for γ .
- **8.** Tyndall effect of observed when:
 - (1) The diameter of dispersed particles is much smaller than the wavelength of light used
 - (2) The diameter of dispersed particles is much larger than the wavelength of light used
 - (3) The diameter of dispersed particles is similar to the wavelength of light used
 - (4) The refractive index of dispersed phase is greater than that of the dispersion medium

Official Ans. by NTA (3)

Sol. The diameter of disperseed particles is similar to wavelength of light used.

- 9. Thermal power plants can lead to:
 - (1) Ozone layer depletion
 - (2) Eutrophication
 - (3) Acid rain
 - (4) Blue baby syndrome

Official Ans. by NTA (3)

- Sol. Thermal power plants lead to acid rain.
- 10. The electronic spectrum of [Ti(H₂O)₆]³⁺ shows a single broad peak with a maximum at 20,300 cm⁻¹. The crystal field stabilization energy (CFSE) of the complex ion, in kJ mol⁻¹, is:
 - (1) 242.5
 - (2) 83.7
 - (3) 145.5
 - (4) 97

Official Ans. by NTA (4)

Sol. CFSE = $0.4 \Delta_0$

$$=0.4\times\frac{20300}{83.7}$$

- = 97 kJ/mol
- 11. Aqua regia is used for dissolving noble metals (Au, Pt, etc). The gas evolved in this process is:
 - (1) N_2
 - (2) N_2O_3
 - (3) NO
 - $(4) N_2O_5$

Official Ans. by NTA (3)

Sol. Au + HNO₃ + 4HCl \rightarrow HAuCl₄ + NO + 2H₂O

12. The Kjeldahl method of Nitrogen estimation fails for which of the following reaction products ?

(a)
$$\underbrace{\begin{array}{c} NO_2 \\ Sn/HCl \end{array}}$$
 (b) $\underbrace{\begin{array}{c} CN \\ LiAlH_4 \end{array}}$

(c)
$$\frac{\text{(i) SnCl}_2 + \text{HCl}}{\text{(ii) H}_2\text{O}}$$

$$(d) \xrightarrow{NaNO_2} \frac{NaNO_2}{HCI}$$

- (1) a and d
- (2) c and d
- (3) a, c and d
- (4) b and c

Official Ans. by NTA (2)

Sol. Kjeldahl method is used for N estimation But not given by 'Diazo' compounds

$$\begin{array}{c} CH_2-C \equiv N \\ \hline \\ (i) SnCl_2 + HCl \\ \hline \\ (ii) H_2O \end{array} \xrightarrow{\begin{array}{c} O \\ C-H \\ \\ give \end{array}}$$

13. The mechanism of S_N^1 reaction is given as :

$$\begin{array}{c} R-X \to R^{\oplus} \: X^{\circ} \to R^{\oplus} | | X^{\circ} \: \stackrel{Y^{\circ}}{\to} R - Y + X^{\circ} \\ \text{Ion} \quad \text{Solvent} \\ \text{pair} \quad \text{separated ion} \\ \text{pair} \end{array}$$

A student writes general characteristics based on the given mechanism as:

- (a) The reaction is favoured by weak nucleophiles
- (b) R[⊕] would be easily formed if the substituents are bulky
- (c) The reaction is accompained by recemization
- (d) The reaction is favoured by non-polar solvents.

Which observations are correct?

- (1) b and d
- (2) a and c
- (3) a, b and c
- (4) a and b

Official Ans. by NTA (2)

- **Sol.** S_N^1 favours
 - (a) The reaction is favoured by weak nucleophiles
 - (b) R[⊕] would be easily formed if the substituents are bulky
 - (c) The reaction is accompained by recemization
- 14. Which one of the following compounds possesses the most acidic hydrogen?

$$(1) \sum_{\mathbf{u}=\mathbf{u}}^{\mathbf{N} = \mathbf{C}} \mathbf{C} = \mathbf{I}$$

Official Ans. by NTA (4)

Sol.
$$\begin{array}{c|c} O & \nearrow O & \text{Most acidic H} \\ M_eO - C & \parallel & \parallel \\ M_eO - C & \parallel & C - Om_e \\ C & - Om_e \\ 0 & O \end{array}$$

Due to presence of 3 (-R) groups

- 15. Glycerol is separated in soap industries by:
 - (1) Steam distillation
 - (2) Differential extraction
 - (3) Distillation under reduced pressure
 - (4) Fractional distillation

Official Ans. by NTA (3)

- Glycerol is separated by reduced pressure Sol. distillation in soap industries.
- Of the species, NO, NO+, NO2+, NO-, the one 16. with minimum bond strength is:
 - (1) NO^{2+} (2) NO^{+}
- (3) NO
- (4) NO-

Official Ans. by NTA (4)

Bond order of $NO^{2+} = 2.5$ Sol.

Bond order of $NO^+ = 3$

Bond order of NO = 2.5

Bond order of $NO^- = 2$

Bond order α bond strength.

- 17. The atomic number of the element unnilennium is:
 - (1) 119
- (2) 108
- (3) 102
- (4) 109

Official Ans. by NTA (4)

Sol. 1

un nil enn

Hence correct name → unnilennium

- An acidic buffer is obtained on mixing: 18.
 - (1) 100 mL of 0.1 M CH₃COOH and 200 mL of 0.1 M NaOH
 - (2) 100 mL of 0.1 M CH₃COOH and 100 mL of 0.1 M NaOH
 - (3) 100 mL of 0.1 M HCl and 200 mL of 0.1 M CH₃COONa
 - (4) 100 mL of 0.1 M HCl and 200 mL of 0.1 M NaCl

Official Ans. by NTA (3)

HCl +CH₃COONa → CH₃COOH+ NaCl 10 mili mol 20 mili mol

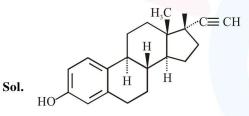
Sol.

10 mili mol

10 mili mol 10 mili mol

So finaly we get mixture of

CH₃COOH + CH₃COONa that will work like acidic buffer solution.



- 19. Let C_{NaCl} and C_{BaSO₄} be the conductances (in S) measured for saturated aqueous solutions of NaCl and BaSO₄, respectively, at a temperature T. Which of the following is false?
 - (1) Ionic mobilities of ions from both salts increase with T
 - (2) $C_{NaCl} >> C_{BaSO_4}$ at a given T
 - (3) $C_{NaCl}(T_2) \ge C_{NaCl}(T_1)$ for $T_2 \ge T_1$
 - (4) C_{BaSO_4} $(T_2) > C_{BaSO_4}$ (T_1) for $T_2 > T_1$

Official Ans. by NTA (3)

- **Sol.** Dissolution of BaSO₄ is an endothermic reaction 50 on increasing temperature number of ions of BaSO₄ decrease so it's conduction also decrease.
- **20.** The antifertility drug 'Novestrol" can react with :
 - (1) Br₂/water; ZnCl₂/HCl; FeCl₃
 - (2) Alcoholic HCN; NaOCl; ZnCl₂/HCl
 - (3) Br₂/water; ZnCl₂/HCl; NaOCl
 - (4) ZnCl₂/HCl; FeCl₃; Alcoholic HCN

Official Ans. by NTA (1)

Ethynylestradiol (novestrol)

gives (1) $Br_2 + H_2O$ test

- (2) Lucas test with ZnCl₂ + HCl
- (3) FeCl₃ test of phenolic group.
- 21. The volume strength of 8.9 M $\rm H_2O_2$ solution calculated at 273 K and 1 atm is _____. (R=0.0821 L atm K⁻¹ mol⁻¹) (rounded off to the nearest integer)

Official Ans. by NTA (100)

Sol. Volume strength of H_2O_2 at 1 atm 273 kelvin = $M \times 11.2 = 8.9 \times 11.2 = 99.68$ Ans : 100

22. The mole fraction of glucose $(C_6H_{12}O_6)$ in an aqueous binary solution is 0.1. The mass percentage of water in it, to the nearest integer,

Official Ans. by NTA (47)

Sol. $X_{C_6H_{12}O_6} = 0.1$ Let total mole is 1 mol then mole of glucose will be 0.1 and mole of water will be 0.9

so mass % of water =
$$\frac{0.9 \times 18}{0.1 \times 180 + 0.9 \times 18} \times 100$$

= 47.36

Ans: 47

23. The photoelectric current from Na (work function, $w_0 = 2.3 \text{ eV}$) is stopped by the output voltage of the cell $Pt(s)|H_2(g, 1\text{bar})|HCl(aq., pH=1)|AgCl(s)|Ag(s)$ The pH of aq. HCl required to stop the photoelectric current from $K(w_0 = 2.25\text{eV})$, all

 \times 10⁻² (to the nearest integer).

Given,
$$2.303 \frac{\text{RT}}{\text{F}} = 0.06 \text{V}; \text{E}_{\text{AgCI}|\text{Ag}|\text{CI}^{-}}^{0} = 0.22 \text{V}$$
Official Ans. by NTA (58))

other conditions remaining the same, is___

Sol.
$$\frac{1}{2}H_{2} \to H^{+} + e^{\Theta}$$

$$\frac{e^{\Theta} + AgCl_{(s)} \to Ag_{(s)} + Cl^{\Theta}}{\frac{1}{2}H_{2} + AgCl_{(s)} \to H^{+}_{(aq)} + Ag_{(s)} + Cl^{\Theta}_{(aq)}}$$

$$E = \epsilon^{0} - \frac{.06}{1} log \frac{\left[H^{+}\right] \left[Cl^{\Theta}\right]}{P_{H_{2}}^{\frac{1}{2}}}$$

E = 0.22 - .06 log
$$\frac{(10^{-1})(10^{-1})}{1^{\frac{1}{2}}}$$

E =
$$0.22 + .12 = .34$$
 volt
 \Rightarrow total energy of photon will be (for Na)
= $2.3 + 0.34 = 2.64$ eV

 \Rightarrow stopping potential required for K

$$= 2.64 - 2.25 = 0.39$$
 volt

$$E = \epsilon^{0} - \frac{.06}{1} log \frac{\left[H^{+}\right] \left[Cl^{-}\right]}{P_{H_{2}}^{\frac{1}{2}}}$$

as
$$[H^+] = [Cl^{\odot}]$$
 so

$$0.39 = 0.22 - .06 \log \frac{\left[H^{+}\right]^{2}}{1^{\frac{1}{2}}}$$

$$0.17 = + .12 \text{ pH}$$

$$pH = 1.4166 \implies 1.42$$

24. An element with molar mass $2.7 \times 10^{-2} \text{ kgmol}^{-1}$ forms a cubic unit cell with edge length 405 pm. If its density is $2.7 \times 10^3 \text{ kgm}^{-3}$, the radius of the element is approximately ____ $\times 10^{-12} \text{ m}$ (to the nearest integer).

Official Ans. by NTA (143)

Sol.
$$d = \frac{z \left(\frac{M}{N_A}\right)}{a^3}$$

$$2.7 \times 10^{3} = z \frac{\left(\frac{2.7 \times 10^{-2}}{6 \times 10^{23}}\right)}{\left(405 \times 10^{-12}\right)^{3}}$$

$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \left(4.05 \times 10^{-10}\right)^{3}}$$

$$2.7 \times 10^3 = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \times 66.43 \times 10^{-30}}$$

$$3.98 = z$$

 $z \approx 4$ structure is fcc

$$\frac{a}{\sqrt{2}} = 2r$$

$$r = \frac{a}{2\sqrt{2}} = \frac{\sqrt{2}a}{4} = \frac{1.414 \times 405 \times 10^{-12}}{4}$$

$$r = 143.16 \times 10^{-12}$$

25. The total number of monohalogenated organic products in the following (including stereoisomers) reaction is _____.

$$\begin{array}{c} A \\ \text{(simplest optically active alkene)} \end{array} \qquad \begin{array}{c} \text{(i)} \text{H}_2/\text{N} \\ \text{(ii)} \text{ X}_2/\text{N} \end{array}$$

Official Ans. by NTA (8)

$$Ni/H_2$$
 m_e
 Cl_2
 hv

Sol. Simplest O.A. Alkene

$$\bigcap_{Cl}$$
 1

$$\bigcap_{\operatorname{Cl}} 1$$

Alter

Str. of Tri peptide