FINAL JEE-MAIN EXAMINATION - MARCH, 2021
(Held On Tuesday 16 ${ }^{\text {th }}$ March, 2021) TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. The number of elements in the set $\{x \in \mathbb{R}:(|x|-3)|x+4|=6\}$ is equal to
(1) 3
(2) 2
(3) 4
(4) 1

Official Ans. by NTA (2)
Sol. $\mathrm{x} \neq-480$
$(|x|-3)(|x+4|)=6$
$\Rightarrow \quad|x|-3=\frac{6}{|x+4|}$

No. of solutions $=2$
2. Let a vector $\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}$ be obtained by rotating the vector $\sqrt{3} \hat{i}+\hat{j}$ by an angle 45° about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices $(\alpha, \beta),(0, \beta)$ and $(0,0)$ is equal to
(1) $\frac{1}{2}$
(2) 1
(3) $\frac{1}{\sqrt{2}}$
(4) $2 \sqrt{2}$

Official Ans. by NTA (1)
Sol.

Area of $\Delta\left(\mathrm{OA}^{\prime} \mathrm{B}\right)=\frac{1}{2} \mathrm{OA}^{\prime} \cos 15^{\circ} \times \mathrm{OA}^{\prime} \sin 15^{\circ}$
$=\frac{1}{2}\left(\mathrm{OA}^{\prime}\right)^{2} \frac{\sin 30^{\circ}}{2}$
$=(3+1) \times \frac{1}{8}=\frac{1}{2}$

IEST PAPER WITH SOLUIION

3. If for $\mathrm{a}>0$, the feet of perpendiculars from the points $\mathrm{A}(\mathrm{a},-2 \mathrm{a}, 3)$ and $\mathrm{B}(0,4,5)$ on the plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ are points $\mathrm{C}(0,-\mathrm{a},-1)$ and D respectively, then the length of line segment CD is equal to :
(1) $\sqrt{31}$
(2) $\sqrt{41}$
(3) $\sqrt{55}$
(4) $\sqrt{66}$

Official Ans. by NTA (4)
Sol.

C lies on plane $\Rightarrow-\mathrm{ma}-\mathrm{n}=0 \Rightarrow \frac{\mathrm{~m}}{\mathrm{n}}=-\frac{1}{\mathrm{a}}$.
$\overrightarrow{\mathrm{CA}} \| \hat{l}+m \hat{j}+n \hat{k}$
$\frac{\mathrm{a}-0}{\mathrm{l}}=\frac{-\mathrm{a}}{\mathrm{m}}=\frac{4}{\mathrm{n}} \Rightarrow \frac{\mathrm{m}}{\mathrm{n}}=-\frac{\mathrm{a}}{4}$
From (1) \& (2)

$$
-\frac{1}{a}=\frac{-a}{4} \Rightarrow a^{2}=4 \Rightarrow a=2 \quad(\text { since } a>0)
$$

From (2) $\frac{m}{n}=\frac{-1}{2}$
Let $\mathrm{m}=-\mathrm{t} \Rightarrow \mathrm{n}=2 \mathrm{t}$
$\frac{2}{l}=\frac{-2}{-\mathrm{t}} \Rightarrow l=\mathrm{t}$
So plane : $\mathfrak{t}(\mathrm{x}-\mathrm{y}+2 \mathrm{z})=0$
$\mathrm{BD}=\frac{6}{\sqrt{6}}=\sqrt{6} \quad \mathrm{C} \cong(0,-2,-1)$
$\mathrm{CD}=\sqrt{\mathrm{BC}^{2}-\mathrm{BD}^{2}}$
$=\sqrt{\left(0^{2}+6^{2}+6^{2}\right)-(\sqrt{6})^{2}}$
$=\sqrt{66}$
4. Consider three observations a, b and c such that $b=a+c$. If the standard deviation of $a+2$, $b+2, \mathrm{c}+2$ is d , then which of the following is true ?
(1) $\mathrm{b}^{2}=3\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)+9 \mathrm{~d}^{2}$
(2) $b^{2}=a^{2}+c^{2}+3 d^{2}$
(3) $b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$
(4) $b^{2}=3\left(a^{2}+c^{2}\right)-9 d^{2}$

Official Ans. by NTA (4)
Sol. For a, b80

$$
\begin{align*}
& \text { mean }=\frac{a+b+c}{3}(=\bar{x}) \\
& b=a+c \\
& \Rightarrow \quad \bar{x}=\frac{2 b}{3} \tag{1}
\end{align*}
$$

S.D. $(\mathrm{a}+2, \mathrm{~b}+2, \mathrm{c}+2)=$ S.D. $(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{d}$
$\Rightarrow \quad d^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}-(\bar{x})^{2}$
$\Rightarrow \quad d^{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{3}-\frac{4 \mathrm{~b}^{2}}{9}$
$\Rightarrow \quad 9 \mathrm{~d}^{2}=3\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)-4 \mathrm{~b}^{2}$
$\Rightarrow \quad b^{2}=3\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)-9 \mathrm{~d}^{2}$
5. If for $x \in\left(0, \frac{\pi}{2}\right), \log _{10} \sin x+\log _{10} \cos x=-1$ and $\log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right), n>0$, then the value of n is equal to :
(1) 20
(2) 12
(3) 9
(4) 16

Official Ans. by NTA (2)
Sol. $\mathrm{x} \in\left(0, \frac{\pi}{2}\right)$
$\log _{10} \sin x+\log _{10} \cos x=-1$
$\Rightarrow \quad \log _{10} \sin \mathrm{x} \cdot \cos \mathrm{x}=-1$
$\Rightarrow \quad \sin x \cdot \cos x=\frac{1}{10}$
$\log _{10}(\sin \mathrm{x}+\cos \mathrm{x})=\frac{1}{2}\left(\log _{10} \mathrm{n}-1\right)$
$\Rightarrow \quad \sin x+\cos x=10^{\left(\log _{10} \sqrt{n}-\frac{1}{2}\right)}=\sqrt{\frac{n}{10}}$
by squaring

$$
\begin{aligned}
& 1+2 \sin \mathrm{x} \cdot \cos \mathrm{x}=\frac{\mathrm{n}}{10} \\
& \Rightarrow \quad 1+\frac{1}{5}=\frac{\mathrm{n}}{10} \quad \Rightarrow \quad \mathrm{n}=12
\end{aligned}
$$

6. Let $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right], i=\sqrt{-1}$. Then, the system of linear equations $A^{8}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$ has :
(1) A unique solution
(2) Infinitely many solutions
(3) No solution
(4) Exactly two solutions

Official Ans. by NTA (3)
Sol. $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right]=2\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$
$A^{4}=2^{2}\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=8\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$A^{8}=64\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=128\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$A^{8}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$
$\Rightarrow 128\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$
$\Rightarrow \quad 128\left[\begin{array}{c}x-y \\ -x+y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$
$\Rightarrow \quad x-y=\frac{1}{16}$
\& $\quad-\mathrm{x}+\mathrm{y}=\frac{1}{2}$
\Rightarrow From (1) \& (2) : No solution.
7. If the three normals drawn to the parabola, $y^{2}=2 x$ pass through the point $(a, 0) a \neq 0$, then ' a ' must be greater than :
(1) $\frac{1}{2}$
(2) $-\frac{1}{2}$
(3) -1
(4) 1

Official Ans. by NTA (4)
Sol. For standard parabola
For more than 3 normals (on axis)
$x>\frac{L}{2}$ (where L is length of L.R.)

For $\mathrm{y}^{2}=2 \mathrm{x}$
L.R. = 2
for ($\mathrm{a}, 0$)
$\mathrm{a}>\frac{\text { L.R. }}{2} \Rightarrow \mathrm{a}>1$
8. Let the position vectors of two points P and Q be $3 \hat{i}-\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}-4 \hat{k}$, respectively. Let R and S be two points such that the direction ratios oflines PR and QS are $(4,-1,2)$ and $(-2,1,-2)$, respectively. Let lines PR and QS intersect at T . If the vector $\overrightarrow{\mathrm{TA}}$ is perpendicular to both $\overrightarrow{\mathrm{PR}}$ and $\overrightarrow{\mathrm{QS}}$ and the length of vector $\overrightarrow{\mathrm{TA}}$ is $\sqrt{5}$ units, then the modulus of a position vector of A is :
(1) $\sqrt{482}$
(2) $\sqrt{171}$
(3) $\sqrt{5}$
(4) $\sqrt{227}$

Official Ans. by NTA (2)
Sol. $\mathrm{P}(3,-1,2)$
$\mathrm{Q}(1,2,-4)$
$\overrightarrow{\mathrm{PR}} \| 4 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\text { QS }} \|-2 \hat{i}+\hat{j}-2 \hat{k}$
dr's of normal to the plane containing $\mathrm{P}, \mathrm{T} \& \mathrm{Q}$ will be proportional to :

$$
\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
4 & -1 & 2 \\
-2 & 1 & -2
\end{array}\right|
$$

$\therefore \quad \frac{\ell}{0}=\frac{m}{4}=\frac{n}{2}$
For point, $\mathrm{T}: \overrightarrow{\mathrm{PT}}=\frac{\mathrm{x}-3}{4}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}-2}{2}=\lambda$

$$
\overrightarrow{\mathrm{QT}}=\frac{\mathrm{x}-1}{-2}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}+4}{-2}=\mu
$$

$\mathrm{T}:(4 \lambda+3,-\lambda-1,2 \lambda+2)$

$$
\cong(2 \mu+1, \mu+2,-2 \mu-4)
$$

$4 \lambda+3=-2 \mu+1 \quad \Rightarrow \quad 2 \lambda+\mu=-1$
$\lambda+\mu=-3 \quad \Rightarrow \quad \lambda=2$
\& $\mu=-5 \quad \lambda+\mu=-3 \quad \Rightarrow \quad \lambda=2$
So point T : $(11,-3,6)$
$\overrightarrow{\mathrm{OA}}=(11 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \pm\left(\frac{2 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{5}}\right) \sqrt{5}$
$\overrightarrow{\mathrm{OA}}=(11 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \pm(2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{OA}}=11 \hat{\mathrm{i}}-\hat{\mathrm{j}}+7 \hat{\mathrm{k}}$
or
$9 \hat{i}-5 \hat{j}+5 \hat{k}$
$|\overrightarrow{\mathrm{OA}}|=\sqrt{121+1+49}=\sqrt{171}$
or
$\sqrt{81+25+25}=\sqrt{131}$
9. Let the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as :
$f(x)=\left\{\begin{array}{ll}x+2, & x<0 \\ x^{2}, & x \geq 0\end{array}\right.$ and $g(x)=\left\{\begin{array}{lr}x^{3}, & x<1 \\ 3 x-2, & x \geq 1\end{array}\right.$
Then, the number of points in \mathbb{R} where $(f \circ g)(x)$ is NOT differentiable is equal to :
(1) 3
(2) 1
(3) 0
(4) 2

Official Ans. by NTA (2)
Sol. $\quad f(\mathrm{~g}(\mathrm{x}))= \begin{cases}\mathrm{g}(\mathrm{x})+2, & \mathrm{~g}(\mathrm{x})<0 \\ (\mathrm{~g}(\mathrm{x}))^{2}, & \mathrm{~g}(\mathrm{x}) \geq 0\end{cases}$

$$
- \begin{cases}x^{3}+2, & x<0 \\ x^{6}, & x \in[0,1) \\ (3 x-2)^{2}, & x \in[1, \infty)\end{cases}
$$

$$
(f \circ g(x))^{\prime}= \begin{cases}3 x^{2}, & x<0 \\ 6 x^{5}, & x \in(0,1) \\ 2(3 x-2) \times 3, & x \in(1, \infty)\end{cases}
$$

At 'O'
L.H.L. \neq R.H.L. (Discontinuous)

At '1'
L.H.D. $=6=$ R.H.D.
$\Rightarrow f \circ g(x)$ is differentiable for $\mathrm{x} \in \mathbb{R}-\{0\}$
10. Which of the following Boolean expression is a tautology ?
(1) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \vee \mathrm{q})$
(2) $(p \wedge q) \vee(p \rightarrow q)$
(3) $(\mathrm{p} \wedge \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{q})$
(4) $(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$

Official Ans. by NTA (4)
Sol.

p	q	$\mathrm{p} \wedge \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$
T	T	$\beta \mathrm{T}$	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	T	T

$(p \wedge q) \rightarrow(p \rightarrow q)$ is tautology
11. Let a complex number $\mathrm{z},|\mathrm{z}| \neq 1$,
satisfy $\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$. Then, the largest value of $|z|$ is equal to \qquad .
(1) 8
(2) 7
(3) 6
(4) 5

Official Ans. by NTA (2)
Sol. $\quad \log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$
$\frac{|\mathrm{z}|+11}{(|\mathrm{z}|-1)^{2}} \geq \frac{1}{2}$
$2|z|+22 \geq(|z|-1)^{2}$
$2|z|+22 \geq|z|^{2}+1-2|z|$
$|z|^{2}-4|z|-21 \leq 0$
$\Rightarrow \quad \mid \mathrm{zl} \leq 7$
$\therefore \quad$ Largest value of zz is 7
12. If n is the number of irrational terms in the expansion of $\left(3^{1 / 4}+5^{1 / 8}\right)^{60}$, then $(n-1)$ is divisible by :
(1) 26
(2) 30
(3) 8
(4) 7

Official Ans. by NTA (1)
Sol. $\left(3^{1 / 4}+5^{1 / 8}\right)^{60}$
${ }^{60} \mathrm{C}_{\mathrm{r}}\left(3^{1 / 4}\right)^{60-\mathrm{r}} \cdot\left(5^{1 / 8}\right)^{\mathrm{r}}$
${ }^{60} \mathrm{C}_{\mathrm{r}}(3)^{\frac{60-\mathrm{r}}{4}} .5^{\frac{\mathrm{r}}{8}}$
For rational terms.

$$
\begin{array}{ll}
\frac{\mathrm{r}}{8}=\mathrm{k} ; & 0 \leq \mathrm{r} \leq 60 \\
& 0 \leq 8 \mathrm{k} \leq 60 \\
& 0 \leq \mathrm{k} \leq \frac{60}{8} \\
& 0 \leq \mathrm{k} \leq 7.5
\end{array}
$$

$\mathrm{k}=0,1,2,3,4,5,6,7$
$\frac{60-8 \mathrm{k}}{4}$ is always divisible by 4 for all value of k.
Total rational terms $=8$
Total terms $=61$
irrational terms $=53$
$\mathrm{n}-1=53-1=52$
52 is divisible by 26 .
13. Let P be a plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$. If plane P divides the line segment AB joining points $\mathrm{A}(-3,-6,1)$ and $\mathrm{B}(2,4,-3)$ in ratio $\mathrm{k}: 1$ then the value of k is equal to :
(1) 1.5
(2) 3
(3) 2
(4) 4

Official Ans. by NTA (3)
Sol.

Point C is
$\left(\frac{2 \mathrm{k}-3}{\mathrm{k}+1}, \frac{4 \mathrm{k}-6}{\mathrm{k}+1}, \frac{-3 \mathrm{k}+1}{\mathrm{k}+1}\right)$
$\frac{x-1}{-1}=\frac{y+4}{2}=\frac{z+2}{3}$
Plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$
$l(-1)+m(2)+n(3)=0$
$-l+2 \mathrm{~m}+3 \mathrm{n}=0$
It also satisfy point ($1,-4,-2$)
$l-4 \mathrm{~m}-2 \mathrm{n}=0$
Solving (1) and (2)
$2 \mathrm{~m}+3 \mathrm{n}=4 \mathrm{~m}+2 \mathrm{n}$
$\mathrm{n}=2 \mathrm{~m}$
$l-4 \mathrm{~m}-4 \mathrm{~m}=0$
$l=8 \mathrm{~m}$
$\frac{l}{8}=\frac{\mathrm{m}}{1}=\frac{\mathrm{n}}{2}$
$l: \mathrm{m}: \mathrm{n}=8: 1: 2$
Plane is $8 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=0$
It will satisfy point C

$$
\begin{aligned}
& 8\left(\frac{2 \mathrm{k}-3}{\mathrm{k}+1}\right)+\left(\frac{4 \mathrm{k}-6}{\mathrm{k}+1}\right)+2\left(\frac{-3 \mathrm{k}+1}{\mathrm{k}+1}\right)=0 \\
& 16 \mathrm{k}-24+4 \mathrm{k}-6-6 \mathrm{k}+2=0 \\
& 14 \mathrm{k}=28 \quad \therefore \quad \mathrm{k}=2
\end{aligned}
$$

14. The range of $a \in \mathbb{R}$ for which the function
$f(x)=(4 a-3)\left(x+\log _{\mathrm{e}} 5\right)+2(a-7) \cot \left(\frac{x}{2}\right) \sin ^{2}\left(\frac{x}{2}\right)$,
$x \neq 2 n \pi, n \in \mathbb{N}$, has critical points, is :
(1) $(-3,1)$
(2) $\left[-\frac{4}{3}, 2\right]$
(3) $[1, \infty)$
(4) $(-\infty,-1]$

Official Ans. by NTA (2)
Sol. $f(x)=(4 a-3)\left(x+\log _{e} 5\right)+(a-7) \sin x$ $f(x)=(4 a-3)(1)+(a-7) \cos x=0$
$\Rightarrow \quad \cos \mathrm{x}=\frac{3-4 \mathrm{a}}{\mathrm{a}-7}$
$-1 \leq \frac{3-4 a}{a-7}<1$
$\frac{3-4 a}{a-7}+1 \geq 0$
$\frac{3-4 a}{a-7}<1$
$\frac{3-4 a+a-7}{a-7} \geq 0 \quad \frac{3-4 a}{a-7}-1<0$
$\frac{-3 a-4}{a-7} \geq 0$
$\frac{3-4 a-a+7}{a-7}<0$
$\frac{3 a+4}{a-7} \leq 0 \quad \frac{-5 a+10}{a-7}<0$
$\frac{5 a-10}{a-7}>0$
$\frac{5(a-2)}{a-7}>0$

$\alpha \in\left[-\frac{4}{3}, 2\right)$
Check end point $\left[-\frac{4}{3}, 2\right)$
15. A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :
(1) $\frac{3}{4}$
(2) $\frac{52}{867}$
(3) $\frac{39}{50}$
(4) $\frac{22}{425}$

Official Ans. by NTA (3)

Sol. E_{1} : Event denotes spade is missing

$$
\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{4} ; \mathrm{P}\left(\overline{\mathrm{E}}_{1}\right)=\frac{3}{4}
$$

A : Event drawn two cards are spade

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})\left.=\frac{\frac{1}{4} \times\left(\frac{{ }^{12} \mathrm{C}_{2}}{{ }^{51} \mathrm{C}_{2}}\right)+\frac{3}{4} \times\left(\frac{{ }^{13} \mathrm{C}_{2}}{{ }^{51} \mathrm{C}_{2}}\right)+\frac{3}{4} \times\left({ }^{13} \mathrm{C}_{2}\right.}{{ }^{51} \mathrm{C}_{2}}\right) \\
& \frac{1}{4} \times\left(\frac{{ }^{12} \mathrm{C}_{2}}{{ }^{51} \mathrm{C}_{2}}\right)+\frac{3}{4} \times\left(\frac{{ }^{13} \mathrm{C}_{2}}{{ }^{51} \mathrm{C}_{2}}\right) \\
&=\frac{39}{50}
\end{aligned}
$$

16. Let $[x]$ denote greatest integer less than or equal to x . If for $\mathrm{n} \in \mathbb{N},\left(1-\mathrm{x}+\mathrm{x}^{3}\right)^{\mathrm{n}}=\sum_{\mathrm{j}=0}^{3 \mathrm{n}} \mathrm{a}_{\mathrm{j}} \mathrm{x}^{\mathrm{j}}$,
then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1$ is equal to :
(1) 2
(2) 2^{n-1}
(3) 1
(4) n

Official Ans. by NTA (3)
Sol. $\quad\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$
$\left(1-x+x^{3}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2} \ldots \ldots . .+a_{3 n} x^{3 n}$
$\sum_{j=0}^{\left\lfloor\frac{3 n}{2}\right]} a_{2 j}=$ Sum of $a_{0}+a_{2}+a_{4}$
$\sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1=$ Sum of $a_{1}+a_{3}+a_{5} \ldots \ldots$.
put $\mathrm{x}=1$
$1=a_{0}+a_{1}+a_{2}+a_{3}$ \qquad $+\mathrm{a}_{3 \mathrm{n}}$
Put $\mathrm{x}=-1$
$1=a_{0}-a_{1}+a_{2}-a_{3}$ \qquad $+(-1)^{3 n} a_{3 n}$
Solving (A) and (B)
$a_{0}+a_{2}+a_{4} \ldots \ldots=1$
$a_{1}+a_{3}+a_{5} \ldots \ldots . .=0$
$\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}=1$
17. If $y=y(x)$ is the solution of the differential equation, $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$, then the maximum value of the function $\mathrm{y}(\mathrm{x})$ over \mathbb{R} is equal to :
(1) 8
(2) $\frac{1}{2}$
(3) $-\frac{15}{4}$
(4) $\frac{1}{8}$

Official Ans. by NTA (4)
Sol. $\frac{d y}{d x}+2 y \tan x=\sin x$
I.F. $=e^{\int 2 \tan x d x}=e^{2(n \sec x}$
I.F. $=\sec ^{2} \mathrm{x}$
$y .\left(\sec ^{2} x\right)=\int \sin x \cdot \sec ^{2} x d x$
$y .\left(\sec ^{2} x\right)=\int \sec x \tan x d x$
y. $\left(\sec ^{2} x\right)=\sec x+C$
$x=\frac{\pi}{3} ; y=0$
$\Rightarrow \quad \mathrm{C}=-2$
$\Rightarrow \quad y=\frac{\sec x-2}{\sec ^{2} x}=\cos x-2 \cos ^{2} x$
$\mathrm{y}=\mathrm{t}-2 \mathrm{t}^{2} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=1-4 \mathrm{t}=0 \Rightarrow \mathrm{t}=\frac{1}{4}$
$\therefore \quad \max =\frac{1}{4}-\frac{1}{8}=\frac{2-1}{8}=\frac{1}{8}$
18. The locus of the midpoints of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola, $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{16}=1$ is :
(1) $\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0$
(2) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0$
(3) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0$
(4) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0$

Official Ans. by NTA (4)
Sol.

Equation of chord
$y-k=-\frac{h}{k}(x-h)$
$\mathrm{ky}-\mathrm{k}^{2}=-\mathrm{hx}+\mathrm{h}^{2}$
$h x+k y=h^{2}+k^{2}$
$y=-\frac{h x}{k}+\frac{h^{2}+k^{2}}{k}$
tangent to $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
$c^{2}=a^{2} m^{2}-b^{2}$
$\left(\frac{h^{2}+\mathrm{k}^{2}}{\mathrm{k}}\right)^{2}=9\left(-\frac{\mathrm{h}}{\mathrm{k}}\right)^{2}-16$
$\left(x^{2}+y^{2}\right)^{2}=9 x^{2}-16 y^{2}$
19. The number of roots of the equation,
$(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$
in the interval $[0, \pi]$ is equal to :
(1) 3
(2) 4
(3) 8
(4) 2

Official Ans. by NTA (2)
Sol. (81) $)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$
$(81)^{\sin ^{2} x}+\frac{(81)^{1}}{(18)^{\sin ^{2} x}}=30$
$(81)^{\sin ^{2} x}=t$
$\mathrm{t}+\frac{81}{\mathrm{t}}=30$
$\mathrm{t}^{2}-30 \mathrm{t}+81=0$
$(t-3)(t-27)=0$
$\begin{array}{lll}(81)^{\sin ^{2} x}=3^{1} & \text { or } & (81)^{\sin ^{2} x}=3^{3} \\ 3^{4 \sin ^{2} x}=3^{1} & \text { or } & 3^{4 \sin ^{2} x}=3^{3} \\ \sin ^{2} x=\frac{1}{4} & \text { or } & \sin ^{2} x=\frac{3}{4}\end{array}$

Total sol. $=4$
20. Let $S_{k}=\sum_{\mathrm{r}=1}^{\mathrm{k}} \tan ^{-1}\left(\frac{6^{r}}{2^{2 r+1}+3^{2 r+1}}\right)$. Then $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{S}_{\mathrm{k}}$ is equal to :
(1) $\tan ^{-1}\left(\frac{3}{2}\right)$
(2) $\frac{\pi}{2}$
(3) $\cot ^{-1}\left(\frac{3}{2}\right)$
(4) $\tan ^{-1}(3)$

Official Ans. by NTA (3)

Sol. $\quad \mathrm{S}_{\mathrm{k}}=\sum_{\mathrm{r}=1}^{\mathrm{k}} \tan ^{-1}\left(\frac{6^{\mathrm{r}}}{2^{2 \mathrm{r}+1}+3^{2 \mathrm{r}+1}}\right)$
Divide by $3{ }^{2 r}$

$$
\begin{aligned}
& \sum_{\mathrm{r}=1}^{\mathrm{k}} \tan ^{-1}\left(\frac{\left(\frac{2}{3}\right)^{\mathrm{r}}}{\left(\frac{2}{3}\right)^{2 \mathrm{r}} \cdot 2+3}\right) \\
& 80 \\
& \sum_{\mathrm{r}=1}^{\mathrm{k}} \tan ^{-1}\left(\frac{\left(\frac{2}{3}\right)^{\mathrm{r}}}{3\left(\left(\frac{2}{3}\right)^{2 \mathrm{r}+1}+1\right)}\right)
\end{aligned}
$$

Let $\left(\frac{2}{3}\right)^{\mathrm{r}}=\mathrm{t}$

$$
\sum_{\mathrm{r}=1}^{\mathrm{k}} \tan ^{-1}\left(\frac{\frac{\mathrm{t}}{3}}{1+\frac{2}{3} \mathrm{t}^{2}}\right)
$$

$$
\sum_{r=1}^{k} \tan ^{-1}\left(\frac{t-\frac{2 t}{3}}{1+t \cdot \frac{2 t}{3}}\right)
$$

$$
\sum_{\mathrm{r}=1}^{\mathrm{k}}\left(\tan ^{-1}(\mathrm{t})-\tan ^{-1}\left(\frac{2 \mathrm{t}}{3}\right)\right)
$$

$$
\sum_{r=1}^{\mathrm{k}}\left(\tan ^{-1}\left(\frac{2}{3}\right)^{\mathrm{r}}-\tan ^{-1}\left(\frac{2}{3}\right)^{r+1}\right)
$$

$$
S_{k}=\tan ^{-1}\left(\frac{2}{3}\right)-\tan ^{-1}\left(\frac{2}{3}\right)^{k+1}
$$

$$
S_{\infty}=\lim _{k \rightarrow \infty}\left(\tan ^{-1}\left(\frac{2}{3}\right)-\tan ^{-1}\left(\frac{2}{3}\right)^{k+1}\right)
$$

$$
=\tan ^{-1}\left(\frac{2}{3}\right)-\tan ^{-1}(0)
$$

$$
\therefore \quad S_{\infty}=\tan ^{-1}\left(\frac{2}{3}\right)=\cot ^{-1}\left(\frac{3}{2}\right)
$$

SECTION-B

1. Consider an arithmetic series and a geometric series having four initial terms from the set $\{11,8,21,16,26,32,4\}$. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to \qquad .
Official Ans. by NTA (3)
Sol. GP : 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
AP : 11, 16, 21, 26, 31, 36
Common terms : 16, 256, 4096 only
2. Let $f:(0,2) \rightarrow \mathbb{R}$ be defined as
$f(\mathrm{x})=\log _{2}\left(1+\tan \left(\frac{\pi \mathrm{x}}{4}\right)\right)$.
Then, $\lim _{\mathrm{n} \rightarrow \infty} \frac{2}{\mathrm{n}}\left(f\left(\frac{1}{\mathrm{n}}\right)+f\left(\frac{2}{\mathrm{n}}\right)+\ldots .+f(1)\right)$ is equal to \qquad -

Official Ans. by NTA (1)
Sol. $E=2 \lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n} f\left(\frac{r}{n}\right)$

$$
\begin{equation*}
\mathrm{E}=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(1+\tan \frac{\pi x}{4}\right) \mathrm{dx} \tag{i}
\end{equation*}
$$

replacing $\mathrm{x} \rightarrow 1-\mathrm{x}$

$$
\begin{aligned}
& E=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(1+\tan \frac{\pi}{4}(1-x)\right) d x \\
& E=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(1+\tan \left(\frac{\pi}{4}-\frac{\pi}{4} x\right)\right) d x
\end{aligned}
$$

$$
E=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(1+\frac{1+\tan \frac{\pi}{4} x}{1+\tan \frac{\pi}{4} x}\right) d x
$$

$$
\mathrm{E}=\frac{2}{\ln 2} \int_{0}^{1} \ln \left(\frac{2}{1+\tan \frac{\pi x}{4}}\right) \mathrm{dx}
$$

$$
\begin{equation*}
\mathrm{E}=\frac{2}{\ln 2} \int_{0}^{1}\left(\ln 2-\ell \ln \left(1+\tan \frac{\pi x}{4}\right)\right) \mathrm{dx} \tag{ii}
\end{equation*}
$$

equation (i) + (ii)
$\mathrm{E}=1$
3. Let ABCD be a square of side of unit length. Let a circle C_{1} centered at A with unit radius is drawn. Another circle C_{2} which touches C_{1} and the lines $A D$ and $A B$ are tangent to it, is also drawn. Let a tangent line from the point C to the circle C_{2} meet the side $A B$ at E. If the length of EB is $\alpha+\sqrt{3} \beta$, where α, β are integers, , then $\alpha+\beta$ is equal to \qquad .

Official Ans. by NTA (1)
Sol.

Here $\mathrm{AO}+\mathrm{OD}=1$ or $(\sqrt{2}+1) \mathrm{r}=1$
$\Rightarrow \quad r=\sqrt{2-1}$
equation of circle $(x-r)^{2}+(y-r)^{2}=r^{2}$ Equation of CE

$$
\begin{aligned}
& y-1=m(x-1) \\
& m x-y+1-M=0
\end{aligned}
$$

It is tangent to circle
$\therefore \quad\left|\frac{\mathrm{mr}-\mathrm{r}+1-\mathrm{m}}{\sqrt{\mathrm{m}^{2}+1}}\right|=\mathrm{r}$
$\left|\frac{(m-1) r+1-m}{\sqrt{m^{2}+1}}\right|=r$
$\frac{(\mathrm{m}-1)^{2}(\mathrm{r}-1)^{2}}{\mathrm{~m}^{2}+1}=\mathrm{r}^{2}$
Put $r=\sqrt{2}-1$
On solving $m=2-\sqrt{3}, 2+\sqrt{3}$

Taking greater slope of CE as

$$
\begin{aligned}
& 2+\sqrt{3} \\
& y-1=(2+\sqrt{3})(x-1)
\end{aligned}
$$

$$
\text { Put } y=0
$$

$$
-1=(2+\sqrt{3})(x-1)
$$

$$
\frac{-1}{2+\sqrt{3}} \times\left(\frac{2-\sqrt{3}}{2-\sqrt{3}}\right)=x-1
$$

$$
x-1=\sqrt{3}-1
$$

$$
\mathrm{EB}=1-\mathrm{x}=1-(\sqrt{3}-1)
$$

$$
E B=2-\sqrt{3}
$$

4. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then $a+b+c$ is equal to \qquad .

Official Ans. by NTA (4)
Sol. $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$

$$
\Rightarrow \lim _{x \rightarrow 0} \frac{a\left(1+x+\frac{x^{2}}{2!}\right)-b\left(1-\frac{x^{2}}{2!}+\ldots\right)+c\left(1-x+\frac{x^{2}}{2!}\right)}{\left(\frac{x \sin x}{x}\right) x}=2
$$

$$
\begin{align*}
& a-b+c=0 \tag{1}\\
& a-c=0
\end{align*}
$$

$$
\begin{aligned}
& \& \frac{a+b+c}{2}=2 \\
\Rightarrow & a+b+c=4
\end{aligned}
$$

5. The total number of 3×3 matrices A having enteries from the set $(0,1,2,3)$ such that the sum of all the diagonal entries of AA^{T} is 9 , is equal to \qquad _.

Official Ans. by NTA (766)

Sol. Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
diagonal elements of
$A A^{T}, \quad a^{2}+b^{2}+c^{2}, d^{2}+e^{2}+f^{2}, g^{2}+b^{2}+c^{2}$
Sum $=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}+i^{2}=9$
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i} \in\{0,1,2,3\}$

	Case	No. of Matrices			
(1)	All -1 s	$\frac{9!}{9!}=1$	\left\lvert\,	(2)	One $\rightarrow 3$ remaining-0
:---	:---				
(3)	One-2 five-1s three-0s		$\frac{9!}{1!\times 8!}=9$		
:---					
(4)					
two -2 's one 1 six-0's	\right.				

Total no. of ways $=1+9+8 \times 63+63 \times 4$

$$
=766
$$

6. Let

$$
P=\left[\begin{array}{ccc}
-30 & 20 & 56 \\
90 & 140 & 112 \\
120 & 60 & 14
\end{array}\right] \text { and } A=\left[\begin{array}{ccc}
2 & 7 & \omega^{2} \\
-1 & -\omega & 1 \\
0 & -\omega & -\omega+1
\end{array}\right]
$$

where $\omega=\frac{-1+\mathrm{i} \sqrt{3}}{2}$, and I_{3} be the identity
matrix of order 3. If the determinant of the matrix $\left(\mathrm{P}^{-1} \mathrm{AP}-\mathrm{I}_{3}\right)^{2}$ is $\alpha \omega^{2}$, then the value of α is equal to \qquad .
Official Ans. by NTA (36)
Sol. Let $\mathrm{M}=\left(\mathrm{P}^{-1} \mathrm{AP}-\mathrm{I}\right)^{2}$
$=\left(\mathrm{P}^{-1} \mathrm{AP}\right)^{2}-2 \mathrm{P}^{-1} \mathrm{AP}+\mathrm{I}$
$=\mathrm{P}^{-1} \mathrm{~A}^{2} \mathrm{P}-2 \mathrm{P}^{-1} \mathrm{AP}+\mathrm{I}$
$P M=A^{2} P-2 A P+P$
$=\left(\mathrm{A}^{2}-2 \mathrm{~A} \cdot \mathrm{I}+\mathrm{I}^{2}\right) \mathrm{P}$
$\Rightarrow \quad \operatorname{Det}(\mathrm{PM})=\operatorname{Det}\left((\mathrm{A}-\mathrm{I})^{2} \times \mathrm{P}\right)$
$\Rightarrow \quad \operatorname{DetP} . \operatorname{DetM}=\operatorname{Det}(\mathrm{A}-\mathrm{I})^{2} \times \operatorname{Det}(\mathrm{P})$
$\Rightarrow \quad$ Det $\mathrm{M}=(\operatorname{Det}(\mathrm{A}-\mathrm{I}))^{2}$
Now $A-I=\left[\begin{array}{ccc}1 & 7 & w^{2} \\ -1 & -w-1 & 1 \\ 0 & -w & -w\end{array}\right]$
$\operatorname{Det}(\mathrm{A}-\mathrm{I})=\left(\mathrm{w}^{2}+\mathrm{w}+\mathrm{w}\right)+7(-\mathrm{w})+\mathrm{w}^{3}=-6 \mathrm{w}$ $\operatorname{Det}((\mathrm{A}-\mathrm{I}))^{2}=36 \mathrm{w}^{2}$
$\Rightarrow \quad \alpha=36$
7. If the normal to the curve $y(x)=\int_{0}^{x}\left(2 t^{2}-15 t+10\right) d t$ at a point (a, b) is parallel to the line $x+3 y=-5$, $a>1$, then the value of $|a+6 b|$ is equal to \qquad .

Sol. $y(x)=\int_{0}^{x}\left(2 t^{2}-15 t+10\right) d t$
$\left.y^{\prime}(x)\right]_{x=a}=\left[2 x^{2}-15 x+10\right]_{a}=2 a^{2}-15 a+10$
Slope of normal $=-\frac{1}{3}$
$\Rightarrow \quad 2 \mathrm{a}^{2}-15 \mathrm{a}+10=3 \Rightarrow \mathrm{a}=7$
\& $\quad \mathrm{a}=\frac{1}{2}$ (rejected)
$b=y(7)=\int_{0}^{7}\left(2 t^{2}-15 t+10\right) d t$
$=\left[\frac{2 \mathrm{t}^{3}}{3}-\frac{15 \mathrm{t}^{2}}{2}+10 \mathrm{t}\right]_{0}^{7}$
$\Rightarrow \quad 6 \mathrm{~b}=4 \times 7^{3}-45 \times 49+60 \times 7$
$\mathrm{la}+6 \mathrm{~b} \mid=406$
8. Let the curve $y=y(x)$ be the solution of the differential equation, $\frac{d y}{d x}=2(x+1)$. If the numerical value of area bounded by the curve $y=y(x)$ and x-axis is $\frac{4 \sqrt{8}}{3}$, then the value of $y(1)$ is equal to \qquad .

Official Ans. by NTA (2)
Sol. $\frac{\mathrm{dy}}{\mathrm{dx}}=2(\mathrm{x}+1)$
$\Rightarrow \quad \int \mathrm{dy}=\int 2(\mathrm{x}+1) \mathrm{dx}$
$\Rightarrow \mathrm{y}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+\mathrm{C}$
Area $=\frac{4 \sqrt{8}}{3}$

$\Rightarrow \quad 2 \int_{-1}^{-1+\sqrt{1-\mathrm{C}}}\left(-(\mathrm{x}+1)^{2}-\mathrm{C}+1\right) \mathrm{dx}=\frac{4 \sqrt{8}}{3}$
$\Rightarrow \quad 2\left[-\frac{(\mathrm{x}+1)^{3}}{3}-\mathrm{Cx}+\mathrm{x}\right]_{-1}^{-1+\sqrt{1-\mathrm{C}}}=\frac{4 \sqrt{8}}{3}$
$\Rightarrow \quad-(\sqrt{1-\mathrm{C}})^{3}+3 \mathrm{c}-3 \mathrm{C} \sqrt{1-\mathrm{C}}$
$-3+3 \sqrt{1-\mathrm{C}}-3 \mathrm{C}+3=2 \sqrt{8}$
$\Rightarrow \quad \mathrm{C}=-1$
$\Rightarrow f(x)=x^{2}+2 x-1, f(1)=2$

Official Ans. by NTA (406)
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(\mathrm{x})+f(\mathrm{x}+1)=2$, for all $\mathrm{x} \in \mathbb{R}$. If
$\mathrm{I}_{1}=\int_{0}^{8} f(\mathrm{x}) \mathrm{dx}$ and $\mathrm{I}_{2}=\int_{-1}^{3} f(\mathrm{x}) \mathrm{dx}$, then the value of $\mathrm{I}_{1}+2 \mathrm{I}_{2}$ is equal to \qquad .
Official Ans. by NTA (16)
Sol. $f(\mathrm{x})+f(\mathrm{x}+1)=2$
$\Rightarrow f(\mathrm{x})$ is periodic with period $=2$
$I_{1}=\int_{0}^{8} f(x) d x=4 \int_{0}^{2} f(x) d x$
$=4 \int_{0}^{1}(f(\mathrm{x})+f(1+\mathrm{x})) \mathrm{dx}=8$
Similarly $\mathrm{I}_{2}=2 \times 2=4$
$\mathrm{I}_{1}+2 \mathrm{I}_{2}=16$
10. Let z and w be two complex numbers such that $w=z \bar{z}-2 z+2,\left|\frac{z+i}{z-3 i}\right|=1$ and $\operatorname{Re}(w)$ has minimum value. Then, the minimum value of $\mathrm{n} \in \mathbb{N}$ for which w^{n} is real, is equal to \qquad Official Ans. by NTA (4)

Sol. $\omega=\mathrm{z} \overline{\mathrm{z}}-2 \mathrm{z}+2$
$\left|\frac{z+i}{z-3 i}\right|=1$
$\Rightarrow|z+\mathrm{i}|=|\mathrm{z}-3 \mathrm{i}|$
$\Rightarrow \quad \mathrm{z}=\mathrm{x}+\mathrm{i}, \mathrm{x} \in \mathbb{R}$
$\omega=(x+i)(x-i)-2(x+i)+2$

$$
=x^{2}+1-2 x-2 i+2
$$

$\operatorname{Re}(\omega)=x^{2}-2 x+3$
For min $(\operatorname{Re}(\omega)), x=1$

$$
\begin{aligned}
& \Rightarrow \quad \omega=2-2 \mathrm{i}=2(1-\mathrm{i})=2 \sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{\pi}{4}} \\
& \omega^{\mathrm{n}}=(2 \sqrt{2})^{\mathrm{n}} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{n} \pi}{4}}
\end{aligned}
$$

For real \& minimum value of n, $\mathrm{n}=4$

