FINAL JEE-MAIN EXAMINATION - MARCH, 2021
(Held On Tuesday 16 ${ }^{\text {th }}$ March, 2021) TIME: 3:00 PM to 6:00 PM

MATHEMATIGS
 SECTION-A

1. The maximum value of
$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ is:
(1) $\sqrt{7}$
(2) $\frac{3}{4}$
(3) $\sqrt{5}$
(4) 5

Official Ans by NTA (3)
Sol. $\mathrm{C}_{1}+\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 & 1+\cos ^{2} x & \cos 2 x \\
2 & \cos ^{2} x & \cos 2 x \\
1 & \cos ^{2} x & \sin 2 x
\end{array}\right| \\
& \mathrm{R}_{1}-\mathrm{R}_{2} \rightarrow \mathrm{R}_{1}
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
0 & 1 & 0 \\
2 & \cos ^{2} x & \cos 2 x \\
1 & \cos ^{2} x & \sin 2 x
\end{array}\right|
$$

Open w.r.t. R_{1}
$-(2 \sin 2 x-\cos 2 x)$
$\cos 2 \mathrm{x}-2 \sin 2 \mathrm{x}=\mathrm{f}(\mathrm{x})$
$\left.\mathrm{f}(\mathrm{x})\right|_{\text {max }}=\sqrt{1+4}=\sqrt{5}$
2. Let A denote the event that a 6 -digit integer formed by $0,1,2,3,4,5,6$ without repetitions, be divisible by 3 . Then probability of event A is equal to :
(1) $\frac{9}{56}$
(2) $\frac{4}{9}$
(3) $\frac{3}{7}$
(4) $\frac{11}{27}$

Official Ans by NTA (2)
Sol. Total cases :
$\underline{6} \cdot \underline{6} \cdot \underline{5} \cdot \underline{4} \cdot \underline{3} \cdot \underline{2}$
$\mathrm{n}(\mathrm{s})=6 \cdot 6$!
Favourable cases

TEST PAPER WITH SOLDIION

Number divisible by $3 \equiv$
Sum of digits must be divisible by 3

Case-I

$1,2,3,4,5,6$
Number of ways $=6$!

Case-II

$0,1,2,4,5,6$
Number of ways $=5 \cdot 5$!
Case-III
$0,1,2,3,4,5$
Number of ways $=5 \cdot 5$!
$n($ favourable $)=6!+2 \cdot 5 \cdot 5!$
$P=\frac{6!+2 \cdot 5 \cdot 5!}{6 \cdot 6!}=\frac{4}{9}$
3. Let $\alpha \in R$ be such that the function

$$
f(x)= \begin{cases}\frac{\cos ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^{3}}, & x \neq 0 \\ \alpha, & x=0\end{cases}
$$

is continuous at $\mathrm{x}=0$, where $\{\mathrm{x}\}=\mathrm{x}-[\mathrm{x}]$, $[\mathrm{x}]$ is the greatest integer less than or equal to x. Then :
(1) $\alpha=\frac{\pi}{\sqrt{2}}$
(2) $\alpha=0$
(3) no such α exists
(4) $\alpha=\frac{\pi}{4}$

Official Ans by NTA (3)
Sol.
$\operatorname{Lim}_{x \rightarrow 0^{+}} f(x)=f(0)=\operatorname{Lim}_{x \rightarrow 0^{-}}(x)$
$\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-x^{2}\right) \cdot \sin ^{-1}(1-x)}{x(1-x)(1+x)}$
$\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-x^{2}\right)}{x \cdot 1 \cdot 1} \cdot \frac{\pi}{2}$

Let $1-\mathrm{x}^{2}=\cos \theta$
$\frac{\pi}{2} \operatorname{Lim}_{\mathrm{x} \rightarrow 0^{+}} \frac{\theta}{\sqrt{1-\cos \theta}}$
$\frac{\pi}{2} \operatorname{Lim}_{\theta \rightarrow 0^{+}} \frac{\theta}{\sqrt{2} \sin \frac{\theta}{2}}=\frac{\pi}{\sqrt{2}}$

Now, $\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{\cos ^{-1}\left(1-(1+x)^{2}\right) \sin ^{-1}(-x)}{(1+x)-(1+x)^{3}}$
$\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{\frac{\pi}{2}\left(-\sin ^{-1} x\right)}{(1+x)(2+x)(-x)}$
$\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{\frac{\pi}{2}}{1 \cdot 2} \cdot \frac{\sin ^{-1} x}{x}=\frac{\pi}{4}$
\Rightarrow RHL \neq LHL
Function can't be continuous
\Rightarrow No value of α exist
4. If (x, y, z) be an arbitrary point lying on a plane P which passes through the point ($42,0,0$), $(0,42,0)$ and $(0,0,42)$, then the value of expression

$$
3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}
$$

$$
+\frac{\mathrm{z}-12}{(\mathrm{x}-11)^{2}(\mathrm{y}-19)^{2}}-\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{14(\mathrm{x}-11)(\mathrm{y}-19)(\mathrm{z}-12)}
$$

(1) 0
(2) 3
(3) 39
(4) -45

Official Ans by NTA (2)
Sol. Plane passing through $(42,0,0),(0,42,0)$, (0, 0, 42)
From intercept from, equation of plane is
$x+y+z=42$
$\Rightarrow(x-11)+(y-19)+(z-12)=0$
let $\quad a=x-11, b=y-19, c=z-12$
$a+b+c=0$
Now, given expression is
$3+\frac{\mathrm{a}}{\mathrm{b}^{2} \mathrm{c}^{2}}+\frac{\mathrm{b}}{\mathrm{a}^{2} \mathrm{c}^{2}}+\frac{\mathrm{c}}{\mathrm{a}^{2} \mathrm{~b}^{2}}-\frac{42}{14 \mathrm{abc}}$
$3+\frac{a^{3}+b^{3}+c^{3}-3 a b c}{a^{2} b^{2} c^{2}}$
If $a+b+c=0$
$\Rightarrow \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 \mathrm{abc}$
$\Rightarrow 3$
5. Consider the integral
$I=\int_{0}^{10} \frac{[x] e^{[x]}}{e^{x-1}} d x$,
where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x. Then the value of I is equal to:
(1) $9(\mathrm{e}-1)$
(2) $45(\mathrm{e}+1)$
(3) $45(\mathrm{e}-1)$
(4) $9(e+1)$

Official Ans by NTA (3)
Sol. $I=\int_{0}^{10}[x] \cdot e^{[x]-x+1}$

$$
\begin{aligned}
I & =\int_{0}^{1} 0 d x+\int_{1}^{2} 1 \cdot e^{2-x}+\int_{2}^{3} 2 \cdot e^{3-x}+\ldots . .+\int_{9}^{10} 9 \cdot e^{10-x} d x \\
& \Rightarrow I=\sum_{n=0}^{9} \int_{n}^{n+1} n \cdot e^{n+1-x} d x \\
& =-\sum_{n=0}^{9} n\left(e^{n+1-x}\right)_{n}^{n+1}
\end{aligned}
$$

$$
=-\sum_{\mathrm{n}=0}^{9} \mathrm{n} \cdot\left(\mathrm{e}^{0}-\mathrm{e}^{1}\right)
$$

$$
=(\mathrm{e}-1) \sum_{\mathrm{n}=0}^{9} \mathrm{n}
$$

$$
=(e-1) \cdot \frac{9 \cdot 10}{2}
$$

$$
=45(\mathrm{e}-1)
$$

6. Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $y=x$. Then the equation of tangent to C at $P(2,1)$ is :
(1) $x-y=1$
(2) $2 x+y=5$
(3) $x+3 y=5$
(4) $x+2 y=4$

Official Ans by NTA (1)
Sol. Given $\mathrm{y}^{2}=4 \mathrm{x}$
Mirror image on $y=x \Rightarrow C: x^{2}=4 y$
$2 x=4 \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{x}{2}$
$\left.\frac{d y}{d x}\right|_{P(2,1)}=\frac{2}{2}=1$
Equation of tangent at $(2,1)$
$\Rightarrow \mathrm{y}-1=1(\mathrm{x}-2)$
$\Rightarrow \mathrm{x}-\mathrm{y}=1$
7. If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}+(\tan x) y=\sin x, 0 \leq x \leq \frac{\pi}{3}$, with $y(0)=0$, then $y\left(\frac{\pi}{4}\right)$ equal to :
(1) $\frac{1}{4} \log _{e} 2$
(2) $\left(\frac{1}{2 \sqrt{2}}\right) \log _{\mathrm{e}} 2$
(3) $\log _{e} 2$
(4) $\frac{1}{2} \log _{e} 2$

Official Ans by NTA (2)

Sol. $\frac{d y}{d x}+(\tan x) y=\sin x ; 0 \leq x \leq \frac{\pi}{3}$
I.F. $=\mathrm{e}^{\int \tan \mathrm{xdx}}=\mathrm{e}^{\ln \sec x}=\sec \mathrm{x}$
$y \sec x=\int \tan x d x$
$y \sec x=\int \tan x d x$
$y \sec x=\ln |\sec x|+C$
$\mathrm{x}=0, \mathrm{y}=0 \quad \Rightarrow \quad \therefore \mathrm{c}=0$
$y \sec x=\ell n|\sec x|$
$y=\cos x \cdot \ell \ln |\sec x|$
$\left.\mathrm{y}\right|_{\mathrm{x}=\frac{\pi}{4}}=\left(\frac{1}{\sqrt{2}}\right) \cdot \ln \sqrt{2}$
$\left.y\right|_{x=\frac{\pi}{4}}=\frac{1}{2 \sqrt{2}} \log _{e} 2$
8. Let $A=\{2,3,4,5, \ldots ., 30\}$ and ' \simeq ' be an equivalence relation on $\mathrm{A} \times \mathrm{A}$, defined by $(\mathrm{a}, \mathrm{b}) \simeq(\mathrm{c}, \mathrm{d})$, if and only if $\mathrm{ad}=\mathrm{bc}$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :
(1) 5
(2) 6
(3) 8
(4) 7

Official Ans by NTA (4)
Sol. $\mathrm{A}=\{2,3,4,5, \ldots, 30\}$
$(\mathrm{a}, \mathrm{b}) \simeq(\mathrm{c}, \mathrm{d}) \Rightarrow \mathrm{ad}=\mathrm{bc}$
$(4,3) \simeq(c, d) \Rightarrow 4 d=3 c$
$\Rightarrow \frac{4}{3}=\frac{\mathrm{c}}{\mathrm{d}}$
$\frac{c}{d}=\frac{4}{3} \quad \& \quad c, d \in\{2,3$,
$(c, d)=\{(4,3),(8,6),(12,9),(16,12),(20$,
$15),(24,18),(28,21)\}$
No. of ordered pair $=7$
9. Let the lengths of intercepts on x-axis and y-axis made by the circle $x^{2}+y^{2}+a x+2 a y+c=0$, ($\mathrm{a}<0$) be $2 \sqrt{2}$ and $2 \sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x+2 y=0$, is euqal to :
(1) $\sqrt{11}$
(2) $\sqrt{7}$
(3) $\sqrt{6}$
(4) $\sqrt{10}$

Official Ans by NTA (3)
Sol. $x^{2}+y^{2}+a x+2 a y+c=0$
$2 \sqrt{\mathrm{~g}^{2}-\mathrm{c}}=2 \sqrt{\frac{\mathrm{a}^{2}}{4}-\mathrm{c}}=2 \sqrt{2}$
$\Rightarrow \quad \frac{\mathrm{a}^{2}}{4}-\mathrm{c}=2$
$2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}=2 \sqrt{\mathrm{a}^{2}-\mathrm{c}}=2 \sqrt{5}$
$\Rightarrow \quad \mathrm{a}^{2}-\mathrm{c}=5$
(1) \& (2)
$\frac{3 a^{2}}{4}=3 \Rightarrow a=-2 \quad(a<0)$
$\therefore \quad \mathrm{c}=-1$
Circle $\Rightarrow x^{2}+y^{2}-2 x-4 y-1=0$
$\Rightarrow(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}=6$
Given $x+2 y=0 \Rightarrow m=-\frac{1}{2}$
$\mathrm{m}_{\text {tangent }}=2$
Equation of tangent
$\Rightarrow(y-2)=2(x-1) \pm \sqrt{6} \sqrt{1+4}$
$\Rightarrow 2 \mathrm{x}-\mathrm{y} \pm \sqrt{30}=0$
Perpendicular distance from $(0,0)=\left|\frac{ \pm \sqrt{30}}{\sqrt{4+1}}\right|=\sqrt{6}$
10. The least value of $|z|$ where z is complex number which satisfies the inequality
$\exp \left(\frac{(|z|+3)(|z|-1)}{|z|+1 \mid} \log _{e} 2\right) \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|$, $i=\sqrt{-1}$, is equal to :
(1) 3
(2) $\sqrt{5}$
(3) 2
(4) 8

Official Ans by NTA (1)
Sol. $\exp \left(\frac{(|z|+3)(|z|-1)}{|z|+1 \mid} \ell \operatorname{nn} 2\right) \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|$

$$
\begin{aligned}
& \Rightarrow \quad 2^{\frac{(|z|+3)(|z|-1)}{(|z|+1)}} \geq \log _{\sqrt{2}}(16) \\
& \Rightarrow \quad 2^{\frac{(|z|+3)(|z|-1)}{(|z|+1)}} \geq 2^{3} \\
& \Rightarrow \quad \frac{(|z|+3)(|z|-1)}{(|z|+1)} \geq 3 \\
& \Rightarrow(|z|+3)(|z|-1) \geq 3(|z|+1) \\
&|z|^{2}+2|z|-3 \geq 3|z|+3
\end{aligned}
$$

$\Rightarrow|z|^{2}+|z|-6 \geq 0$
$\Rightarrow(|z|-3)(|z|+2) \geq 0 \Rightarrow|z|-3 \geq 0$
$\Rightarrow|\mathrm{z}| \geq 3 \quad \Rightarrow|z|_{\text {min }}=3$
11. Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments AB , $\mathrm{CD}, \mathrm{BC}, \mathrm{DA}$ respectively. Let α be the number of triangles having these points from different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta-\alpha)$ is equal to :
(1) 795
(2) 1173
(3) 1890
(4) 717

Official Ans by NTA (4)

Sol.

$\alpha=$ Number of triangles
$\alpha=5 \cdot 6 \cdot 7+5 \cdot 7 \cdot 9+5 \cdot 6 \cdot 9+6 \cdot 7 \cdot 9$
$=210+315+270+378$
$=1173$
$\beta=$ Number of Quadrilateral
$\beta=5 \cdot 6 \cdot 7 \cdot 9=1890$
$\beta-\alpha=1890-1173=717$
12. If the point of intersections of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=4 b, b>4$
lie on the curve $y^{2}=3 x^{2}$, then b is equal to:
(1) 12
(2) 5
(3) 6
(4) 10

Official Ans by NTA (1)
Sol. $\quad y^{2}=3 x^{2}$
and $x^{2}+y^{2}=4 b$
Solve both we get
so $\quad x^{2}=b$

$$
\frac{x^{2}}{16}+\frac{3 x^{2}}{b^{2}}=1
$$

$$
\begin{aligned}
& \frac{b}{16}+\frac{3}{b}=1 \\
& b^{2}-16 b+48=0 \\
& (b-12)(b-4)=0 \\
& b=12, b>4
\end{aligned}
$$

13. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy $\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x$ is equal to:
(1) 2
(2) 1
(3) 3
(4) 0

Official Ans by NTA (3)
Sol. $\sin ^{-1} \frac{3 x}{5}+\sin ^{-1} \frac{4 x}{5}=\sin ^{-1} x$
$\sin ^{-1}\left(\frac{3 x}{5} \sqrt{1-\frac{16 x^{2}}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^{2}}{25}}\right)=\sin ^{-1} x$
$\frac{3 x}{5} \sqrt{1-\frac{16 x^{2}}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^{2}}{25}}=x$
$x=0,3 \sqrt{25-16 x^{2}}+4 \sqrt{25-9 x^{2}}=25$
$4 \sqrt{25-9 x^{2}}=25-3 \sqrt{25-16 x^{2}}$ squaring we get
$16\left(25-9 x^{2}\right)=625+9\left(25-16 x^{2}\right)-150 \sqrt{25-16 x^{2}}$
$400=625+225-150 \sqrt{25-16 x^{2}}$
$\sqrt{25-16 x^{2}}=3 \Rightarrow 25-16 x^{2}=9$
$\Rightarrow \mathrm{x}^{2}=1$
Put $\mathrm{x}=0,1,-1$ in the original equation
We see that all values satisfy the original equation.
Number of solution $=3$
14. Let $\mathrm{A}(-1,1), \mathrm{B}(3,4)$ and $\mathrm{C}(2,0)$ be given three points. A line $\mathrm{y}=\mathrm{mx}, \mathrm{m}>0$, intersects lines AC and BC at point P and Q respectively. Let A_{1} and A_{2} be the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQC}$ respectively, such that $A_{1}=3 A_{2}$, then the value of m is equal to :
(1) $\frac{4}{15}$
(2) 1
(3) 2
(4) 3

Official Ans by NTA (2)

Sol.

$\mathrm{P} \equiv\left(\mathrm{x}_{1}, \mathrm{mx}_{1}\right)$
$\mathrm{Q} \equiv\left(\mathrm{x}_{2}, \mathrm{mx}_{2}\right)$
$A_{1}=\frac{1}{2}\left|\begin{array}{lll}3 & 4 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 1\end{array}\right|=\frac{13}{2}$
$\mathrm{A}_{2}=\frac{1}{2}\left|\begin{array}{ccc}\mathrm{x}_{1} & \mathrm{mx}_{1} & 1 \\ \mathrm{X}_{2} & \mathrm{mx}_{2} & 1 \\ 2 & 0 & 1\end{array}\right|$
$\mathrm{A}_{2}=\frac{1}{2}\left|2\left(\mathrm{mx}_{1}-\mathrm{mx}_{2}\right)\right|=\mathrm{m}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|$
$A_{1}=3 A_{2} \Rightarrow \frac{13}{2}=3 m\left|x_{1}-x_{2}\right|$
$\Rightarrow\left|x_{1}-x_{2}\right|=\frac{16}{6 m}$
AC: $x+3 y=2$
$B C: y=4 x-8$
$P: x+3 y=2 \& y=m x \Rightarrow x_{1}=\frac{2}{1+3 m}$
$Q: y=4 x-8 \& y=m x \Rightarrow x_{2}=\frac{8}{4-m}$
$\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|=\left|\frac{2}{1+3 \mathrm{~m}}-\frac{8}{4-\mathrm{m}}\right|$
$=\left|\frac{-26 m}{(1+3 m)(4-m)}\right|=\frac{26 m}{(3 m+1)|m-4|}$
$=\frac{26 m}{(3 m+1)(4-m)}$
$\left|x_{1}-x_{2}\right|=\frac{13}{6 m}$
$\frac{26 m}{(3 m+1)(4-m)}=\frac{13}{6 m}$
$\Rightarrow 12 \mathrm{~m}^{2}=-(3 \mathrm{~m}+1)(\mathrm{m}-4)$
$\Rightarrow 12 m^{2}=-\left(3 m^{2}-11 m-4\right)$
$\Rightarrow 15 \mathrm{~m}^{2}-11 \mathrm{~m}-4=0$
$\Rightarrow 15 m^{2}-15 m+4 m-4=0$
$\Rightarrow(15 m+4)(m-1)=0$
$\Rightarrow \quad \mathrm{m}=1$
15. Let f be a real valued function, defined on $\mathrm{R}-\{-1,1\}$ and given by
$f(x)=3 \log _{e}\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$.
Then in which of the following intervals, function $f(x)$ is increasing?
(1) $(-\infty,-1) \cup\left(\left[\frac{1}{2}, \infty\right)-\{1\}\right)$
(2) $(-\infty, \infty)-\{-1,1\}$
(3) $\left(-1, \frac{1}{2}\right]$
(4) $\left(-\infty, \frac{1}{2}\right]-\{-1\}$

Official Ans by NTA (1)
Sol. $f(x)=3 \ln (x-1)-3 \ln (x+1)-\frac{2}{x-1}$
$f^{\prime}(x)=\frac{3}{x-1}-\frac{3}{x+1}+\frac{2}{(x-1)^{2}}$
$f^{\prime}(x)=\frac{4(2 x-1)}{(x-1)^{2}(x+1)}$
$f^{\prime}(x) \geq 0$
$\Rightarrow \quad \mathrm{x} \in(-\infty,-1) \cup\left[\frac{1}{2}, 1\right) \cup(1, \infty)$
16. Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ where $\mathrm{S}=(0, \infty)$ be a twice differentiable function such that $f(x+1)=x f(x)$. If $g: S \rightarrow R$ be defined as $g(x)=\log _{\mathrm{e}} f(x)$, then the value of $\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|$ is equal to :
(1) $\frac{205}{144}$
(2) $\frac{197}{144}$
(3) $\frac{187}{144}$
(4) 1

Official Ans by NTA (1)
Sol. $\operatorname{lnf}(x+1)=\ln (x f(x))$
$\operatorname{lnf}(\mathrm{x}+1)=\ln \mathrm{x}+\operatorname{lnf}(\mathrm{x})$
$\Rightarrow \mathrm{g}(\mathrm{x}+1)=\ln \mathrm{x}+\mathrm{g}(\mathrm{x})$
$\Rightarrow \mathrm{g}(\mathrm{x}+1)-\mathrm{g}(\mathrm{x})=\ln \mathrm{x}$
$\Rightarrow g^{\prime \prime}(x+1)-g^{\prime \prime}(x)=-\frac{1}{x^{2}}$
Put $\mathrm{x}=1,2,3,4$
$g^{\prime \prime}(2)-g^{\prime \prime}(1)=-\frac{1}{1^{2}}$
$g^{\prime \prime}(3)-g^{\prime \prime}(2)=-\frac{1}{2^{2}}$
$g^{\prime \prime}(4)-g^{\prime \prime}(3)=-\frac{1}{3^{2}}$
$g^{\prime \prime}(5)-g^{\prime \prime}(4)=-\frac{1}{4^{2}}$
Add all the equation we get
$g^{\prime \prime}(5)-g^{\prime \prime}(1)=-\frac{1}{1^{2}}-\frac{1}{2^{2}}-\frac{1}{3^{2}}-\frac{1}{4^{2}}$
$\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|=\frac{205}{144}$
17. Let $P(x)=x^{2}+b x+c$ be a quadratic polynomial with real coefficients such that $\int_{0}^{1} \mathrm{P}(\mathrm{x}) \mathrm{dx}=1$ and $P(x)$ leaves remainder 5 when it is divided by $(x-2)$. Then the value of $9(b+c)$ is equal to:
(1) 9
(2) 15
(3) 7
(4) 11

Official Ans by NTA (3)

Sol. $\int_{0}^{1}\left(x^{2}+b x+c\right) d x=1$
$\frac{1}{3}+\frac{\mathrm{b}}{2}+\mathrm{c}=1 \Rightarrow \frac{\mathrm{~b}}{2}+\mathrm{c}=\frac{2}{3}$
$3 b+6 c=4$
$P(2)=5$
$4+2 b+c=5$
$2 b+c=1$
From (1) \& (2)
$\mathrm{b}=\frac{2}{9} \quad \& \quad \mathrm{c}=\frac{5}{9}$
$9(b+c)=7$
18. If the foot of the perpendicular from point $(4,3,8)$ on the line $L_{1}: \frac{x-a}{l}=\frac{y-2}{3}=\frac{z-b}{4}$, $l \neq 0$ is $(3,5,7)$, then the shortest distance between the line L_{1} and line $L_{2}: \frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-4}{4}=\frac{\mathrm{z}-5}{5}$ is equal to :
(1) $\frac{1}{2}$
(2) $\frac{1}{\sqrt{6}}$
(3) $\sqrt{\frac{2}{3}}$
(4) $\frac{1}{\sqrt{3}}$

Official Ans by NTA (2)
Sol. $(3,5,7)$ satisfy the line L_{1}
$\frac{3-\mathrm{a}}{\ell}=\frac{5-2}{3}=\frac{7-\mathrm{b}}{4}$
$\frac{3-\mathrm{a}}{\ell}=1 \quad \& \quad \frac{7-\mathrm{b}}{4}=1$
$a+\ell=3 \quad \ldots(1) \quad \& \quad b=3$
$\left.\overrightarrow{\mathrm{v}}_{1}=\langle 4,3,8\rangle-<3,5,7\right\rangle$
$\overrightarrow{\mathrm{v}}_{1}=\langle 1,-2,1\rangle$
$\overrightarrow{\mathrm{v}}_{2}=<\ell, 3,4>$
$\overrightarrow{\mathrm{v}}_{1} \cdot \overrightarrow{\mathrm{v}}_{2}=0 \quad \Rightarrow \quad \ell-6+4=0 \quad \Rightarrow \quad \ell=2$
$a+\ell=3 \Rightarrow a=1$
$L_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}-3}{4}$
$L_{2}: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$
$\mathrm{A}=\langle 1,2,3\rangle$
$\mathrm{B}=\langle 2,4,5\rangle$
$\overrightarrow{\mathrm{AB}}=<1,2,2\rangle$
$\overrightarrow{\mathrm{p}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{q}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$

Shortest distance $=\left|\frac{\overrightarrow{\mathrm{AB}} \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}\right|=\frac{1}{\sqrt{6}}$
19. Let C_{1} be the curve obtained by the solution of differential equation $2 x y \frac{d y}{d x}=y^{2}-x^{2}, x>0$.

Let the curve C_{2} be the solution of $\frac{2 x y}{x^{2}-y^{2}}=\frac{d y}{d x}$. If both the curves pass through $(1,1)$, then the area enclosed by the curves C_{1} and C_{2} is equal to :
(1) $\pi-1$
(2) $\frac{\pi}{2}-1$
(3) $\pi+1$
(4) $\frac{\pi}{4}+1$

Official Ans by NTA (2)
Sol. $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}, \quad x \in(0, \infty)$
put $\mathrm{y}=\mathrm{vx}$

$$
\begin{aligned}
& x \frac{d v}{d x}+v=\frac{v^{2}-1}{2 v} \\
& \frac{2 v}{v^{2}+1} d v=-\frac{d x}{x}
\end{aligned}
$$

Integrate,
$\ln \left(\mathrm{v}^{2}+1\right)=-\ln \mathrm{x}+\mathrm{C}$
$\ln \left(\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}+1\right)=-\ln \mathrm{x}+\mathrm{C}$
put $\mathrm{x}=1, \mathrm{y}=1, \mathrm{C}=\ln 2$
$\ln \left(\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}+1\right)=-\ln \mathrm{x}+\ln 2$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}=0$
(Curve C_{1})
Similarly,
$\frac{d y}{d x}=\frac{2 x y}{x^{2}-y^{2}}$
Put $y=v x$
$x^{2}+y^{2}-2 y=0$

required area $=2 \int_{0}^{1}\left(\sqrt{2 x-x^{2}}-x\right) d x=\frac{\pi}{2}-1$
20. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$. If $\vec{r} \times \vec{a}=\vec{b} \times \vec{r}, \vec{r} .(\alpha \hat{i}+2 \hat{j}+\hat{k})=3$ and $\vec{r} .(2 \hat{i}+5 \hat{j}-\alpha \hat{k})=-1, \alpha \in R$, then the value of $\alpha+|\overrightarrow{\mathrm{r}}|^{2}$ is equal to :
(1) 9
(2) 15
(3) 13
(4) 11

Official Ans by NTA (2)
Sol. $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{r}} \Rightarrow \overrightarrow{\mathrm{r}} \times(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=0$
$\overrightarrow{\mathrm{r}}=\vec{\lambda}(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \Rightarrow \overrightarrow{\mathrm{r}}=\vec{\lambda}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}+2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=\vec{\lambda}(3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}} \cdot(\alpha \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})=3$
Put $\overrightarrow{\mathrm{r}}$ from (1) $\alpha \lambda=1$
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-\alpha \hat{\mathrm{k}})=-1$
Put $\overrightarrow{\mathrm{r}}$ from (1) $2 \lambda \alpha-\lambda=1$

Solve (2) \& (3)

$$
\begin{aligned}
& \alpha=1, \lambda=1 \\
& \Rightarrow \quad \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}} \\
& \\
& \quad|\overrightarrow{\mathrm{r}}|^{2}=14 \& \alpha=1 \\
& \quad \alpha+|\overrightarrow{\mathrm{r}}|^{2}=15
\end{aligned}
$$

SECTION-B

1. If the distance of the point $(1,-2,3)$ from the plane $x+2 y-3 z+10=0$ measured parallel to the line, $\frac{x-1}{3}=\frac{2-y}{m}=\frac{z+3}{1}$ is $\sqrt{\frac{7}{2}}$, then the value of $\mid \mathrm{ml}$ is equal to \qquad _.
Official Ans by NTA (2)

Sol.

DC of line $\equiv\left(\frac{3}{\sqrt{\mathrm{~m}^{2}+10}}, \frac{-\mathrm{m}}{\sqrt{\mathrm{m}^{2}+10}}, \frac{1}{\sqrt{\mathrm{~m}^{2}+10}}\right)$
$\mathrm{Q} \equiv\left(1+\frac{3 \mathrm{r}}{\sqrt{\mathrm{m}^{2}+10}},-2+\frac{-\mathrm{mr}}{\sqrt{\mathrm{m}^{2}+10}}, 3+\frac{\mathrm{r}}{\sqrt{\mathrm{m}^{2}+10}}\right)$
Q lies on $x+2 y-3 z+10=0$
$1+\frac{3 \mathrm{r}}{\sqrt{\mathrm{m}^{2}+10}}-4-\frac{2 \mathrm{mr}}{\sqrt{\mathrm{m}^{2}+10}}-9-\frac{3 \mathrm{r}}{\sqrt{\mathrm{m}^{2}+10}}+10=0$
$\Rightarrow \frac{\mathrm{r}}{\sqrt{\mathrm{m}^{2}+10}}(3-2 \mathrm{~m}-3)=2$
$\Rightarrow \frac{r}{\sqrt{\mathrm{~m}^{2}+10}}(-2 \mathrm{~m})=2$
$\mathrm{r}^{2} \mathrm{~m}^{2}=\mathrm{m}^{2}+10$
$\frac{7}{2} \mathrm{~m}^{2}=\mathrm{m}^{2}+10 \Rightarrow \frac{5}{2} \mathrm{~m}^{2}=10 \Rightarrow \mathrm{~m}^{2}=4$
$\mid \mathrm{ml}=2$
2. Consider the statistics of two sets of observations as follows :

Size Mean Variance

Observation I	10	2	2
Observation II	n	3	1

If the variance of the combined set of these two observations is $\frac{17}{9}$, then the value of n is equal to
\qquad -.
Official Ans by NTA (5)

Sol. $\quad \sigma^{2}=\frac{\mathrm{n}_{1} \sigma_{1}^{2}+\mathrm{n}_{2} \sigma_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}+\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}\left(\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\right)^{2}$
$\mathrm{n}_{1}=10, \mathrm{n}_{2}=\mathrm{n}, \sigma_{1}^{2}=2, \sigma_{2}^{2}=1$
$\overline{\mathrm{x}}_{1}=2, \overline{\mathrm{x}}_{2}=3, \sigma^{2}=\frac{17}{9}$
$\frac{17}{9}=\frac{10 \times 2+n}{n+10}+\frac{10 n}{(n+10)^{2}}(3-2)^{2}$
$\Rightarrow \quad \frac{17}{9}=\frac{(\mathrm{n}+20)(\mathrm{n}+10)+10 \mathrm{n}}{(\mathrm{n}+10)^{2}}$
$\Rightarrow \quad 17 \mathrm{n}^{2}+1700+340 \mathrm{n}=90 \mathrm{n}+9\left(\mathrm{n}^{2}+30 \mathrm{n}+200\right)$
$\Rightarrow \quad 8 n^{2}-20 \mathrm{n}-100=0$
$2 n^{2}-5 n-25=0$
$(2 \mathrm{n}+5)(\mathrm{n}-5)=0 \Rightarrow \mathrm{n}=\frac{-5}{2}, 5$
\downarrow
(Rejected)
Hence $\mathrm{n}=5$
3. Let $A=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ be two 2×1 matrices with real entries such that $\mathrm{A}=\mathrm{XB}$, where $X=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & -1 \\ 1 & k\end{array}\right]$, and $k \in R$. If
$\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}=\frac{2}{3}\left(\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)$ and $\left(\mathrm{k}^{2}+1\right) \mathrm{b}_{2}^{2} \neq-2 \mathrm{~b}_{1} \mathrm{~b}_{2}$,
then the value of k is \qquad .
Official Ans by NTA (1)
Sol. $\mathrm{A}=\mathrm{XB}$
$\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & -1 \\ 1 & k\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
$\left[\begin{array}{l}\sqrt{3} a_{1} \\ \sqrt{3} \mathrm{a}_{2}\end{array}\right]=\left[\begin{array}{l}\mathrm{b}_{1}-\mathrm{b}_{2} \\ \mathrm{~b}_{1}+k \mathrm{~b}_{2}\end{array}\right]$
$\mathrm{b}_{1}-\mathrm{b}_{2}=\sqrt{3} \mathrm{a}_{1}$
$\mathrm{b}_{1}+\mathrm{kb} \mathrm{b}_{2}=\sqrt{3} \mathrm{a}_{2}$

Given, $\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}=\frac{2}{3}\left(\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)$
$(1)^{2}+(2)^{2}$
$\left(b_{1}+b_{2}\right)^{2}+\left(b_{1}+k b_{2}\right)^{2}=3\left(a_{1}^{2}+a_{2}^{2}\right)$
$\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}=\frac{2}{3} \mathrm{~b}_{1}^{2}+\frac{\left(1+\mathrm{k}^{2}\right)}{3} \mathrm{~b}_{2}^{2}+\frac{2}{3} \mathrm{~b}_{1} \mathrm{~b}_{2}(\mathrm{k}-1)$

Given, $\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}=\frac{2}{3} \mathrm{~b}_{1}^{2}+\frac{2}{3} \mathrm{~b}_{2}^{2}$
On comparing we get

$$
\begin{align*}
& \frac{\mathrm{k}^{2}+1}{3}=\frac{2}{3} \Rightarrow \mathrm{k}^{2}+1=2 \\
& \Rightarrow \mathrm{k}= \pm 1 \tag{3}
\end{align*}
$$

$\& \frac{2}{3}(\mathrm{k}-1)=0 \Rightarrow \mathrm{k}=1$

From both we get $\mathrm{k}=1$
4. For real numbers α, β, γ and δ, if
$\int \frac{\left(x^{2}-1\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)} d x$
$=\alpha \log _{e}\left(\tan ^{-1}\left(\frac{\mathrm{x}^{2}+1}{\mathrm{x}}\right)\right)$

$$
+\beta \tan ^{-1}\left(\frac{\gamma\left(\mathrm{x}^{2}-1\right)}{\mathrm{x}}\right)+\delta \tan ^{-1}\left(\frac{\mathrm{x}^{2}+1}{\mathrm{x}}\right)+\mathrm{C}
$$

where C is an arbitrary constant, then the value of $10(\alpha+\beta \gamma+\delta)$ is equal to \qquad -.

Official Ans by NTA (6)

Sol. $\int \frac{\left(x^{2}-1\right) d x}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(x+\frac{1}{x}\right)}+\int \frac{d x}{x^{4}+3 x^{2}+1}$

$$
\int \frac{\left(1-\frac{1}{x^{2}}\right) d x}{\left(\left(x+\frac{1}{x}\right)^{2}+1\right) \tan ^{-1}\left(x+\frac{1}{x}\right)}+\frac{1}{2} \int \frac{\left(x^{2}+1\right)-\left(x^{2}-1\right) d x}{x^{4}+3 x^{2}+1}
$$

Put $\tan ^{-1}\left(x+\frac{1}{x}\right)=t$
$\int \frac{d t}{t}+\frac{1}{2} \int \frac{\left(1+\frac{1}{x^{2}}\right) d x}{\left(x-\frac{1}{x}\right)^{2}+5}-\frac{1}{2} \int \frac{\left(1-\frac{1}{x^{2}}\right) d x}{\left(x+\frac{1}{x}\right)^{2}+1}$

Put $x-\frac{1}{x}=y, x+\frac{1}{x}=z$
$\log _{e} t+\frac{1}{2} \int \frac{d y}{y^{2}+5}-\frac{1}{2} \int \frac{d z}{z^{2}+1}$
$=\log _{\mathrm{e}} \tan ^{-1}\left(x+\frac{1}{x}\right)+\frac{1}{2 \sqrt{5}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{5} x}\right)$

$$
-\frac{1}{2} \tan ^{-1}\left(\frac{x^{2}+1}{\mathrm{x}}\right)+\mathrm{C}
$$

$\alpha=1, \beta=\frac{1}{2 \sqrt{5}}, \gamma=\frac{1}{\sqrt{5}}, \delta=\frac{-1}{2}$
or
$\alpha=1, \beta=\frac{-1}{2 \sqrt{5}}, \gamma=\frac{-1}{\sqrt{5}}, \delta=\frac{-1}{2}$
$10(\alpha+\beta \gamma+\delta)=10\left(1+\frac{1}{10}-\frac{1}{2}\right)=6$
5. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as
$f(x)=\left\{\begin{array}{cc}x+a, & x<0 \\ |x-1|, & x \geq 0\end{array}\right.$ and
$g(x)=\left\{\begin{array}{cc}x+1, & x<0 \\ (x-1)^{2}+b, & x \geq 0\end{array}\right.$
where a, b are non-negative real numbers. If $(\mathrm{gof})(\mathrm{x})$ is continuous for all $\mathrm{x} \in \mathrm{R}$, then $\mathrm{a}+\mathrm{b}$ is equal to \qquad _.
Official Ans by NTA (1)
Sol. $g[f(x)]=\left[\begin{array}{cc}f(x)+1 & f(x)<0 \\ (f(x)-1)^{2}+b & f(x) \geq 0\end{array}\right.$

$$
g[f(x)]=\left[\begin{array}{cc}
x+a+1 & x+a<0 \& x<0 \\
|x-1|+1 & |x-1|<0 \& x \geq 0 \\
(x+a-1)^{2}+b & x+a \geq 0 \& x<0 \\
(|x-1|-1)^{2}+b & |x-1| \geq 0 \& x \geq 0
\end{array}\right.
$$

$g[f(x)]=\left[\begin{array}{cc}x+a+1 & x \in(-\infty,-a) \& x \in(-\infty, 0) \\ |x-1|+1 & x \in \phi \\ (x+a-1)^{2}+b & x \in[-a, \infty) \& x \in(-\infty, 0) \\ (|x-1|-1)^{2}+b & x \in R \& x \in[0, \infty)\end{array}\right.$

$$
g[f(x)]=\left[\begin{array}{cc}
x+a+1 & x \in(-\infty,-a) \\
(x+a-1)^{2}+b & x \in[-a, 0) \\
(|x-1|-1)^{2}+b & x \in[0, \infty)
\end{array}\right.
$$

$\mathrm{g}(\mathrm{f}(\mathrm{x}))$ is continuous
at $\mathrm{x}=-\mathrm{a} \quad \& \quad$ at $\mathrm{x}=0$
$1=\mathrm{b}+1 \quad \& \quad(\mathrm{a}-1)^{2}+\mathrm{b}=\mathrm{b}$
$\mathrm{b}=0 \quad \& \quad \mathrm{a}=1$
$\Rightarrow \mathrm{a}+\mathrm{b}=1$
6. Let $\frac{1}{16}$, a and b be in G.P. and $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, 6$ be in A.P., where $\mathrm{a}, \mathrm{b}>0$. Then $72(\mathrm{a}+\mathrm{b})$ is equal to \qquad _.
Official Ans by NTA (14)
Sol. $\mathrm{a}^{2}=\frac{\mathrm{b}}{16} \Rightarrow \frac{1}{\mathrm{~b}}=\frac{1}{16 \mathrm{a}^{2}}$
$\frac{2}{b}=\frac{1}{a}+6$
$\frac{1}{8 a^{2}}=\frac{1}{a}+6$
$\frac{1}{a^{2}}-\frac{8}{a}-48=0$
$\frac{1}{\mathrm{a}}=12,-4 \quad \Rightarrow \quad \mathrm{a}=\frac{1}{12},-\frac{1}{4}$
$\mathrm{a}=\frac{1}{12}, \mathrm{a}>0$
$\mathrm{b}=16 \mathrm{a}^{2}=\frac{1}{9}$
$\Rightarrow 72(\mathrm{a}+\mathrm{b})=6+8=14$
7. In $\triangle \mathrm{ABC}$, the lengths of sides AC and AB are 12 cm and 5 cm , respectively. If the area of $\triangle \mathrm{ABC}$ is $30 \mathrm{~cm}^{2}$ and R and r are respectively the radii of circumcircle and incircle of $\triangle \mathrm{ABC}$, then the value of $2 \mathrm{R}+\mathrm{r}$ (in cm) is equal to
\qquad _.

Official Ans by NTA (15)
Sol. $\Delta=\frac{1}{2} \cdot 5 \cdot 12 \cdot \sin \mathrm{~A}=30$
$\sin \mathrm{A}=1$
$\mathrm{A}=90^{\circ} \Rightarrow \mathrm{BC}=13$
$\mathrm{BC}=2 \mathrm{R}=13$
$\mathrm{r}=\frac{\Delta}{\mathrm{S}}=\frac{30}{15}=2$

$2 R+r=15$
8. Let n be a positive integer. Let
$A=\sum_{k=0}^{n}(-1)^{\mathrm{k}} \mathrm{n}_{\mathrm{C}_{\mathrm{k}}}\left[\left(\frac{1}{2}\right)^{\mathrm{k}}+\left(\frac{3}{4}\right)^{\mathrm{k}}+\left(\frac{7}{8}\right)^{\mathrm{k}}+\left(\frac{15}{16}\right)^{\mathrm{k}}+\left(\frac{31}{32}\right)^{\mathrm{k}}\right]$

If $63 \mathrm{~A}=1-\frac{1}{2^{30}}$, then n is equal to \qquad -.

Official Ans by NTA (6)
Sol. $A=\sum_{k=0}^{n}{ }^{n} C_{k}\left[\left(-\frac{1}{2}\right)^{k}+\left(\frac{-3}{4}\right)^{k}+\left(\frac{-7}{8}\right)^{k}+\left(\frac{-15}{16}\right)^{k}+\left(\frac{-37}{32}\right)^{k}\right]$
$A=\left(1-\frac{1}{2}\right)^{n}+\left(1-\frac{3}{4}\right)^{n}+\left(1-\frac{7}{8}\right)^{n}+\left(1-\frac{15}{16}\right)^{n}+\left(1-\frac{31}{32}\right)^{n}$
$A=\frac{1}{2^{n}}+\frac{1}{4^{n}}+\frac{1}{8^{n}}+\frac{1}{16^{n}}+\frac{1}{32^{n}}$
$A=\frac{1}{2^{n}}\left(\frac{1-\left(\frac{1}{2^{n}}\right)^{5}}{1-\frac{1}{2^{n}}}\right) \Rightarrow A=\frac{\left(1-\frac{1}{2^{5 n}}\right)}{\left(2^{n}-1\right)}$
$\left(2^{n}-1\right) A=1-\frac{1}{2^{5 n}}$, Given $63 A=1-\frac{1}{2^{30}}$
Clearly $5 \mathrm{n}=30$
$\mathrm{n}=6$
9. Let $\overrightarrow{\mathrm{c}}$ be a vector perpendicular to the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

If $\vec{c} \cdot(\hat{i}+\hat{j}+3 \hat{k})=8$ then the value of $\vec{c} \cdot(\vec{a} \times \vec{b})$ is equal to \qquad .
Official Ans by NTA (28)
Sol. $\overrightarrow{\mathrm{c}}=\lambda(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & -1 \\ 1 & 2 & 1\end{array}\right|$
$(\vec{a} \times \vec{b})=3 \hat{i}-2 \hat{j}+\hat{k}$
$\vec{c} \cdot(\hat{i}+\hat{j}+3 \hat{k})=\lambda(3 \hat{i}-2 \hat{j}+\hat{k}) \cdot(\hat{i}+\hat{j}+3 \hat{k})$
$\Rightarrow \lambda(4)=8 \Rightarrow \lambda=2$
$\overrightarrow{\mathrm{c}}=2(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$
$\vec{c} .(\vec{a} \times \vec{b})=2|\vec{a} \times \vec{b}|^{2}=28$
10. Let
$S_{n}(x)=\log _{a^{1 / 2}} x+\log _{a^{1 / 3}} x+\log _{a^{1 / 6}} x$
$+\log _{\mathrm{a}^{1 / 11}} \mathrm{x}+\log _{\mathrm{a}^{1 / 18}} \mathrm{x}+\log _{\mathrm{a}^{1 / 27}} \mathrm{x}+\ldots .$.
up to n-terms, where $\mathrm{a}>1$. If $\mathrm{S}_{24}(\mathrm{x})=1093$ and $S_{12}(2 x)=265$, then value of a is equal to
\qquad _.
Official Ans by NTA (16)
Sol. $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=(2+3+6+11+18+27+\ldots+\mathrm{n}$-terms $) \log _{\mathrm{a}} \mathrm{x}$
Let $S_{1}=2+3+6+11+18+27+\ldots .+T$ $S_{1}=2+3+6+$ \qquad $+\mathrm{T}_{\mathrm{n}}$
$\mathrm{T}_{\mathrm{n}}=2+1+3+5+\ldots \ldots+\mathrm{n}$ terms $\mathrm{T}_{\mathrm{n}}=2+(\mathrm{n}-1)^{2}$
$S_{1}=\Sigma \mathrm{T}_{\mathrm{n}}=2 \mathrm{n}+\frac{(\mathrm{n}-1) \mathrm{n}(2 \mathrm{n}-1)}{6}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}(\mathrm{x})=\left(2 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1)}{6}\right) \log _{\mathrm{a}} \mathrm{x}$
$\mathrm{S}_{24}(\mathrm{x})=1093$ (Given)
$\log _{\mathrm{a}} \mathrm{X}\left(48+\frac{23.24 .47}{6}\right)=1093$
$\log _{\mathrm{a}} \mathrm{x}=\frac{1}{4}$
$S_{12}(2 x)=265$
$\mathrm{S}_{12}(2 \mathrm{x})=265$
$\log _{a}(2 x)\left(24+\frac{11.12 .23}{6}\right)=265$
$\log _{8} 2 x=\frac{1}{2}$
(2) $-(1)$
$\log _{\mathrm{a}} 2 \mathrm{x}-\log _{\mathrm{a}} \mathrm{x}=\frac{1}{4}$
$\log _{\mathrm{a}} 2=\frac{1}{4} \Rightarrow \mathrm{a}=16$

