FINAL JEE-MAIN EXAMINATION - AUGUST, 2021

(Held On Thursday 26th August, 2021)

TEST PAPER WITH SOLUTION

TIME: 3:00 PM to 6:00 PM

CHEMISTRY

SECTION-A

- 1. Which one of the following phenols does not give colour when condensed with phthalic anhydride in presence of conc. H₂SO₄?
 - (1) OF
 - (2) OH CH₃
 - (3) OH OH
 - (4) OH

Official Ans. by NTA (2)

- **Sol.** Only p-methyl, phenol does not give any colour with phthalic anhydroxide with cons. H₂SO₄.
- 2. Given below are two statements: one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): Photochemical smog causes cracking of rubber.

Reason (R): Presence of ozone, nitric oxide, acrolein, formaldehyde and peroxyacetyl nitrate in photochemical smog makes it oxidizing.

Choose the **most appropriate** answer from the options given below :

- (1) Both (A) and (R) are true but (R) is not the true explanation of (A)
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true and (R) is the true explanation of (A)
- Official Ans. by NTA (4)

- **Sol.** Photochemical smog causes cracking of rubber, the common component of photochemical smog are ozone, nitric oxide, acrolein, formaldehyde and peroxyacetyle nitrate (PAN).
- 3. The interaction energy of London forces between two particles is proportional to r^x , where r is the distance between the particles. The value of x is:
 - (1) 3

- (2) -3
- (3) -6

(4) 6

Official Ans. by NTA (3)

Sol. For london dispersion forces.

$$E \propto \frac{1}{r^6}$$

Hence x = -6

- 4. The number of non-ionisable hydrogen atoms present in the final product obtained from the hydrolysis of PCl₅ is:
 - (1) 0
- (2) 2
- (3) 1
- (4) 3

Official Ans. by NTA (1)

Sol. $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$

$$+3H_2O$$

$$H_3PO_4 + 3HC1$$

$$\begin{array}{c|c} & O \\ \parallel \\ \text{In} & P \\ \hline & O \\ H & H \end{array} + \text{HCl}$$

all hydrogens are ionisable

- ∴ Ans is zero.
- 5. The bond order and magnetic behaviour of O_2^- ion are, respectively:
 - (1) 1.5 and paramagnetic
 - (2) 1.5 and diamagnetic
 - (3) 2 and diamagnetic
 - (4) 1 and paramagnetic

Official Ans. by NTA (1)

Sol.
$$O_2^- = (\sigma_{1s}^-)^2 (\sigma_{1s}^*)^2 (\sigma_{2s}^-)^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z}^-)^2$$

$$\left(\pi_{2p_x}^2 = \pi_{2p_y}^2\right)\!\left(\pi_{2p_x}^{*2} = \pi_{2p_y}^{*1}\right)$$

Bond order =
$$\frac{10-7}{2}$$
 = 1.5

and paramagnetic

- 6. Given below are two statements: one is labelled as Assertion (A) and other is labelled as Reason (R). Assertion (A): Sucrose is a disaccharide and a non-reducing sugar.
 - Reason (R): Sucrose involves glycosidic linkage between C_1 of β -glucose and C_2 of α -fructose. Choose the **most appropriate** answer from the options given below:
 - (1) Both (A) and (R) are true but (R) is not the true explanation of (A)
 - (2) (A) is false but (R) is true.
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are true and (R) is the true explanation of (A)

Official Ans. by NTA (3)

Surcrose is example of disaccharide & non Sol. reducing sugar

Assertion: correct

Sucrose involves glycosidic linkage between C₁ of α -D-glucose C_2 of β -D-fructose

Reason: Incorrect

7. Match List-I with List-II:

List-I (Chemical Reaction)

List-II (Reagent used)

- (a) $CH_3COOCH_2CH_3 \rightarrow CH_3CH_2OH$
- (i) CH_3MgBr/H_3O^+ (1.equivalent)
- (b) $CH_3COOCH_3 \rightarrow CH_3CHO$
- (ii) H₂SO₄ / H₂O
- (c) $CH_3C \equiv N \rightarrow CH_3CHO$
- (iii) DIBAL-H/H₂O

(d) $CH_3C \equiv N \rightarrow CH_3$

(iv) SnCl₂, HCl/H₂O

Choose the most appropriate match:

- (1) a-ii, b-iv, c-iii, d-i
- (2) a-iv, b-ii, c-iii, d-i
- (3) a-ii, b-iii, c-iv, d-i
- (4) a-iii, b-ii, c-i, d-iv

Official Ans. by NTA (3)

Sol.
$$CH_3$$
-C-O- CH_2CH_3 $\xrightarrow{H_3O^+}$ $CH_3CO_2H+CH_3CH_2OH$

$$CH_3$$
-C-O-CH₃ $\xrightarrow{DIBALH/H_2O}$ $\xrightarrow{CH_3CHO}$

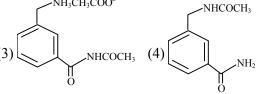
$$CH_3$$
- $CN \xrightarrow{SnCl_2+HCl}$ $CH_3CH=O$

$$CH_3-C\equiv N \xrightarrow{CH_3MgBr (1eq)}$$

8. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

> Assertion (A): Barium carbonate is insoluble in water and is highly stable.

> Reason (R): The thermal stability of the carbonates increases with increasing cationic size.


- (1) Both (A) and (R) are true but (R) is the true explanation of (A)
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true and (R) is not the true explanation of (A)
- (4) (A) is false but (R) is true.

Official Ans. by NTA (1)

Sol. In IIA group on moving down the group size of cation increases and show thermal stability of carbonate increases.

9.
$$(CH_3CO)_2O \longrightarrow P$$
(Major product)

The major product in the above reaction is:

Official Ans. by NTA (4)

Final JEE-Main Exam August, 2021/26-08-2021/Evening Session

Sol.
$$NH_2 \longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow O$$

$$NH_2 \xrightarrow{Ac_2O} \longrightarrow O$$

$$NH_2 \xrightarrow{O} \longrightarrow O$$

$$NH_2 \xrightarrow{O} \longrightarrow O$$

- **10.** Indicate the complex/complex ion which did not show any geometrical isomerism :
 - (1) [CoCl₂(en)₂]
- (2) $[Co(CN)_5(NC)]^{3-}$
- (3) $[Co(NH_3)_3(NO_2)_3]$
- (4) $[Co(NH_3)_4Cl_2]^+$

Official Ans. by NTA (2)

- **Sol.** (1) [CoCl₂(en)₂] show Cis-trans isomerism
 - (2) $[Co(CN)_5(NC)]^{-3}$ can't Show G.I.
 - (3) [Co(NH₃)₃(NO₂)₃] Show fac & mer isomerism
 - (4) $[Co(NH_3)_4Cl_2]^{\oplus}$ show cis & trans isomerism
- **11.** The sol given below with negatively charged colloidal particles is:
 - (1) FeCl₃ added to hot water
 - (2) KI added to AgNO₃ solution
 - (3) AgNO₃ added to KI solution
 - (4) Al₂O₃.xH₂O in water

Official Ans. by NTA (3)

Sol.

12. Given below are two statements:

Statement I: Sphalerite is a sulphide ore of zinc and copper glance is a sulphide ore of copper.

Statement II: It is possible to separate two sulphide ores by adjusting proportion of oil to water or by using 'depressants' in a froth flotation method.

Choose the **most appropriate** answer from the options given below:

- (1) **Statement I** is true but **Statement II** is false.
- (2) Both **Statement I** and **Statement II** are true.
- (3) **Statement I** is false but **Statement II** is true.
- (4) Both **Statement I** and **Statement II** are false.

Official Ans. by NTA (2)

- **Sol.** Sphalerite-ZnS, copper glance Cu₂S two sulphide ores can be separated by adjusting proportions of oil to water or by using 'Depressants'
- 13. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Heavy water is used for the study of reaction mechanism.

Reason (R): The rate of reaction for the cleavage of O - H bond is slower than that of O-D bond.

Choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are true but (R) is not the true explanation of (A).
- (2) Both (A) and (R) are true and (R) is the true explanation of (A).
- (3) (A) is false but (R) is true.
- (4) (A) is true but (R) is false.

Official Ans. by NTA (4)

- **Sol.** D_2O in used for the study of reaction mechanism. Rate of reaction for the cleavage of O–H bond > O-D bond.
- **14.** Arrange the following Cobalt complexes in the order of increasing Crystal Field Stabilization Energy (CFSE) value.

Complexes :
$$[CoF_6]^{3-}$$
, $[Co(H_2O)_6]^{2+}$, $[Co(NH_3)_6]^{3+}$
and $[Co(en)_3]^{3+}$

Choose the **correct** option :

- (1) A < B < C < D
- (2) B < A < C < D
- (3) B < C < D < A
- (4) C < D < B < A

Official Ans. by NTA (2)

- **Sol.** (i) CFSE ∝ charge or oxidation no. of central metal ion.
 - (ii) CFSE \propto strength of ligand en > NH₃ > H₂O > F
 - ∴ order of CFSE

$$[\text{Co(en)}_3]^{+3} > \text{Co(NH}_3)_6]^{+3} > [\text{CoF}_6]^{-3} > [\text{Co(H}_2^{\text{II}}\text{O)}_6]^{+2}$$

15.

$$CI = C$$

$$CH_{2}$$

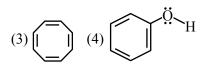
$$C = N$$

$$O^{-}$$

Chlordiazepoxide

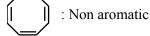
The class of drug to which chlordiazepoxide with above structure belongs is:

- (1) Antacid
- (2) Analgesic
- (3) Tranquilizer
- (4) Antibiotic


Official Ans. by NTA (3)

- The drug named chlordiate poxide is example of Sol. tranquilizer.
- **16.** Chalcogen group elements are:
 - (1) Se, Tb and Pu.
- (2) Se, Te and Po.
- (3) S, Te and Pm.
- (4) O, Ti and Po.

Official Ans. by NTA (2)


- **Sol.** Group 16/oxygen family is known as Chalcogens the members are O, S, Se, Te, Po
- **17.** Which one of the following compounds is not aromatic?

Official Ans. by NTA (3)

Sol.

- The number of stereoisomers possible for 1,2-**18.** dimethyl cyclopropane is:
 - (1) One
- (2) Four
- (3) Two
- (4) Three

Official Ans. by NTA (4)

19.

Consider the given reaction, Identify 'X' and 'Y':

(1)
$$X - NaOH Y - H$$

$$(2) X - HNO_3 Y - HNO_3$$

(4)
$$X - HNO_3 Y - HNO_3 Y - H$$

Official Ans. by NTA (3)

Sol.

OH
$$\begin{array}{c}
NaOH(x) \\
H & \overline{NaOH(x)} \\
\hline
NaOH
\\
X \Rightarrow NaOH
\\
V \Rightarrow OH
\\
OH
\\
NH_2
\\
\gamma (major product)
\\
OH
\\
NH_2$$

$$\begin{array}{c}
 & \text{Br}_2 \\
\hline
\text{AlBr}_3(C_2H_5)_2O
\end{array}$$
'A'
(Major product)

Consider the given reaction, the product A is:

$$(1) \bigcirc Br$$

$$(2)_{Br}$$

$$(3) \underbrace{ \begin{pmatrix} O \\ Br \end{pmatrix}}_{Br}$$

Official Ans. by NTA (3)

20.

Sol.
$$O$$
 $CH_2-CH_2-CH_2-CH_3$
 $(m-directing)$
 $Br_2+AlBr_3(El_2O)$

SECTION-B

1. In the sulphur estimation, 0.471 g of an organic compound gave 1.44 g of barium sulphate. The percentage of sulphur in the compound is _____%. (Nearest integer)

(Atomic Mass of Ba = 137 u)

Official Ans. by NTA (42)

Sol. Molecular mass of $BaSO_4 = 233 g$

 \therefore 233 BaSO₄ contain \rightarrow 32 g sulphur

∴ 1.44 g BaSO₄ contain $\rightarrow \frac{32}{233} \times 1.44$ g sulphur

given: 0.471 g of organic compound

% of S =
$$\frac{32 \times 1.44}{233 \times 0.471} \times 100 = 41.98\% \approx 42\%$$

OR
$$\begin{array}{c}
\hline{O.C.}_{W_{OC}=0.471g} & \longrightarrow BaSO_{4} \\
\Rightarrow n_{s} = n_{BaSO_{4}} = \frac{1.44}{233} \\
\Rightarrow w_{s} = \frac{1.44}{233} \times 32g$$
therefore ${}^{9}\!\!/S = \frac{W_{s}}{W_{O.C.}} \times 100 = \frac{1.44 \times 32}{233 \times 0.471} \times 100$

$$= \frac{46.08}{109.743} \times 100 = 41.98 \approx 42$$

2. The equilibrium constant K_c at 298 K for the reaction $A+B \rightleftharpoons C+D$

is 100. Starting with an equimolar solution with concentrations of A, B, C and D all equal to 1M, the equilibrium concentration of D is $___ \times 10^{-2}$ M. (Nearest integer)

Official Ans. by NTA (182)

Sol.
$$A + B \rightleftharpoons C + D : K_{eq} = 100$$

 $1M \quad 1M \quad 1M$

First check direction of reversible reaction.

Since
$$Q_C = \frac{[C][D]}{[A][B]} = 1 < K_{eq.} \Rightarrow reaction will$$

move in forward direction to attain equilibrium state

$$\Rightarrow A + B \rightleftharpoons C + D : K_{eq} = 100$$
to 1 1 1 1
$$t_{eq.} 1 - x 1 - x 1 + x 1 + x$$

$$(1 + x)(1 + x)$$

Now:
$$K_{eq} = 100 = \frac{(1+x)(1+x)}{(1-x)(1-x)}$$

$$\Rightarrow \left[100 = \left(\frac{1+x}{1-x}\right)^2\right]$$

$$(i) 10 = \left(\frac{1+x}{1-x}\right)$$

$$\Rightarrow 10 - 10x = 1 + x$$

$$\Rightarrow$$
 11 x = 9

$$\Rightarrow \boxed{x = \frac{9}{11}}$$

(ii)
$$-10 = \frac{1+x}{1-x}$$

$$\Rightarrow$$
 -10 + 10x = 1 + x

$$\Rightarrow$$
 $-9x = -11$

$$\Rightarrow x = \frac{11}{9}$$

 \rightarrow 'x' cannot be more than one, therefore not valid. therefore equation concretion of (D) = 1 + x

$$=1 + \frac{9}{11} = \frac{20}{11}$$
$$= 1.8181 = 181.81 \times 10^{-2}$$
$$\approx 182 \times 10^{-2}$$

3. For water $\Delta_{\text{vap}} H = 41 \text{ kJ mol}^{-1}$ at 373 K and 1 bar pressure. Assuming that water vapour is an ideal gas that occupies a much larger volume than liquid water, the internal energy change during evaporation of water is ___kJ mol}^{-1}

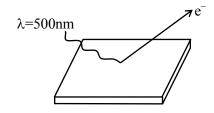
[Use :
$$R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$$
]

Official Ans. by NTA (38)

Sol. Given equation is

$$H_2O(\ell) \longrightarrow H_2O(g) : \Delta H = 41 \frac{kJ}{mol}$$

 \Rightarrow From the relation : $\Delta H = \Delta U + \Delta n_g RT$


$$\Rightarrow 41 \frac{\text{kJ}}{\text{mol}} = \Delta U + (1) \times \frac{8.3}{1000} \times 373$$

$$\Rightarrow$$
 DU = 41 - 3.0959

- =38 kJ/mol
- 4. A metal surface is exposed to 500 nm radiation. The threshold frequency of the metal for photoelectric current is 4.3×10^{14} Hz. The velocity of ejected electron is _____× 10^5 ms⁻¹ (Nearest integer)

[Use : h =
$$6.63 \times 10^{-34}$$
 Js, $m_e = 9.0 \times 10^{-31}$ kg]

Official Ans. by NTA (5)

Sol.

 υ : speed of electron having max. K.E.

 \Rightarrow from Einstein equation : E = ϕ + K.E._{max}

$$\Rightarrow \frac{hc}{\lambda} = hv_0 + \frac{1}{2}mv^2$$

$$\Rightarrow \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{500 \times 10^{-9}} = 6.63 \times 10^{-34} \times 4.3 \times 10^{14} + \frac{1}{2}mv^2$$

$$\Rightarrow \frac{6.63 \times 30 \times 10^{-20}}{5} = 6.63 \times 4.3 \times 10^{-20} + \frac{1}{2}mv^2$$

$$\Rightarrow 11.271 \times 10^{-20} J = \frac{1}{2} \times 9 \times 10^{-31} \times v^2$$

$$\Rightarrow \boxed{v = 5 \times 10^5 \text{ m/sec.}}$$

5. For the galvanic cell,

$$\begin{split} &Zn(s) + Cu^{2^+} \, (0.02 \; M) \to Zn^{2^+} \, (0.04 \; M) + Cu(s), \\ &E_{cell} = \underline{\hspace{1cm}} \times 10^{-2} \; V. \; (\text{Nearest integer}) \\ &[\text{Use} : E^0_{Cu/Cu^{2^+}} = \; -0.34 \; \; V, \; E^0_{Zn/Zn^{2^+}} = +0.76 \; \; V, \end{split}$$

$$\frac{2.303 \text{ RT}}{\text{F}} = 0.059 \text{ V}$$

Official Ans. by NTA (109)

Sol. Galvanic cell:

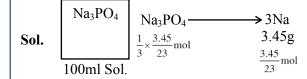
$$Zn_{(s)} + Cu_{(aq.)}^{+2} \rightarrow Zn_{0.04M}^{+2} + Cu(s)$$

Nernst equation =
$$E_{cell}^{o} = E_{cell}^{o} - \frac{0.059}{2} log \frac{[2n^{+2}]}{[Cu^{+2}]}$$

$$\Rightarrow E_{cell} \left[E_{cell}^{o} - E_{Zn^{+2}/Zn}^{o} \right] - \frac{0.059}{2} log \frac{0.04}{0.02}$$

$$\Rightarrow E_{cell} \left[0.34 - (-0.76) \right] - \frac{0.059}{2} log^{2}$$

$$\Rightarrow E_{cell} \left[1 - 1 - \frac{0.059}{2} \times 0.3010 \right]$$


$$= 1.0911 = 109.11 \times 10^{-2}$$

$$= 109$$

6. 100 mL of Na_3PO_4 solution contains 3.45 g of sodium. The molarity of the solution is ____ $\times 10^{-2}$ mol L^{-1} . (Nearest integer)

[Atomic Masses - Na : 23.0 u, O : 16.0 u, P : 31.0 u]

Official Ans. by NTA (50)

therefore molarity of Na₃PO₄ Solution =

$$\frac{n_{\text{Na}_3\text{PO}_4}}{\text{volume of solution in L}}$$

$$= \frac{\frac{1}{3} \times \frac{3.45}{23} \text{ mol}}{0.1 \text{ L}}$$
$$= 0.5 = 50 \times 10^{-2}$$

7. The overall stability constant of the complex ion $[Cu(NH_3)_4]^{2+}$ is 2.1×10^{13} . The overall dissociations constant is $y \times 10^{-14}$. Then y is ____.(Nearest integer)

Official Ans. by NTA (5)

Sol. Given $k_f = 2.1 \times 10^{13}$

$$K_d = \frac{1}{k_f} = 4.7 \times 10^{-14}$$

$$\therefore y = 4.7 \approx 5$$

8. 83 g of ethylene glycol dissolved in 625 g of water.

The freezing point of the solution is _____K.

(Nearest integer)

[Use: Molal Freezing point depression constant of water = 1.86 K kg mol⁻¹]

Freezing Point of water = 273 K

Atomic masses : C : 12.0 u, O : 16.0 u, H : 1.0 u]

Official Ans. by NTA (269)

Sol. $k_f = 1.86 \text{ k. kg/mol}$

$$T_{\rm f}^{\ o} = 273 \ {\rm k}$$

solvent: H₂O(625 g)

Solute : 83 g $\begin{pmatrix} CH_2 - CH_2 \\ | & | \\ OH & OH \end{pmatrix}$ \Rightarrow Non dissociative

solute

$$\Rightarrow \Delta T_f = k_f \times m$$

$$\Rightarrow (T_f^o - T_f^1) = 1.86 \times \frac{83/62}{624/1000}$$

$$\Rightarrow 273 - T_f^1 = \frac{1.86 \times 83 \times 1000}{62 \times 625} = \frac{154380}{38750}$$

$$\Longrightarrow 273-\,T_{\rm f}^1=4$$

$$\Rightarrow T_f^1 = 259 \text{ K}$$

9. The reaction rate for the reaction

$$[PtCl_4]^{2-} + H_2O \Longrightarrow [Pt(H_2O)Cl_3]^{-} + Cl^{-}$$

was measured as a function of concentrations of different species. It was observed that

$$\frac{-d\left[\left[PtCl_{4}\right]^{2^{-}}\right]}{dt} = 4.8 \times 10^{-5} \left[\left[PtCl_{4}\right]^{2^{-}}\right] -2.4 \times 10^{-5} \left[PtCl_{4}\right]^{2^{-}}$$

$$10^{-3} \left[\left[Pt(H_2O)Cl_3 \right]^{-} \right] \left[Cl^{-} \right].$$

where square brackets are used to denote molar concentrations. The equilibrium constant $K_c =$ _____. (Nearest integer)

Official Ans. by NTA (50)

Sol. $[PtCl_4]^{-2} + H_2O \rightleftharpoons [Pt(H_2O)Cl_3]^- + Cl^-$

$$\frac{-d[Pt Cl_4]^{-2}}{dt} = 4.8 \times 10^{-5} [PtCl_4^{-2}] - 2.4 \times 10^3$$

 $[Pt(H_2O)Cl_3][\overset{\circ}{u}]$

$$\Rightarrow$$
 $K_{eq} = \frac{k_f}{k_h} = \frac{4.8 \times 10^{-5}}{2.4 \times 10^{-3}} = 0.02$

- **10.** A chloro compound "A".
 - (i) forms aldehydes on ozonolysis followed by the hydrolysis.
 - (ii) when vaporized completely 1.53 g of A, gives 448 mL of vapour at STP.

The number of carbon atoms in a molecule of compound **A** is _____.

Official Ans. by NTA (3)

Sol. 448 ml of A \Rightarrow 1.53 gm A

22400 ml of A
$$\Rightarrow \frac{1.53}{445} \times 22400$$
 gm A = 7650

 H_3 CHC-CH-Cl $\xrightarrow{O_3}$ CH_3 -CH=O It has 3 carbon atoms Z_1 H_2 O Aldehyde

& mm is 36 + 5 + 35.5 = 76.5