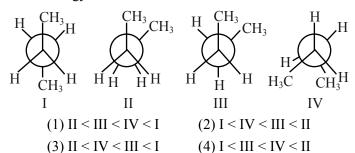
FINAL JEE-MAIN EXAMINATION - AUGUST, 2021


(Held On Tuesday 31st August, 2021)

TIME: 3:00 PM to 6:00 PM

CHEMISTRY

SECTION-A

1. Arrange the following conformational isomers of n-butane in order of their increasing potential energy:

Official Ans. by NTA (4)

Sol. More stable less potential energy.

Stability order : I > III > IV > II
So

Potential energy: II > IV > III > I

2. The Eu²⁺ ion is a strong reducing agent in spite of its ground state electronic configuration

(outermost): [Atomic number of Eu = 63]

- $(1) 4f^7 6s^2$
- $(2) 4f^6$
- $(3) 4f^7$
- $(4) 4f^6 6s^2$

Official Ans. by NTA (3)

- Sol. Eu \rightarrow [Xe]4f⁷6s² Eu²⁺ \rightarrow [Xe]4f⁷
- 3. The structures of **A** and **B** formed in the following reaction are: $[Ph = -C_cH_s]$

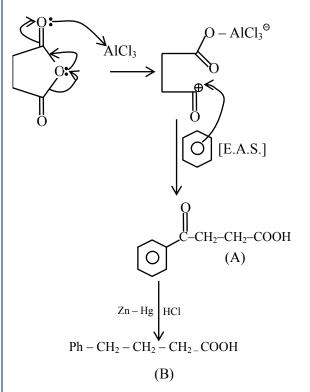
$$\begin{array}{c}
O \\
+ O \\
O
\end{array}
\xrightarrow{AlCl_3(2eq)} A \xrightarrow{Zn/Hg} B$$

(1)
$$\mathbf{A} = Ph$$
OH. $\mathbf{B} = Ph$
OF

(2)
$$\mathbf{A} = Ph$$
 O
, $\mathbf{B} = OH$

TEST PAPER WITH SOLUTION

(3)
$$\mathbf{A} = 0$$
 OH OH
$$\mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A}$$


$$\mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A}$$

$$\mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A}$$

$$\mathbf{A} = \mathbf{A} = \mathbf{A}$$

Official Ans. by NTA (1)

Sol.

4. In which one of the following sets all species show

disproportionation reaction?

- (1) ClO_2^-, F_2, MnO_4^- and $Cr_2O_7^{2-}$
- (2) $Cr_2O_7^{2-}$, MnO_4^- , ClO_2^- and Cl_2^-
- (3) MnO_4^- , ClO_2^- , Cl_2 and Mn^{3+}
- (4) ClO_4^- , MnO_4^- , ClO_2^- and F_2

Official Ans. by NTA (3) Allen Ans. (Bonus)

Sol. No option contains all species that show disproportionation reaction. MnO_4^-

Mn is in +7 oxidation state (highest) hence cannot be simultaneously oxidized or reduced.

5. Match List-II with List-II

	List-I	List-II	
	(Parameter)	(Unit)	
(a)	Cell constant	(i) S cm ² mol ⁻¹	
(b)	Molar conductivity	(ii) Dimensionless	
(c)	Conductivity	(iii) m ⁻¹	
(d)	Degree of dissociation	(iv) Ω^{-1} m ⁻¹	
	of electrolyte		
	Choose the most appropriate answer from the		
	options given below:		

Official Ans. by NTA (1)

Sol. Cell constant =
$$\left(\frac{\ell}{A}\right) \Rightarrow \text{Units} = \text{m}^{-1}$$

Molar conductivity $(\Lambda_m) \Rightarrow \text{Units} = \text{Sm}^2 \text{ mole}^{-1}$ Conductivity $(K) \Rightarrow \text{Units} = \text{Sm}^{-1}$

Degree of dissociation $(\alpha) \rightarrow$ Dimensionless

$$\therefore$$
 (a) – (iii)

$$(b)-(i)$$

$$(c) - (iv)$$

$$(d) - (ii)$$

6. The major products A and B formed in the following reaction sequence are:

$$(1)$$
 $A = \bigcirc$
 (1) $A = \bigcirc$

(3)
$$A = \bigcirc \\ OCCH_3$$
, $B = \bigcirc \\ OCCH_3$ $B = \bigcirc \\ OCCH_3$

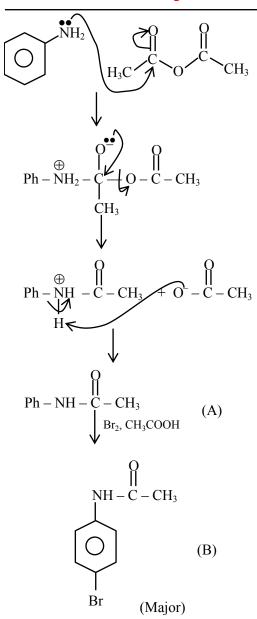
(4)
$$A = \bigcirc$$

$$COCH_3$$

$$Br$$

$$Br$$

$$COCH_3$$


$$Br$$

$$COCH_3$$

Official Ans. by NTA (2)

Sol.

Final JEE-Main Exam August, 2021/31-08-2021/Evening Session

- 7. Which of the following is NOT an example of fibrous protein?
 - (1) Keratin
- (2) Albumin
- (3) Collagen
- (4) Myosin

Official Ans. by NTA (2)

- **Sol.** Keratin, collagen and myosin are example of fibrous protein.
- **8.** The deposition of X and Y on ground surfaces is referred as wet and dry depositions, respectively. X and Y are:
 - (1) X = Ammonium salts, Y = CO,
 - (2) $X = SO_2$, Y = Ammonium salts
 - (3) X = Ammonium salts, Y = SO,
 - (4) $X = CO_{2}, Y = SO_{2}$

Official Ans. by NTA (3)

Sol. Oxides of nitrogen and sulphur are acidic and settle down on ground as dry deposition.

Ammonium salts in rain drops result in wet deposition

9. For the reaction given below:

CHO
$$\frac{1. \text{ NaOH, } \Delta}{2. \text{ H}_3\text{O}^+}$$
Product
$$CH_2\text{OH}$$

The compound which is **not** formed as a product in the reaction is a :

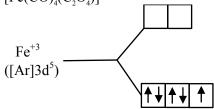
- (1) compound with both alcohol and acid functional groups
- (2) monocarboxylic acid
- (3) dicarboxylic acid
- (4) diol

Official Ans. by NTA (3)

Sol.

CHO

NaOH


$$\Delta$$
 CH_2 -OH

 CH_2 -OH

- **10.** Spin only magnetic moment in BM of $[Fe(CO)_4(C_2O_4)]^+$ is:
 - (1) 5.92 (2) (
 - (2) 0
- (3) 1
- (4) 1.73

Official Ans. by NTA (4)

Sol. $[Fe(CO)_4(C_2O_4)]^+$

One unpaired electron Spin only magnetic moment = $\sqrt{3}$ B.M. = 1.73 BM

11. Given below are two statements: one is labelled as

Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Lithium salts are hydrated.

Reason (R): Lithium has higher polarising power than other alkali metal group members.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct but (R) is NOT the correct explanation of (A).
- (2) (A) is correct but (R) is not correct.
- (3) (A) is not correct but (R) is correct.
- (4) Both (A) and (R) are correct and (R) is the correct explanation of (A).

Official Ans. by NTA (1)

- **Sol.** Lithium salts are hydrated due to high hydration energy of Li⁺ Li⁺ due to smallest size in IA group has highest polarizing power.
- **12.** The **incorrect** expression among the following is:

(1)
$$\frac{\Delta G_{System}}{\Delta S_{Total}} = -T(at constant P)$$

(2)
$$\ln K = \frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$$

(3)
$$K = e^{-\Delta G^{\circ}/RT}$$

(4) For isothermal process
$$w_{reversible} = -nRT ln \frac{V_f}{V_e}$$

Official Ans. by NTA (2)

Sol. Option (2) is incorrect $\Delta G^{\circ} = -RT \ \ell n \ K$

$$\Delta H^{\circ} - T\Delta S^{\circ} = -RT \ell n K$$

$$\ell nK = -\left[\frac{\Delta H^{\circ} - \Delta S^{\circ}}{RT}\right]$$

- 13. Which one of the following statements is incorrect?
 - Atomic hydrogen is produced when H₂
 molecules at a high temperature are irradiated with UV radiation.
 - (2) At around 2000 K, the dissociation of dihydrogen into its atoms is nearly 8.1%.
 - (3) Bond dissociation enthalpy of H₂ is highest among diatomic gaseous molecules which contain a single bond.
 - (4) Dihydrogen is produced on reacting zinc with HCl as well as NaOH_(aa).

Official Ans. by NTA (2)

Sol. Atomic hydrogen is produced at high temperature in an electric are or under ultraviolet radiations

The dissociation of dihydrogen at 2000 K is only 0.081%

H–H bond dissociation enthalpy is highest for a single bond for any diatomic molecule.

Dihydrogen can be produced on reacting Zn with dil. HCl as well as NaOH (aq.)

- **14.** Which among the following is not a polyester?
 - (1) Novolac
- (2) PHBV
- (3) Dacron
- (4) Glyptal

Official Ans. by NTA (1)

Sol. Novalac is a linear polymer of [Ph–OH + HCHO].So ester linkage not present.So novalac is not a polyester.

Final JEE-Main Exam August, 2021/31-08-2021/Evening Session

- 15. Which one of the following correctly represents the order of stability of oxides, X_2O ; (X = halogen)?
 - (1) Br > Cl > I
- (2) Br > I > C1
- (3) Cl > I > Br
- (4) I > Cl > Br

Official Ans. by NTA (4)

- Stability of oxides of Halogens is I > Cl > Br
- 16. Match List-II with List-II:

	List-i		List-11
	(Metal Ion)		(Group in Qualitative
			analysis)
- \	N 4 2+	(')	C III

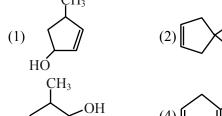
- Mn (a)
- Group III (i)
- As^{3+} (b)
- (ii) Group - IIA
- Cu^{2+} (c)
- (iii) Group - IV
- Al^{3+} (d)
- (iv) Group - IIB

Choose the most appropriate answer from the options given below:

- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- (3) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
- (4) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)

Official Ans. by NTA (2)

Sol. $Mn^{2+} \rightarrow III group$


 $As^{3+} \rightarrow II B group$

 $Cu^{2+} \rightarrow II A group$

 $Al^{3+} \rightarrow IV \text{ group}$

The major product of the following reaction is: 17.

$$CH_3$$
 Cl
 $NaOH$
 C_2H_5OH
 CH
 CH

Official Ans. by NTA (3)

Allen Ans. (4)

Sol. NaOH + EtOH is known as alcoholic NaOH, so it give E² reaction with given alkyl halide.

18. For the following:

Prof the following .

$$\begin{array}{c}
1. Br_2/Fe/\Delta \\
2. Mg/dry ether \\
3. CH_3OH
\end{array}$$
Products

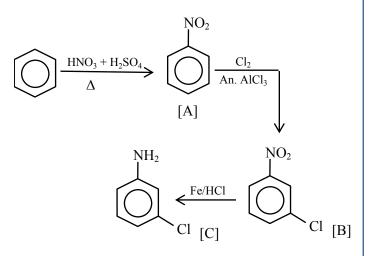
$$\begin{array}{c}
OCH_3 \\
+ HMgBr
\end{array}$$

$$\begin{array}{c}
H \\
CCH_3 \\
Br
\end{array}$$
OCH
$$\begin{array}{c}
OCH_3 \\
OCH_3 \\
OCH_3
\end{array}$$

Official Ans. by NTA (2)

$$\begin{array}{c|c}
& \text{Br}_2 + \text{Fe} \\
\hline
\Delta & & \text{Dry Ether}
\end{array}
\begin{array}{c}
& \text{Ng} \\
& \text{Dry Ether}
\end{array}
\begin{array}{c}
& \text{PhMgBr} \\
& \text{CH}_3\text{OH}
\end{array}$$

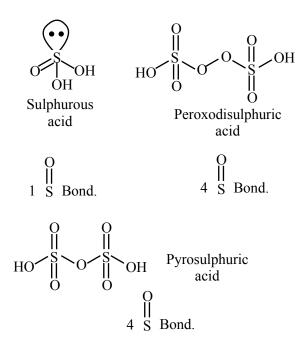
$$\begin{array}{c}
& \text{Br} \\
& \text{OCH}
\end{array}$$


19. Identify correct A, B and C in the reaction sequence given below:

 CH_3

 CH_3

Official Ans. by NTA (1)


Sol.

- **20.** The number of S=O bonds present in sulphurous acid, peroxodisulphuric acid and pyrosulphuric acid, respectively are:
 - (1) 2, 3 and 4
- (2) 1, 4 and 3
- (3) 2, 4 and 3
- (4) 1, 4 and 4

Official Ans. by NTA (4)

Sol.

SECTION-B

1. CH₄ is adsorbed on 1 g charcoal at 0°C following the Freundlich adsorption isotherm. 10.0 mL of CH₄ is adsorbed at 100 mm of Hg, whereas 15.0 mL is adsorbed at 200 mm of Hg. The volume of CH₄ adsorbed at 300 mm of Hg is 10^x mL. The value of x is _____ × 10⁻².

(Nearest integer)

[Use $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$]

Official Ans. by NTA (128)

Sol. We know

$$\frac{x}{m} = KP^{1/n}; \text{ using } (x \propto V)$$

$$\Rightarrow \frac{10}{1} = K \times (100)^{1/n} \dots (1)$$

$$\frac{15}{1} = K \times (200)^{1/n} \qquad ...(2)$$

$$\frac{V}{1} = K \times (300)^{1/n}$$
 ...(3)

Divide

$$(2)/(1)$$

$$\frac{15}{10} = 2^{1/n}$$

$$\log\left(\frac{3}{2}\right) = \frac{1}{n}\log 2$$

$$\frac{1}{n} = \frac{\log 3 - \log 2}{\log 2} = \frac{0.4771 - 0.3010}{0.3010}$$

$$\frac{1}{n} = 0.585$$

Divide

(3) / (1)

$$\frac{V}{10} = 3^{1/n}$$

$$\log\left(\frac{V}{10}\right) = \frac{1}{n}\log 3$$

$$\log\left(\frac{V}{10}\right) = 0.585 \times 0.4771 = 0.2791$$

$$\frac{V}{10} = 10^{0.279} \implies V = 10 \times 10^{0.279}$$

$$\implies V = 10^{1.279} = 10^{x}$$

$$\implies x = 1.279$$

$$\implies x = 128 \times 10^{-2} \text{ (Nearest integer)}$$

2. 1.22 g of an organic acid is separately dissolved in 100 g of benzene ($K_b = 2.6 \text{ K kg mol}^{-1}$) and 100 g of acetone ($K_b = 1.7 \text{ K kg mol}^{-1}$). The acid is known to dimerize in benzene but remain as a monomer in acetone. The boiling point of the solution in acetone increases by 0.17°C .

Final JEE-Main Exam August, 2021/31-08-2021/Evening Session

The increase in boiling point of solution in benzene

in °C is $x \times 10^{-2}$. The value of x is .(Nearest integer)

[Atomic mass : C = 12.0, H = 1.0, O = 16.0]

Official Ans. by NTA (13)

Sol. With benzene as solvent

$$\Delta T_b = i K_b m$$

$$\Delta T_b = \frac{1}{2} \times 2.6 \times \frac{1.22 / M_w}{100 / 1000} ...(1)$$

With Acetone as solvent

$$\Delta T_b = i K_b m$$

$$0.17 = 1 \times 1.7 \times \frac{1.22 / M_{\rm w}}{100 / 1000} \qquad ...(2)$$

(1)/(2)

$$\frac{\Delta T_b}{0.17} = \frac{\frac{1}{2} \times 2.6 + \frac{1.22 / M_w}{100 / 1000}}{1 \times 1.7 \times \frac{1.22 / M_w}{100 / 1000}}$$

$$\Delta T_b = \frac{0.26}{2}$$

$$\Delta T_b = 13 \times 10^{-2}$$

- $\Rightarrow x = 13$
- 3. The value of magnetic quantum number of the outermost electron of Zn^+ ion is

Official Ans. by NTA (0)

- Sol. $Zn^+ \rightarrow 1s^22s^22p^63s^23p^63d^{10}4s^1$ Outermost electron is in 4s subshell m = 0
- 4. The empirical formula for a compound with a cubic close packed arrangement of anions and with cations occupying all the octahedral sites in A_xB. The value of x is ______ (Integer answer)

Official Ans. by NTA (1)

Sol. Anions froms CCP or FCC (A^-) = 4 A^- per unit cell Cations occupy all octahedral voids (B^+) = 4 B^+ per unit cell

cell formula $\rightarrow A_A B_A$

Empirical formula \rightarrow AB

$$\rightarrow$$
 (x = 1)

5. In the electrolytic refining of blister copper, the total number of main impurities, from the following, removed as anode mud is

Pb, Sb, Se, Te, Ru, Ag, Au and Pt

Official Ans. by NTA (6)

- **Sol.** Anode mud contains Sb, Se, Te, Ag, Au and Pt
- 6. The pH of a solution obtained by mixing 50 mL of 1 M HCl and 30 mL of 1 M NaOH is $x \times 10^{-4}$. The value of x is ______. (Nearest integer) [log 2.5 = 0.3979]

Official Ans. by NTA (6021)

Sol. $HCl(aq.) + NaOH(aq.) \rightarrow NaCl(aq.) + H₂O(\ell)$

50 ml,1M 30ml, 1M

- t = 0 50 mm 30 mm
- $t = \infty$ 20 mm

[HCl] =
$$\frac{20}{80} = \frac{1}{4}M = 2.5 \times 10^{-1}M$$

 $pH = -log \ 2.15 \times 10^{-l} = 1 - 0.3979 = 0.6021$ $pH = 6021 \times 10^{-4}$

 $pH = 6021 \times 10$

7. For the reaction $A \rightarrow B$, the rate constant k(in s⁻¹) is given by

$$\log_{10} k = 20.35 - \frac{(2.47 \times 10^3)}{T}$$

The energy of activation in kJ mol⁻¹ is ______(Nearest integer)

[Given : $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$]

Official Ans. by NTA (47)

Sol. Given $\log K = 20.35 - \frac{2.47 \times 10^3}{T}$

We know $\log K = \log A - \frac{E_a}{2.303 RT}$

$$\Rightarrow \frac{E_a}{2.303 RT} = 2.47 \times 10^3$$

$$E_a = 2.47 \times 10^3 \times 2.303 \times \frac{8.314}{1000} \text{ KJ/mole}$$

$$=47.29 = 47$$
 (Nearest integer)

8. Sodium oxide reacts with water to produce sodium hydroxide. 20.0 g of sodium oxide is dissolved in 500 mL of water. Neglecting the change in volume, the concentration of the resulting NaOH solution is _____ × 10⁻¹ M. (Nearest integer)

[Atomic mass : Na = 23.0, O = 16.0, H = 1.0]

Official Ans. by NTA (13)

Sol. $Na_2O + H_2O \rightarrow 2NaOH$ $\frac{20}{62}$ moles

Moles of NaOH formed = $\frac{20}{62} \times 2$

[NaOH] =
$$\frac{\frac{40}{62}}{\frac{500}{1000}}$$
 = 1.29 M = 13 × 10⁻¹ M

(Nearest integer)

9. According to molecular orbital theory, the number of unpaired electron(s) in O_2^{2-} is :

Official Ans. by NTA (0)

Sol. Molecular orbital configuration of O_2^{2-} is

$$\sigma_{1s}^2\sigma_{1s}^{*2}\sigma_{2s}^2\sigma_{2s}^{*2}\left(\pi 2p_x^2\!=\!\pi 2p_y^2\right)\!\left(\pi_{2px}^{*2}=\pi_{2py}^{*2}\right)$$

Zero unpaired electron

10. The transformation occurring in Duma's method is given below:

$$C_2H_7N + \left(2x + \frac{y}{2}\right)CuO \rightarrow xCO_2 + \frac{y}{2}H_2O + \frac{z}{2}N_2 + \left(2x + \frac{y}{2}\right)Cu$$

The value of y is _____. (Integer answer)

Official Ans. by NTA (7)

Sol.

$$C_2H_7N + \left(2x + \frac{y}{2}\right)CuO \rightarrow xCO_2 + \frac{y}{2}H_2O + \frac{z}{2}N_2 + \left(2x + \frac{y}{2}\right)Cu$$

On balancing

$$C_2H_7N + \frac{15}{2}CuO \rightarrow 2CO_2 + \frac{7}{2}H_2O + \frac{1}{2}N_2 + \frac{15}{2}Cu$$

On comparing

y = 7