Saral

FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Thursday 28 ${ }^{\text {th }}$ July, 2022)
TIME: 3: 00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

1. Let $S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\}$ and $T=\left\{x \in Z: x^{2}-7|x|+9 \leq 0\right\}$. Then the number of elements in $\mathrm{S} \cap \mathrm{T}$ is
(A) 7
(B) 5
(C) 4
(D) 3

Official Ans. by NTA (D)
Ans. (D)
Sol. $\quad \mathrm{S} \cap \mathrm{T}=\{-5,-4,3\}$
2. Let α, β be the roots of the equation
$x^{2}-\sqrt{2} x+\sqrt{6}=0$ and $\frac{1}{\alpha^{2}}+1, \frac{1}{\beta^{2}}+1$ be the
roots of the equation $x^{2}+a x+b=0$. Then the roots of the equation $x^{2}-(a+b-2) x+(a+b+2)$ $=0$ are :
(A) non-real complex numbers
(B) real and both negative
(C) real and both positive
(D) real and exactly one of them is positive

Official Ans. by NTA (B)
Ans. (B)

1

Sol. $\quad a=\frac{-1}{\alpha^{2}}-\frac{1}{\beta^{2}}-2$
$b=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+1+\frac{1}{\alpha^{2} \beta^{2}}$
$a+b=\frac{1}{(\alpha \beta)^{2}}-1=\frac{1}{6}-1=-\frac{5}{6}$
$x^{2}-\left(-\frac{5}{6}-2\right) x+\left(2-\frac{5}{6}\right)=0$
$6 x^{2}+17 x+7=0$
$x=-\frac{7}{3}, x=-\frac{1}{2}$ are the roots
Both roots are real and negative.

TEST PAPER WITH SOLUTION

3. Let A and B be any two 3×3 symmetric and skew symmetric matrices respectively. Then which of the following is NOT true?
(A) $A^{4}-B^{4}$ is a symmetric matrix
(B) $\mathrm{AB}-\mathrm{BA}$ is a symmetric matrix
(C) $B^{5}-A^{5}$ is a skew-symmetric matrix
(D) $\mathrm{AB}+\mathrm{BA}$ is a skew-symmetric matrix

Official Ans. by NTA (C)
Ans. (C)
Sol. Given that $A^{T}=A, B^{T}=-B$
(A) $\mathrm{C}=\mathrm{A}^{4}-\mathrm{B}^{4}$
$C^{T}=\left(A^{4}-B^{4}\right)=\left(A^{4}\right)^{T}-\left(B^{4}\right)^{T}=A^{4}-B^{4}=C$
(B) $\mathrm{C}=\mathrm{AB}-\mathrm{BA}$
$C^{T}=(A B-B A)^{T}=(A B)^{T}-(B A)^{T}$
$=B^{T} A^{T}-A^{T} B^{T}=-B A+A B=C$
(C) $\mathrm{C}=\mathrm{B}^{5}-\mathrm{A}^{5}$
$C^{T}=\left(B^{5}-A^{5}\right)^{T}=\left(B^{5}\right)^{T}-\left(A^{5}\right)^{T}=-B^{5}-A^{5}$
(D) $\mathrm{C}=\mathrm{AB}+\mathrm{BA}$
$C^{T}=(A B+B A)^{T}=(A B)^{T}+(B A)^{T}$
$=-\mathrm{BA}-\mathrm{AB}=-\mathrm{C}$
\therefore Option C is not true.
4. Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)$ $=\lambda$ and $f(3)=4$. If $f(0)+f(1)+f(-2)+f(3)=14$, then λ is equal to
(A) -4
(B) $\frac{13}{2}$
(C) $\frac{23}{2}$
(D) 4

Official Ans. by NTA (D)
Ans. (D)
Sol. $f(0)+3+\lambda+4=14$
$\therefore \mathrm{f}(0)=7-\lambda=\mathrm{c}$
$\mathrm{f}(1)=\mathrm{a}+\mathrm{b}+\mathrm{c}=3$
$\mathrm{f}(3)=9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=4$
$f(-2)=4 a-2 b+c=\lambda$
(ii) - (iii)
$\mathrm{a}+\mathrm{b}=\frac{4-\lambda}{5}$ put in equation (i)
$\frac{4-\lambda}{5}+7-\lambda=3$
$6 \lambda=24 ; \quad \lambda=4$
5. The function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}$ is
continuous for all x in
(A) $\mathrm{R}-\{-1\}$
(B) $\mathrm{R}-\{-1,1\}$
(C) $\mathrm{R}-\{1\}$
(D) $\mathrm{R}-\{0\}$

Official Ans. by NTA (B)
Ans. (B)
Note : n should be given as a natural number.
Sol. $f\left(x=\left\{\begin{array}{cc}\frac{-\sin (x-1)}{x-1} & x<-1 \\ -(\sin 2+1) & x=-1 \\ \cos 2 \pi x & -1<x<1 \\ 1 & x=1 \\ \frac{-\sin (x-1)}{x-1} & x>1\end{array}\right.\right.$
$f(x)$ is discontinuous at $x=-1$ and $x=1$
6. The function $f(x)=\mathrm{xe}^{\mathrm{x}(1-\mathrm{x})}, \mathrm{x} \in \mathrm{R}$, is
(A) increasing in $\left(-\frac{1}{2}, 1\right)$
(B) decreasing in $\left(\frac{1}{2}, 2\right)$
(C) increasing in $\left(-1,-\frac{1}{2}\right)$
(D) decreasing in $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Official Ans. by NTA (A)
Ans. (A)
Sol. $f(x)=x \quad e^{x(1-x)}$
$\mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{e}^{\mathrm{x}(1-\mathrm{x})}(2 \mathrm{x}+1)(\mathrm{x}-1)$
$f(x)$ is increasing in $\left(-\frac{1}{2}, 1\right)$
7. The sum of the absolute maximum and absolute minimum values of the function
$f(x)=\tan ^{-1}(\sin x-\cos x)$ in the interval $[0, \pi]$ is
(A) 0
(B) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\frac{\pi}{4}$
(C) $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\frac{\pi}{4}$
(D) $\frac{-\pi}{12}$

Official Ans. by NTA (C)
Ans. (C)

Sol. $f(x)=\tan ^{-1}(\sin x-\cos x)$
$f^{\prime}(x)=\frac{\cos x+\sin x}{(\sin x-\cos x)^{2}+1}=0$
$\therefore \mathrm{x}=\frac{3 \pi}{4}$

x	0	$\frac{3 \pi}{4}$	π
$\mathrm{f}(\mathrm{x})$	$-\frac{\pi}{4}$	$\tan ^{-1} \sqrt{2}$	$\frac{\pi}{4}$

$$
\begin{aligned}
& \therefore \quad(\mathrm{f}(\mathrm{x}))_{\max }=\tan ^{-1} \sqrt{2}^{2} \\
& \therefore \quad(\mathrm{f}(\mathrm{x}))_{\min }=-\frac{\pi}{4} \\
& \text { sum }=\tan ^{-1} \sqrt{2}-\frac{\pi}{4} \\
& =\cos ^{-1} \frac{1}{\sqrt{3}}-\frac{\pi}{4}
\end{aligned}
$$

8. Let $x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$ and
$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$. Then
$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$ at $t=\frac{\pi}{4}$ is equal to
(A) $\frac{-2 \sqrt{2}}{3}$
(B) $\frac{2}{3}$
(C) $\frac{1}{3}$
(D) $\frac{-2}{3}$

Official Ans. by NTA (D)
Ans. (D)
Sol. $x=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2 \sqrt{2} \cos 3 \mathrm{t}}{\sqrt{\sin 2 \mathrm{t}}}$
$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}$
$\frac{d y}{d t}=\frac{2 \sqrt{2} \sin 3 t}{\sqrt{\sin 2 t}}$
$\frac{d y}{d x}=\tan 3 t$
$\frac{d y}{d x}=-1$ at $t=\frac{\pi}{4}$
$\frac{d^{2} y}{d x^{2}}=\frac{3}{2 \sqrt{2}} \sec ^{3} 3 \mathrm{t} \cdot \sqrt{\sin 2 \mathrm{t}}=-3$ at $\mathrm{t}=\frac{\pi}{4}$
$\therefore \frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}=\frac{1+1}{-3}=-\frac{2}{3}$
9. Let $I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots$. Then
(A) $50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{xI}_{5}^{\prime}$
(B) $50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{XI}_{5}^{\prime}$
(C) $50 \mathrm{I}_{6}-9 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}$
(D) $50 \mathrm{I}_{6}-11 \mathrm{I}_{5}=\mathrm{I}_{5}^{\prime}$

Official Ans. by NTA (A)
Ans. (A)
Sol. $I_{n}(x)=\int_{0}^{x} \frac{d t}{\left(t^{2}+5\right)^{n}}$
Applying integral by parts
$I_{n}(x)=\left[\frac{t}{\left(t^{2}+5\right)^{n}}\right]_{0}^{x}-\int_{0}^{x} n\left(t^{2}+5\right)^{-n-1} \cdot 2 t^{2}$
$I_{n}(x)=\frac{x}{\left(x^{2}+5\right)^{n}}+2 n \int_{0}^{x} \frac{t^{2}}{\left(t^{2}+5\right)^{n+1}} d t$
$I_{n}(x)=\frac{x}{\left(x^{2}+5\right)^{n}}+2 n \int_{0}^{x} \frac{\left(t^{2}+5\right)-5}{\left(t^{2}+5\right)^{n+1}} d t$
$I_{n}(x)=\frac{x}{\left(x^{2}+5\right)^{n}}+2 n I_{n}(x)-10 n I_{n+1}(x)$
$10 n I_{n+1}(x)+(1-2 n) I_{n}(x)=\frac{x}{\left(x^{2}+5\right)^{n}}$
Put $\mathrm{n}=5$
10. The area enclosed by the curves $y=\log _{c}\left(x+e^{2}\right)$, $x=\log _{e}\left(\frac{2}{y}\right)$ and $x=\log _{e} 2$, above the line $y=1$ is
(A) $2+e-\log _{e} 2$
(B) $1+\mathrm{e}-\log _{\mathrm{e}} 2$
(C) $\mathrm{e}-\log _{\mathrm{e}} 2$
(D) $1+\log _{e} 2$

Official Ans. by NTA (B)
Ans. (B)

Required area is
$=\int_{e-e^{2}}^{0} \ln \left(x+e^{2}\right)-1 d x+\int_{0}^{\ln 2} 2 e^{-x}-1 d x=1+e-\ln 2$
11. Let $y=y(x)$ be the solution curve of the
differential equation $\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}$, $\mathrm{x}>1$ passing through the point $\left(2, \sqrt{\frac{1}{3}}\right)$. Then $\sqrt{7} y(8)$ is equal to
(A) $11+6 \log _{e} 3$
(B) 19
(C) $12-2 \log _{\mathrm{e}} 3$
(D) $19-6 \log _{e} 3$

Official Ans. by NTA (D)
Ans. (D)
Sol. $\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}$,
$\frac{d y}{d x}+P y=Q$
I.F. $=\mathrm{e}^{\int P d x}=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}$
$y\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}=\int\left(\frac{x-1}{x+1}\right)^{1} d x$
$=x-2 \log _{\mathrm{e}}|\mathrm{x}+1|+\mathrm{C}$
Curve passes through $\left(2, \frac{1}{\sqrt{3}}\right)$
$\Rightarrow \mathrm{C}=2 \log _{\mathrm{e}} 3-\frac{5}{3}$
at $x=8$,
$\sqrt{7} y(8)=19-6 \log _{e} 3$
12. The differential equation of the family of circles passing through the points $(0,2)$ and $(0,-2)$ is
(A) $2 x y \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0$
(B) $2 x y \frac{d y}{d x}+\left(x^{2}+y^{2}-4\right)=0$
(C) $2 x y \frac{d y}{d x}+\left(y^{2}-x^{2}+4\right)=0$
(D) $2 x y \frac{d y}{d x}-\left(x^{2}-y^{2}+4\right)=0$

Official Ans. by NTA (A)
Ans. (A)

Sol. Equation of circle passing through $(0,-2)$ and $(0,2)$ is
$x^{2}+\left(y^{2}-4\right)+\lambda x=0,(\lambda \in R)$
Divided by x we get
$\frac{x^{2}+\left(y^{2}-4\right)}{x}+\lambda=0$
Differentiating with respect to x
$\frac{x\left[2 x+2 y \cdot \frac{d y}{d x}\right]-\left[x^{2}+y^{2}-4\right] \cdot 1}{x^{2}}=0$
$\Rightarrow 2 x y \cdot \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0$
13. Let the tangents at two points A and B on the circle $x^{2}+y^{2}-4 x+3=0$ meet at origin $O(0,0)$. Then the area of the triangle of OAB is
(A) $\frac{3 \sqrt{3}}{2}$
(B) $\frac{3 \sqrt{3}}{4}$
(C) $\frac{3}{2 \sqrt{3}}$
(D) $\frac{3}{4 \sqrt{3}}$

Official Ans. by NTA (B)
Ans. (B)

Sol. C : $(x-2)^{2}+y^{2}=1$

Equation of chord AB: $2 \mathrm{x}=3$
$\mathrm{OA}=\mathrm{OB}=\sqrt{3}$
$\mathrm{AM}=\frac{\sqrt{3}}{2}$
Area of triangle $\mathrm{OAB}=\frac{1}{2}(2 \mathrm{AM})(\mathrm{OM})$
$=\frac{3 \sqrt{3}}{4}$ sq. units
14. Let the hyperbola $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ pass through the point $(2 \sqrt{2},-2 \sqrt{2})$. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H . If the length of the latus rectum of the parabola is e times the length of the latus rectum of H , where e is the eccentricity of H , then which of the following points lies on the parabola?
(A) $(2 \sqrt{3}, 3 \sqrt{2})$
(B) $(3 \sqrt{3},-6 \sqrt{2})$
(C) $(\sqrt{3},-\sqrt{6})$
(D) $(3 \sqrt{6}, 6 \sqrt{2})$

Official Ans. by NTA (B)
Ans. (B)
Sol. H: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Foci : S (ae, 0), S' (-ae, 0)
Foot of directrix of parabola is ($-\mathrm{ae}, 0$)
Focus of parabola is (ae, 0)
Now, semi latus rectum of parabola $=\left|\mathrm{SS}^{\prime}\right|=2 \mathrm{ae}$
Given, $4 \mathrm{ae}=\mathrm{e}\left(\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}\right)$
$\Rightarrow \mathrm{b}^{2}=2 \mathrm{a}^{2}$
Given, $(2 \sqrt{2},-2 \sqrt{2})$ lies on H
$\Rightarrow \frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}=\frac{1}{8}$
From (1) and (2)
$\mathrm{a}^{2}=4, \mathrm{~b}^{2}=8$
$\because b^{2}=a^{2}\left(e^{2}-1\right)$
$\therefore \mathrm{e}=\sqrt{3}$
\Rightarrow Equation of parabola is $y^{2}=8 \sqrt{3} x$

Saral

15. Let the lines $\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}$ be coplanar and P be the plane containing these two lines. Then which of the following points does NOT lies on P ?
(A) $(0,-2,-2)$
(B) $(-5,0,-1)$
(C) $(3,-1,0)$
(D) $(0,4,5)$

Official Ans. by NTA (D)
Ans. (D)
Sol. Given, $L_{1}: \frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}$ and $L_{2}: \frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}$ are coplanar

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
27 & 20 & 31 \\
\lambda & 1 & 2 \\
-2 & 3 & \lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda=3
\end{aligned}
$$

Now, normal of plane P, which contains L_{1} and L_{2}
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ -2 & 3 & 3\end{array}\right|$
$=-3 \hat{i}-13 \hat{j}+11 \hat{k}$
\Rightarrow Equation of required plane P :
$3 x+13 y-11 z+4=0$
$(0,4,5)$ does not lie on plane P.
16. A plane P is parallel to two lines whose direction ratios are $-2,1,-3$, and $-1,2,-2$ and it contains the point $(2,2,-2)$. Let P intersect the co-ordinate axes at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ making the intercepts α, β, γ. If V is the volume of the tetrahedron OABC , where O is the origin and $\mathrm{p}=\alpha+\beta+\gamma$, then the ordered pair (V, p) is equal to
(A) $(48,-13)$
(B) $(24,-13)$
(C) $(48,11)$
(D) $(24,-5)$

Official Ans. by NTA (B)

Ans. (B)
Sol. Normal of plane P :
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & -3 \\ -1 & 2 & -2\end{array}\right|=4 \hat{i}-\hat{j}-3 \hat{k}$

Equation of plane P which passes through (2, 2,-2) is $4 x-y-3 z-12=0$
Now, A $(3,0,0), \mathrm{B}(0,-12,0), \mathrm{C}(0,0,-4)$
$\Rightarrow \alpha=3, \beta=-12, \gamma=-4$
$\Rightarrow \mathrm{p}=\alpha+\beta+\gamma=-13$
Now, volume of tetrahedron OABC
$\mathrm{V}=\left|\frac{1}{6} \overrightarrow{\mathrm{OA}} \cdot(\overrightarrow{\mathrm{OB}} \times \overrightarrow{\mathrm{OC}})\right|=24$
$(\mathrm{V}, \mathrm{p})=(24,-13)$
17. Let S be the set of all $a \in R$ for which the angle between the vectors $\overrightarrow{\mathrm{u}}=\mathrm{a}\left(\log _{\mathrm{e}} \mathrm{b}\right) \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{v}}=\left(\log _{\mathrm{e}} \mathrm{b}\right) \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{a}\left(\log _{\mathrm{e}} \mathrm{b}\right) \hat{\mathrm{k}},(\mathrm{b}>1)$ is acute. Then S is equal to
(A) $\left(-\infty,-\frac{4}{3}\right)$
(B) Φ
(C) $\left(-\frac{4}{3}, 0\right)$
(D) $\left(\frac{12}{7}, \infty\right)$

Official Ans. by NTA (C)
Ans. (B)
Sol. For angle to be acute
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}>0$
$\Rightarrow \mathrm{a}\left(\log _{\mathrm{e}} \mathrm{b}\right)^{2}-12+6 \mathrm{a}\left(\log _{\mathrm{e}} \mathrm{b}\right)>0$
$\forall \mathrm{b}>1$
let $\log _{\mathrm{e}} \mathrm{b}=\mathrm{t} \Rightarrow \mathrm{t}>0$ as $\mathrm{b}>1$
$y=a t^{2}+6 a t-12 \& y>0, \forall t>0$
$\Rightarrow \mathrm{a} \in \phi$
18. A horizontal park is in the shape of a triangle $O A B$ with $\mathrm{AB}=16$. A vertical lamp post OP is erected at the point O such that $\angle \mathrm{PAO}=\angle \mathrm{PBO}=15^{\circ}$ and $\angle \mathrm{PCO}=45^{\circ}$, where C is the midpoint of AB . Then $(\mathrm{OP})^{2}$ is equal to
(A) $\frac{32}{\sqrt{3}}(\sqrt{3}-1)$
(B) $\frac{32}{\sqrt{3}}(2-\sqrt{3})$
(C) $\frac{16}{\sqrt{3}}(\sqrt{3}-1)$
(D) $\frac{16}{\sqrt{3}}(2-\sqrt{3})$

Official Ans. by NTA (B)

Ans. (B)

Sol.
$\Rightarrow \mathrm{P}(\mathrm{A})=\frac{5}{18}$
Now, $\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})+\mathrm{P}(\mathrm{B})$
$=1-P(A)+P(A \cap B)=\frac{5}{6}$
$P\left(A^{\prime} \cap B^{\prime}\right)=1-P(A \cup B)$
$=1-\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{18}$
\Rightarrow Both (S1) and (S2) are true.
20. Let
p: Ramesh listens to music.
\mathbf{q} : Ramesh is out of his village
\mathbf{r} : It is Sunday
\mathbf{s} : It is Saturday
Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be expressed as
(A) $((\sim q) \wedge(r \vee s)) \Rightarrow p$
(B) $(\mathrm{q} \wedge(\mathrm{r} \vee \mathrm{s})) \Rightarrow \mathrm{p}$
(C) $\mathrm{p} \Rightarrow(\mathrm{q} \wedge(\mathrm{r} \vee \mathrm{s}))$
(D) $\mathrm{p} \Rightarrow((\sim) \mathrm{q}(\underset{\mathrm{q}}{\mathrm{s}}))$

Official Ans. by NTA (D)
Ans. (D)
Sol. $\quad \mathrm{p} \equiv$ Ramesh listens to music
$\sim \mathrm{q} \equiv \mathrm{He}$ is in village.
$r \vee s \equiv$ Saturday or sunday
$\mathrm{p} \Rightarrow((\sim \mathrm{q}) \wedge(\mathrm{r} \vee \mathrm{s}))$

SECTION-B

1. Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an A.P. If d is the common difference of this A.P., then $50-\frac{2 \mathrm{~d}}{\beta^{2}}$ is equal to \qquad
Official Ans. by NTA (57)
Ans. (57)
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{2}{5} \Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}=\frac{2}{5}$

Sol. ${ }^{4} \mathrm{C}_{2} \times \frac{\beta^{2}}{6},-6 \beta,-{ }^{6} \mathrm{C}_{3} \times \frac{\beta^{3}}{8}$ are in A.P

$$
\beta^{2}-\frac{5}{2} \beta^{3}=-12 \beta
$$

$\beta=\frac{12}{5}$ or $\beta=-2 \therefore \beta=\frac{12}{5}$
$\mathrm{d}=-\frac{72}{5}-\frac{144}{25}=-\frac{504}{25}$
$\therefore 50-\frac{2 \mathrm{~d}}{\beta^{2}}=57$
2. A class contains b boys and g girls. If the number of ways of selecting 3 boys and 2 girls from the class is 168 , then $\mathrm{b}+3 \mathrm{~g}$ is equal to

Official Ans. by NTA (17)
Ans. (17)
Sol. ${ }^{\mathrm{b}} \mathrm{C}_{3} \times{ }^{\mathrm{g}} \mathrm{C}_{2}=168$
$\mathrm{b}(\mathrm{b}-1)(\mathrm{b}-2)(\mathrm{g})(\mathrm{g}-1)=8 \times 7 \times 6 \times 3 \times 2$
$\mathrm{b}+3 \mathrm{~g}=17$
3. Let the tangents at the points P and Q on the ellipse $\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{y}^{2}}{4}=1$ meet at the point $\mathrm{R}(\sqrt{2}, 2 \sqrt{2}-2)$.

If S is the focus of the ellipse on its negative major axis, then $\mathrm{SP}^{2}+\mathrm{SQ}^{2}$ is equal to

Official Ans. by NTA (13)

Ans. (13)

Sol. Ellipse is
$\frac{x^{2}}{2}+\frac{y^{2}}{4}=1 ; \quad e=\frac{1}{\sqrt{2}} ; S \equiv(0,-\sqrt{2})$
Chord of contact is
$\frac{x}{\sqrt{2}}+\frac{(2 \sqrt{2}-2) y}{4}=1$
$\Rightarrow \frac{\mathrm{x}}{\sqrt{2}}=1-\frac{(\sqrt{2}-1)_{\mathrm{y}}}{2}$ solving with ellipse
$\Rightarrow \mathrm{y}=0, \sqrt{2} \quad \therefore \mathrm{x}=\sqrt{2}, 1$
$\mathrm{P} \equiv(1, \sqrt{2}) \quad \mathrm{Q} \equiv(\sqrt{2}, 0)$
$\therefore(\mathrm{SP})^{2}+(\mathrm{SQ})^{2}=13$
4. If $1+\left(2+{ }^{49} \mathrm{C}_{1}+{ }^{49} \mathrm{C}_{2}+\ldots .+{ }^{49} \mathrm{C}_{49}\right)\left({ }^{50} \mathrm{C}_{2}+{ }^{50} \mathrm{C}_{4}+\right.$ $\ldots . .+{ }^{50} \mathrm{C}_{50}$) is equal to $2^{\mathrm{n}} . \mathrm{m}$, where m is odd, then n +m is equal to \qquad
Official Ans. by NTA (99)
Ans. (99)
Sol. $1+\left(1+2^{49}\right)\left(2^{49}-1\right)=2^{98}$
$\mathrm{m}=1, \mathrm{n}=98$
$\mathrm{m}+\mathrm{n}=99$
5. Two tangent lines 1_{1} and 1_{2} are drawn from the point $(2,0)$ to the parabola $2 y^{2}=-x$. If the lines l_{1} and l_{2} are also tangent to the circle $(x-5)^{2}+y^{2}=r$, then 17 r is equal to

Official Ans. by NTA (9)
Ans. (9)
Sol. $\mathrm{y}^{2}=-\frac{\mathrm{x}}{2}$
$y=m x-\frac{1}{8 m}$
this tangent pass through $(2,0)$
$m= \pm \frac{1}{4}$ i.e., one tangent is $x-4 y-2=0$
$17 \mathrm{r}=9$
6. If $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{\mathrm{n}} \cdot \mathrm{m}$, where m is odd, then m. n is equal to \qquad
Official Ans. by NTA (12)
Ans. (12)
Sol. $\frac{6}{3^{12}}+10\left(\frac{1}{3^{11}}+\frac{2}{3^{10}}+\frac{2^{2}}{3^{9}}+\frac{2^{3}}{3^{8}}+\ldots . .+\frac{2^{10}}{3}\right)$
$\frac{6}{3^{12}}+\frac{10}{3^{11}}\left(\frac{6^{11}-1}{6-1}\right)$
$=2^{12} \cdot 1 ; \mathrm{m} . \mathrm{n}=12$
7. Let $\mathrm{S}=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$. Then the number of elements in the set $A=\{\theta \in S: \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ is \qquad

Official Ans. by NTA (5)

Ans. (5)
Sol. $\tan \theta+\sqrt{5} \tan 2 \theta \tan \theta=\sqrt{5}-\tan 2 \theta$
$\tan 3 \theta=\sqrt{5}$
$\theta=\frac{\mathrm{n} \pi}{3}+\frac{\alpha}{3} ; \quad \tan \alpha=\sqrt{5}$
Five solution
8. Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}, \mathrm{b} \neq 0$ be complex numbers satisfying $z^{2}=\bar{z} \cdot 2^{1-z \mid}$. Then the least value of n $\in \mathrm{N}$, such that $\mathrm{z}^{\mathrm{n}}=(\mathrm{z}+1)^{\mathrm{n}}$, is equal to \qquad
Official Ans. by NTA (6)
Ans. (6)
Sol. $\left|z^{2}\right|=|\bar{z}| \cdot 2^{1-\bar{z} \mid} \Rightarrow|z|=1$

$$
\begin{aligned}
& \mathrm{z}^{2}=\overline{\mathrm{z}} \Rightarrow \mathrm{z}^{3}=1 \therefore \mathrm{z}=\omega \text { or } \omega^{2} \\
& \omega^{\mathrm{n}}=(1+\omega)^{\mathrm{n}}=\left(-\omega^{2}\right)^{\mathrm{n}}
\end{aligned}
$$

Least natural value of n is 6 .
9. A bag contains 4 white and 6 black balls. Three balls are drawn at random from the bag. Let X be the number of white balls, among the drawn balls. If σ^{2} is the variance of X , then $100 \sigma^{2}$ is equal to

Official Ans. by NTA (56)

Ans. (56)

Sol.

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{3}{10}$	$\frac{1}{30}$

$$
\sigma^{2}=\sum \mathrm{X}^{2} \mathrm{P}(\mathrm{X})-\left(\sum \mathrm{XP}(\mathrm{X})\right)^{2}=\frac{56}{100}
$$

$100 \sigma^{2}=56$
10. The value of the integral $\int_{0}^{\frac{\pi}{2}} 60 \frac{\sin (6 x)}{\sin x} d x$ is equal to

Official Ans. by NTA (104)

Ans. (104)
Sol.
$I=60 \int_{0}^{\pi / 2}\left(\frac{\sin 6 x-\sin 4 x}{\sin x}+\frac{\sin 4 x-\sin 2 x}{\sin x}+\frac{\sin 2 x}{\sin x}\right) d x$
$I=60 \int_{0}^{\pi / 2}(2 \cos 5 x+2 \cos 3 x+2 \cos x) d x$
$\mathrm{I}=\left.60\left(\frac{2}{5} \sin 5 \mathrm{x}+\frac{2}{3} \sin 3 \mathrm{x}+2 \sin \mathrm{x}\right)\right|_{0} ^{\pi / 2}=104$

