FINALJEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04 ${ }^{\text {th }}$ J une, 2023)

PAPER-1

TEST PAPER WITH SOLUTION

CHEMISTRY

SECTION-1 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks
: +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks
Partial Marks
: +3 If all the four options are correct but ONLY three options are chosen;
: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks :-2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -2 marks.

1. The correct statement(s) related to processes involved in the extraction of metals is(are)
(A) Roasting of Malachite produces Cuprite.
(B) Calcination of Calamine produces Zincite.
(C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
(D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Ans. (B,C,D)

Sol. \Rightarrow Under roasting condition, the malachite will be converted into

$$
\begin{aligned}
& \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CuO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\Rightarrow & \underset{\text { (Calamine) }}{\mathrm{ZnCO}_{3}} \rightarrow \underset{\text { (Zincite) }}{\mathrm{ZnO}}+\mathrm{CO}_{2} \uparrow
\end{aligned}
$$

\Rightarrow Copper pyrites is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slag of' as iron silicate and copper is produced in the form of copper matte.

$$
\begin{aligned}
& \mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \underset{(\mathrm{Slag})}{\mathrm{FeSiO}_{3}} \\
\Rightarrow \mathrm{Ag}+\mathrm{KCN}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow & {\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+\mathrm{KOH} } \\
& \downarrow \mathrm{Zn} \\
& \mathrm{Ag} \downarrow+\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}
\end{aligned}
$$

2. In the following reactions, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} are the major products.

$$
\mathrm{Ph}-\mathrm{H}+\underset{\mathrm{CH}_{3} \mathrm{CCl}}{\stackrel{\mathrm{O}}{\|}} \xrightarrow[\text { (ii) } \mathrm{PhMgBr} \text {, then } \mathrm{H}_{2} \mathrm{O}]{\text { (i) anhyd. } \mathrm{AlCl}_{3}} \mathbf{Q}
$$

The correct statement(s) about $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} is(are)
(A) Both \mathbf{P} and \mathbf{Q} have asymmetric carbon(s).
(B) Both \mathbf{Q} and \mathbf{R} have asymmetric carbon(s).
(C) Both \mathbf{P} and \mathbf{R} have asymmetric carbon(s).
(D) \mathbf{P} has asymmetric carbon(s), \mathbf{S} does not have any asymmetric carbon.

Ans. (C,D)

Sol. Formation of P

Formation of Q

Formation of R

(R)

Formation of S

3. Consider the following reaction scheme and choose the correct option(s) for the major products \mathbf{Q}, \mathbf{R} and \mathbf{S}.

(A)

Q

$\mathrm{SO}_{3} \mathrm{H}$
(B)

Q
R
S
(C)

Q

R

s
(D)

Q

R

s

Ans. (B)

Sol.

SECTION-2 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.
4. In the scheme given below, \mathbf{X} and \mathbf{Y}, respectively, are
(A) $\mathrm{CrO}_{4}{ }^{2-}$ and Br_{2}
(B) $\mathrm{MnO}_{4}{ }^{2-}$ and Cl_{2}
(C) $\mathrm{MnO}_{4}{ }^{-}$and Cl_{2}
(D) MnSO_{4} and HOCl

Ans. (C)
Sol. $\mathrm{MnCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Mn}(\mathrm{OH})_{2} \downarrow+\mathrm{NaCl}$

$$
\left({ }^{\left(\text {Starch }+\mathrm{I}_{2}\right)}+2 \mathrm{Cl}\right.
$$

blue coloration
5. Plotting $1 / \Lambda_{\mathrm{m}}$ against $\mathrm{c} \Lambda_{\mathrm{m}}$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P / S is
[$\Lambda_{\mathrm{m}}=$ molar conductivity
$\Lambda_{\mathrm{m}}^{\circ}=$ limiting molar conductivity
$\mathrm{c}=$ molar concentration
$\mathrm{K}_{\mathrm{a}}=$ dissociation constant of HX]
(A) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}$
(B) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ} / 2$
(C) $2 \mathrm{~K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}$
(D) $1 /\left(\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}\right)$

Ans. (A)

$$
\begin{aligned}
& \text { Metal halide } \xrightarrow{\text { aq. } \mathrm{NaOH}} \text { White precipitate (} \mathbf{(P) + F i l t r a t e} \mathbf{(Q)} \\
& \mathbf{P} \xrightarrow[\text { heat }]{\substack{\mathrm{aq} . \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{PbO} \\
2 \\
\text { (exces) }}} \mathbf{X} \text { (a coloured species in solution) } \\
& \mathrm{MnO}(\mathrm{OH})_{2} \text {, } \\
& \mathbf{Q} \xrightarrow[\text { warm }]{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathbf{Y} \text { (gives blue-coloration with KI-starch paper) }
\end{aligned}
$$

Sol. For weak acid, $\alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{0}}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \Rightarrow \mathrm{K}_{\mathrm{a}}(1-\alpha)=\mathrm{C} \alpha^{2}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}\left(1-\frac{\Lambda_{\mathrm{m}}}{\Lambda_{0}}\right)=\mathrm{C}\left(\frac{\Lambda_{\mathrm{m}}}{\Lambda_{0}}\right)^{2}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}-\frac{\Lambda_{\mathrm{m}} \mathrm{K}_{\mathrm{a}}}{\Lambda_{0}}=\frac{\mathrm{C} \Lambda_{\mathrm{m}}^{2}}{\left(\Lambda_{0}\right)^{2}}$
Divide by ' Λ_{m} '
$\Rightarrow \frac{\mathrm{K}_{\mathrm{a}}}{\Lambda_{\mathrm{m}}}=\frac{\mathrm{C} \Lambda_{\mathrm{m}}}{\left(\Lambda_{0}\right)^{2}}+\frac{\mathrm{K}_{\mathrm{a}}}{\Lambda_{0}}$
$\Rightarrow \frac{1}{\Lambda_{\mathrm{m}}}=\frac{\mathrm{C} \Lambda_{\mathrm{m}}}{\mathrm{K}_{\mathrm{a}}\left(\Lambda_{0}\right)^{2}}+\frac{1}{\Lambda_{0}}$
Plot $\frac{1}{\Lambda_{\mathrm{m}}}$ vs C Λ_{m} has
Slope $=\frac{1}{\mathrm{~K}_{\mathrm{a}}\left(\Lambda_{0}\right)^{2}}=\mathrm{S}$
y-intercept $=\frac{1}{\Lambda_{0}}=\mathrm{P}$
Then, $\frac{P}{S}=\frac{\frac{1}{\Lambda_{0}}}{\frac{1}{\mathrm{~K}_{\mathrm{a}}\left(\Lambda_{0}\right)^{2}}}=\mathrm{K}_{\mathrm{a}} \Lambda_{0}$
6. On decreasing the $p \mathrm{H}$ from 7 to 2 , the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ to $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The $p \mathrm{~K}_{\mathrm{a}}$ of HX is:
(A) 3
(B) 4
(C) 5
(D) 2

Ans. (B)

Sol. At pH $=7 \Rightarrow$ pure water
solubility $=\mathrm{S}_{1}=\sqrt{\mathrm{K}_{\text {sp }}}$
At pH = 2
$\Rightarrow \mathrm{MX}(\mathrm{s})+\mathrm{aq} \stackrel{\mathrm{K}_{\mathrm{sp}}}{\rightleftharpoons} \mathrm{M}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})$

$$
\begin{array}{cc}
\\
\mathrm{X}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \\
\mathrm{s}-\mathrm{X} \quad 10^{-2} & \stackrel{\mathrm{~s}}{\stackrel{1 / \mathrm{K}_{\mathrm{a}}}{\rightleftharpoons}} \mathrm{HX}(\mathrm{aq}) \\
\mathrm{x} \simeq \mathrm{X} \\
\hline
\end{array}
$$

Approximation : $\mathrm{s}-\mathrm{x} \simeq 0$ [X^{-}is limiting reagent $]$

$$
\begin{align*}
& \Rightarrow \mathrm{s} \simeq \mathrm{x} \\
& \Rightarrow \mathrm{~s}(\mathrm{~s}-\mathrm{x})=\mathrm{K}_{\mathrm{sp}} \tag{1}\\
& \frac{\mathrm{~s}}{(\mathrm{~s}-\mathrm{x})\left(10^{-2}\right)}=\frac{1}{\mathrm{~K}_{\mathrm{a}}} \tag{2}
\end{align*}
$$

Multiply (1) $\times(2) \Rightarrow \frac{\mathrm{s}^{2}}{10^{-2}}=\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{K}_{\mathrm{a}}}$

$$
\Rightarrow \mathrm{s}=\frac{\sqrt{\mathrm{K}_{\mathrm{sp}}}}{10 \sqrt{\mathrm{~K}_{\mathrm{a}}}}
$$

Now given : $\frac{\mathrm{s}}{\mathrm{s}_{1}}=\frac{10^{-3}}{10^{-4}}$

$$
\begin{aligned}
\Rightarrow \frac{\frac{\sqrt{\mathrm{K}_{\text {sp }}}}{10 \sqrt{\mathrm{~K}_{\mathrm{a}}}}}{\sqrt{\mathrm{~K}_{\mathrm{sp}}}}=10 & \Rightarrow \frac{1}{10 \sqrt{\mathrm{~K}_{\mathrm{a}}}}=10 \\
& \Rightarrow \sqrt{\mathrm{~K}_{\mathrm{a}}}=10^{-2} \\
& \Rightarrow \mathrm{~K}_{\mathrm{a}}=10^{-4} \\
& \Rightarrow \mathrm{pK}_{\mathrm{a}}=4
\end{aligned}
$$

7. In the given reaction scheme, \mathbf{P} is a phenyl alkyl ether, \mathbf{Q} is an aromatic compound; \mathbf{R} and \mathbf{S} are the major products.

The correct statement about \mathbf{S} is
(A) It primarily inhibits noradrenaline degrading enzymes.
(B) It inhibits the synthesis of prostaglandin.
(C) It is a narcotic drug.
(D) It is ortho-acetylbenzoic acid.

Ans. (B)
Sol. P is phenyl alkyl ether
Q is aromatic compound
R and S are the major product
i.e.

(Non-narcotic analgesic)
Correct ans is (B)
Aspirin inhibits the synthesis of chemicals known as prostaglandin's.

SECTION-3: (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY If the correct integer is entered;
Zero Marks : 0 In all other cases.
8. The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product \mathbf{X} in 75% yield. The weight (in g) of \mathbf{X} obtained is \qquad -.
[Use, molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Si}=28, \mathrm{Cl}=35.5$]
Ans. (222)

Sol. $4\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \xrightarrow{75 \%}\left(\mathrm{CH}_{3}\right)_{8} \mathrm{Si}_{4} \mathrm{O}_{4}+8 \mathrm{HCl}$ (X)

$$
\begin{aligned}
& \mathrm{w}=516 \mathrm{~g} \\
& \begin{array}{c}
\mathrm{n} \\
\text { (moles) }
\end{array}=\frac{516}{129} \\
&=4
\end{aligned}
$$

$$
\text { weight }=296 \mathrm{~g}
$$

$\%$ yield $=75$
The weight of X (in gram) $=296 \times \frac{75}{100}=222 \mathrm{~g}$
9. A gas has a compressibility factor of 0.5 and a molar volume of $0.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at a temperature of 800 K and pressure $\mathbf{x ~ a t m}$. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be $\mathbf{y ~ d m}{ }^{3} \mathrm{~mol}^{-1}$. The value of \mathbf{x} / \mathbf{y} is \qquad .
[Use: Gas constant, $\mathrm{R}=8 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
Ans. (100)
Sol. For gas : $\mathrm{Z}=0.5, \mathrm{~V}_{\mathrm{m}}=0.4 \mathrm{~L} / \mathrm{mol}$

$$
\mathrm{T}=800 \mathrm{~K}, \mathrm{P}=\mathrm{X} \text { atm. }
$$

$\Rightarrow \mathrm{Z}=\frac{\mathrm{PV}}{\mathrm{RT}}$
$\Rightarrow \frac{\mathrm{X}(0.4)}{0.08 \times 800}=0.5$
$\Rightarrow \mathrm{X}=80$
For ideal gas, $\mathrm{PV}_{\mathrm{m}}=\mathrm{RT}$
$\Rightarrow \mathrm{V}_{\mathrm{m}}=\frac{\mathrm{RT}}{\mathrm{P}}=\frac{0.08 \times 800}{80}=0.8 \mathrm{~L} \mathrm{~mol}^{-1}=\mathrm{y}$
Then, $\frac{\mathrm{x}}{\mathrm{y}}=\frac{80}{0.8}=100$.
10. The plot of $\log \mathrm{k}_{\mathrm{f}}$ versus $1 / \mathrm{T}$ for a reversible reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$ is shown.

Pre-exponential factors for the forward and backward reactions are $10^{15} \mathrm{~s}^{-1}$ and $10^{11} \mathrm{~s}^{-1}$, respectively. If the value of $\log \mathrm{K}$ for the reaction at 500 K is 6 , the value of $\left|\log \mathrm{k}_{\mathrm{b}}\right|$ at 250 K is
\qquad -
[$\mathrm{K}=$ equilibrium constant of the reaction
$\mathrm{k}_{\mathrm{f}}=$ rate constant of forward reaction
$\mathrm{k}_{\mathrm{b}}=$ rate constant of backward reaction]
Ans. (5)
Sol. For reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$
$\log \mathrm{k}_{\mathrm{f}}=\frac{-\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{RT}}+\log \mathrm{A}_{\mathrm{f}}$ [Arrhenius equation for forward reaction]
From plot when, $\frac{1}{\mathrm{~T}}=0.002$, $\log \mathrm{k}_{\mathrm{f}}=9$
$\Rightarrow 9=\frac{-\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{R}}(0.002)+\log \left(\mathrm{A}_{\mathrm{f}}\right)$
Given : $\mathrm{A}_{\mathrm{f}}=10^{15} \mathrm{~s}^{-1}$
$\Rightarrow 9=\frac{-\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{R}}(0.002)+15$
$\Rightarrow \frac{\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{R}}=\frac{6}{0.002}=3000$
Now, $K=\frac{k_{f}}{k_{b}}=\frac{A_{f}}{A_{b}} e^{-\left(E_{f}-E_{b}\right) / R T}$

$$
\log K=-\frac{1}{2.303} \frac{\left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{b}}\right)}{\mathrm{RT}}+\log \left(\frac{10^{15}}{10^{11}}\right)
$$

At 500 K
$\Rightarrow 6=\frac{-\left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{b}}\right)}{500 \mathrm{R}(2.303)}+4$
\Rightarrow (1000R) (2.303) $=\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\mathrm{f}}$
$\Rightarrow(1000 \mathrm{R})(2.303)=\mathrm{E}_{\mathrm{b}}-3000(2.303 \mathrm{R})$
$\Rightarrow \mathrm{E}_{\mathrm{b}}=4000 \mathrm{R}$ (2.303)
Now $\mathrm{k}_{\mathrm{b}}=\mathrm{A}_{\mathrm{b}} \mathrm{e}^{-\mathrm{E}_{\mathrm{b}} / \mathrm{RT}}$
$\Rightarrow \log \mathrm{k}_{\mathrm{b}}=\frac{-\mathrm{E}_{\mathrm{b}}}{2.303 \mathrm{RT}}+\log \mathrm{A}_{\mathrm{b}}$
At 250 K
$\Rightarrow \log \mathrm{k}_{\mathrm{b}}=-\frac{4000}{250}+\log \left(10^{11}\right) \quad$ [From equation (1)]

$$
=-16+11=-5
$$

$\left|\log k_{b}\right|=5$
11. One mole of an ideal monoatomic gas undergoes two reversible processes ($A \rightarrow B$ and $B \rightarrow C$) as shown in the given figure :

$A \rightarrow B$ is an adiabatic process. If the total heat absorbed in the entire process ($\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{C}$) is $\mathrm{RT}_{2} \ln 10$, the value of $2 \log \mathrm{~V}_{3}$ is \qquad -.
[Use, molar heat capacity of the gas at constant pressure, $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\frac{5}{2} \mathrm{R}$]
Ans. (7)
Sol. For $\mathrm{A} \rightarrow \mathrm{B} \quad 600 \mathrm{~V}_{1}^{\gamma-1}=60 \mathrm{~V}_{2}^{\gamma-1} \quad(\gamma=5 / 3)$
(Reversible adiabatic)
$\Rightarrow 600\left(\mathrm{~V}_{1}\right)^{2 / 3}=60\left(\mathrm{~V}_{2}\right)^{2 / 3}$
$\Rightarrow 10=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{2 / 3}$
$\Rightarrow 10=\left(\frac{\mathrm{V}_{2}}{10}\right)^{2 / 3}$
$\Rightarrow \mathrm{V}_{2}=10(10)^{3 / 2}=10^{5 / 2}$
Now, $\mathrm{q}_{\text {net }}=\mathrm{RT}_{2} \ln 10=60 \mathrm{R} \ln 10=\mathrm{q}_{\mathrm{AB}}+\mathrm{q}_{\mathrm{BC}}$
$\because \mathrm{q}_{\mathrm{AB}}=0$
$\Rightarrow \mathrm{q}_{\mathrm{BC}}=60 \mathrm{R} \ln 10=60 \mathrm{R} \ln \frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}} \quad[\because \mathrm{~B} \rightarrow \mathrm{C}$ is reversible isothermal $]$
$\Rightarrow 60 \mathrm{R} \ln 10=60 \mathrm{R} \ln \left(\frac{\mathrm{V}_{3}}{10^{5 / 2}}\right)$
$\Rightarrow \log 10=\log \mathrm{V}_{3}-\frac{5}{2}$
$\Rightarrow \log V_{3}=\frac{7}{2} \Rightarrow 2 \log V_{3}=7$
12. In a one-litre flask, 6 moles of A undergoes the reaction $A(g) \rightleftharpoons P(g)$. The progress of product formation at two temperatures (in Kelvin), T_{1} and T_{2}, is shown in the figure:

If $T_{1}=2 T_{2}$ and $\left(\Delta G_{2}^{\Theta}-\Delta G_{1}^{\Theta}\right)=R T_{2} \ln x$, then the value of x is \qquad .
[ΔG_{1}^{\ominus} and ΔG_{2}^{Θ} are standard Gibb's free energy change for the reaction at temperatures T_{1} and T_{2}, respectively.]
Ans. (8)
Sol. At $\mathrm{T}_{1} \mathrm{~K}$:
$\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$
$\mathrm{t}=0$ 6
$\mathrm{t}=\infty \quad 6-\mathrm{x} \quad \mathrm{x}=4$ (from plot)
\Rightarrow At $T_{1} K: K_{P_{1}}=\frac{4}{2}=2$
At $\mathrm{T}_{2} \mathrm{~K}: \quad \mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$
$\mathrm{t}=0 \quad 6$
$\mathrm{t}=\infty \quad 6-\mathrm{y} \quad \mathrm{y}=2$ (from plot)
$\Rightarrow \operatorname{At~T}_{2} \mathrm{~K}: \mathrm{K}_{\mathrm{P}_{2}}=\frac{2}{4}=\frac{1}{2}$
Now, $\Delta \mathrm{G}_{2}^{0}=-\mathrm{RT}_{2} \ln \mathrm{~K}_{\mathrm{P}_{2}}=-\mathrm{RT}_{2} \ln \frac{1}{2}$

$$
\Rightarrow \Delta \mathrm{G}_{2}^{0}=\mathrm{RT}_{2} \ln 2
$$

$$
\Delta \mathrm{G}_{1}^{\mathrm{o}}=-\mathrm{RT}_{1} \ln \mathrm{~K}_{\mathrm{P}_{1}}=-\mathrm{RT}_{1} \ln 2=-2 \mathrm{RT}_{2} \ln 2
$$

Given : $\Delta \mathrm{G}_{2}^{0}-\Delta \mathrm{G}_{1}^{\mathrm{o}}=\mathrm{RT}_{2} \ln 2+2 \mathrm{RT}_{2} \ln 2=3 \mathrm{RT}_{2} \ln 2=\mathrm{RT}_{2} \ln \mathrm{x}$
$\Rightarrow \mathrm{x}=2^{3}=8$
13. The total number of sp^{2} hybridised carbon atoms in the major product \mathbf{P} (a non-heterocyclic compound) of the following reaction is \qquad .

Ans. (28)

Sol.

Total number of sp^{2} hybridised C -atom in $\mathrm{P}=28$

SECTION-4 : (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists : List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $\quad:-1$ In all other cases.
14. Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

List-I

(P) $\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(Q) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(R) $\mathrm{PCl}_{5}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow$
(S) $\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{AgNO}_{3} \rightarrow$
(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$

List-II

(1) $\mathrm{P}(\mathrm{O})\left(\mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(3) PH_{3}
(4) POCl_{3}
(5) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(B) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 2$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$

Ans. (D)
Sol. (P) $\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{3}$
(Q) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
(R) $\mathrm{PCl}_{5}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$
(S) $\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{AgNO}_{3} \rightarrow 4 \mathrm{Ag}+4 \mathrm{HNO}_{3}+\underline{\mathrm{H}}_{3} \underline{\mathrm{PO}}_{4}$
15. Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.
[Atomic Number: $\mathrm{Fe}=26, \mathrm{Mn}=25, \mathrm{Co}=27$]

List-I

(P) $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
(Q) $\mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{2}$
(R) $\mathrm{e}^{2} \mathrm{t}_{2}^{3}$
(S) $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
(4) $\left[\mathrm{FeCl}_{4}\right]^{-}$
(5) $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(A) $\mathrm{P} \rightarrow 1$; Q $\rightarrow 4$; $\mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 1$
(D) $\mathrm{P} \rightarrow 3$; Q $\rightarrow 2$; R $\rightarrow 4$; $\mathrm{S} \rightarrow 1$

Ans. (D)

Sol. 1. $\left.\underset{\mathrm{WFL}}{\mathrm{II}} \underset{\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}}{ }\right]^{+2}$
configuration

$$
\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{eg}^{2}(\mathrm{~S})
$$

2. $\left[\mathrm{II}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

NFL
configuration
 $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{2}(\mathrm{Q})$
3. $\left.\stackrel{\text { III }}{\mathrm{Co}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$

FL
configuration

$$
t_{2 g}{ }^{6} e_{g}{ }^{0}(P)
$$

4. $\left[\mathrm{FFeCl}_{4}\right]^{\Theta}$

NFL
configuration

$$
e^{2} t_{2}^{3}(R)
$$

5. $\stackrel{\mathrm{II}}{\left[\mathrm{CoCl}_{4}\right]^{-2}}$

NFL
configuration

$$
\mathrm{e}^{4} \mathrm{t}_{2}{ }^{3} \text { (None) }
$$

16. Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

(P) (-)-1-Bromo-2-ethylpentane aq. NaOH (single enantiomer) $\xrightarrow[\mathrm{S}_{\mathrm{N}} 2 \text { reaction }]{ }$
(Q) (-)-2-Bromopentane (single enantiomer) $\xrightarrow[\mathrm{S}_{\mathrm{N}} 2 \text { reaction }]{\text { aq. } \mathrm{NaOH}}$
$\xrightarrow[\substack{\text { (single enantiomer) }}]{(\text { R) }} \xrightarrow[S_{\mathrm{N}} 1 \text { reaction }]{\text { (-)-3romo-3-methylhexane }} \underset{ }{\text { aq. } \mathrm{NaOH}}$
(S)

List-II

(1) Inversion of configuration
(2) Retention of configuration
(3) Mixture of enantiomers
(4) Mixture of structural isomers
(5) Mixture of diastereomers
(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 3$; $\mathrm{S} \rightarrow 5$

Ans. (B)
Sol. $\mathrm{P} \rightarrow 2, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 3, \mathrm{~S} \rightarrow 5$
(P)

(Q)

Inversion of configuration
(R)

Mixture of enantiomers

(S)

17. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-I

(P) Etard reaction
(Q) Gattermann reaction
(R) Gattermann-Koch reaction
(S) Rosenmund reduction
(4)
(5) Phenol $\xrightarrow{\mathrm{Zn}, \Delta}$
(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 3$; $\mathrm{Q} \rightarrow 4$; $\mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 2$

Ans. (D)
Sol. $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 5, \mathrm{~S} \rightarrow 2$
(i)

(ii)

(iii)

(iv)
 Gattermann reaction (Q)

Gattermann Koch reaction
(R)

