

FINAL JEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04th June, 2023)

PAPER-1

TEST PAPER WITH SOLUTION

CHEMISTRY

SECTION-1: (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;
Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get –2 marks.

- 1. The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
 - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
 - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Ans. (**B**,**C**,**D**)

Sol. \Rightarrow Under roasting condition, the malachite will be converted into

$$CuCO_3.Cu(OH)_2 \rightarrow 2CuO + CO_2 + H_2O$$

$$\Rightarrow \operatorname{ZnCO_3} \rightarrow \operatorname{ZnO} + \operatorname{CO_2} \uparrow$$
(Calamine)

⇒ Copper pyrites is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slag of' as iron silicate and copper is produced in the form of copper matte.

$$\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$$
(Slag)

$$\Rightarrow \text{ Ag + KCN + O}_2 + \text{H}_2\text{O} \longrightarrow [\text{Ag(CN)}_2]^- + \text{KOH}$$

$$\downarrow \text{Zn}$$

$$\text{Ag } \downarrow + [\text{Zn(CN)}_4]^{2-}$$

2. In the following reactions, P, Q, R, and S are the major products.

$$CH_3CH_2CH(CH_3)CH_2CN \xrightarrow{(i) PhMgBr, then H_3O} P$$

Ph – H + CH₃CCl
$$\xrightarrow{\text{(i) anhyd. AlCl}_3}$$
 Q

$$CH_{3}CH_{2}CC1 \xrightarrow{(i) \frac{1}{2}(PhCH_{2})_{2}Cd} R$$

$$PhCH_{2}CHO \xrightarrow{\begin{subarray}{c} (i) PhMgBr, then H_{2}O\\ \hline (ii) CrO_{3}, dil. H_{2}SO_{4}\\ \hline (iii) HCN\\ (iv) H_{2}SO_{4}, \Delta \end{subarray}} S$$

The correct statement(s) about P, Q, R, and S is(are)

- (A) Both **P** and **Q** have asymmetric carbon(s).
- (B) Both **Q** and **R** have asymmetric carbon(s).
- (C) Both **P** and **R** have asymmetric carbon(s).
- (D) **P** has asymmetric carbon(s), **S** does **not** have any asymmetric carbon.

Ans. (**C**,**D**)

Sol. Formation of P

$$CH_3 - CH_2 - CH - CH_2 - CN \xrightarrow{PhMgBr} H_3O^+$$

$$PhMgBr \\ then H_3O^+$$

$$Asymmetric \\ carbon$$

$$(P)$$

Formation of Q

$$+ CH_3 - C - CI \xrightarrow{\text{anhy. AlCl}_3} Ph - C - CH_3$$

$$Ph - C -$$

Formation of R

$$C - C1 + \frac{1}{2} (Ph - CH_2)_2 Cd$$

$$Ph O$$

$$PhMgBr$$

$$then H_3 O^+$$

$$Ph$$

$$OH$$

$$carbon$$

$$(R)$$

Formation of S

$$Ph - CH_{2} - C - H \xrightarrow{PhMgBr} Ph - CH_{2} - CH - Ph$$

$$CrO_{3} \text{ with dil. } H_{2}SO_{4}$$

$$Ph - CH_{2} - C - Ph$$

$$H_{3}O^{+} \longrightarrow Ph - CH_{2} - C - Ph$$

$$OH$$

$$HCN$$

$$Ph - CH = C - Ph \xrightarrow{A} Ph - CH_{2} - C - Ph$$

$$COOH$$

(S) No asymmetric carbon

3. Consider the following reaction scheme and $\frac{\text{choose}}{\text{choose}}$ the correct $\frac{\text{option}(s)}{s}$ for the major products \mathbf{Q} ,

R and S.

Styrene
$$\xrightarrow{\text{(i) B2H6}}_{\text{(ii) NaOH, H2O2, H2O}} \mathbf{P} \xrightarrow{\text{(i) CrO3, H2SO4}}_{\text{(ii) Cl2}} \mathbf{Q}$$
 $\mathbf{P} \xrightarrow{\text{(i) SOCl2}}_{\text{(ii) NaCN}} \mathbf{R} \xrightarrow{\text{conc. H2SO4}} \mathbf{S}$
 $\mathbf{CI} \xrightarrow{\text{COOH}}_{\text{NH2}} \xrightarrow{\text{NH2}}_{\mathbf{Q}} \mathbf{R} \xrightarrow{\mathbf{S}}_{\mathbf{SO_3H}} \mathbf{Q} \mathbf{R} \mathbf{S}$
 $\mathbf{Q} \qquad \mathbf{R} \qquad \mathbf{S}$

Ans. (B)

Sol.

SECTION-2: (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

: +3 If **ONLY** the correct option is chosen; Full Marks

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

4. In the scheme given below, **X** and **Y**, respectively, are

Metal halide
$$\xrightarrow{\text{aq. NaOH}}$$
 White precipitate (**P**) + Filtrate (**Q**)

$$\mathbf{P} \xrightarrow{\text{aq.H}_2\text{SO}_4 \atop \text{PbO}_2(\text{excess})} \mathbf{X} \text{ (a coloured species in solution)}$$

$$\mathbf{Q} \xrightarrow{\text{Conc.H}_2\text{SO}_4 \atop \text{warm}} \mathbf{Y} \text{ (gives blue-coloration with KI-starch paper)}$$

(A) CrO_4^{2-} and Br_2

(B) MnO_4^{2-} and Cl_2

(C) MnO₄⁻ and Cl₂

(D) MnSO₄ and HOCl

Ans. (C)

Sol.
$$MnCl_2 + NaOH \rightarrow Mn(OH)_2 \downarrow + NaCl$$
(P)
(white ppt.) (Filterate)

$$Mn(OH)_{2} \xrightarrow{PbO_{2}+H^{+}(H_{2}SO_{4})} MnO_{4}^{-} + Pb^{2+}$$

$$Cl^{-} \xrightarrow{MnO(OH)_{2}/conc. H_{2}SO_{4}/\square} Cl_{2}$$

$$\downarrow 2l^{-}$$

$$(Starch + l_{2}) + 2Cl^{-}$$

5. Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is

 $[\Lambda_{\rm m} = {\rm molar\ conductivity}]$

 $\Lambda_{\rm m}^{\circ}$ = limiting molar conductivity

c = molar concentration

 K_a = dissociation constant of HX

- (A) $K_a \Lambda_m^{\circ}$
- (B) $K_a \Lambda_m^{\circ} / 2$ (C) $2 K_a \Lambda_m^{\circ}$
- (D) $1/(K_a \Lambda_m^{\circ})$

Ans. (A)

Sol. For weak acid, $\alpha = \frac{\Lambda_m}{\Lambda_0}$

$$K_a = \frac{C\alpha^2}{1-\alpha} \Rightarrow K_a (1-\alpha) = C\alpha^2$$

$$\implies K_a \left(1 - \frac{\Lambda_m}{\Lambda_0} \right) = C \left(\frac{\Lambda_m}{\Lambda_0} \right)^2$$

$$\Rightarrow K_{a} - \frac{\Lambda_{m}K_{a}}{\Lambda_{0}} = \frac{C\Lambda_{m}^{2}}{(\Lambda_{0})^{2}}$$

Divide by $\ '\Lambda_m'$

$$\Rightarrow \frac{K_a}{\Lambda_m} = \frac{C\Lambda_m}{\left(\Lambda_0\right)^2} + \frac{K_a}{\Lambda_0}$$

$$\Rightarrow \frac{1}{\Lambda_{\rm m}} = \frac{C\Lambda_{\rm m}}{K_{\rm a}(\Lambda_0)^2} + \frac{1}{\Lambda_0}$$

Plot
$$\frac{1}{\Lambda_m}$$
 vs $C\Lambda_m$ has

Slope =
$$\frac{1}{K_a(\Lambda_0)^2} = S$$

y-intercept =
$$\frac{1}{\Lambda_0}$$
 = P

Then,
$$\frac{P}{S} = \frac{\frac{1}{\Lambda_0}}{\frac{1}{K_a(\Lambda_0)^2}} = K_a\Lambda_0$$

- 6. On decreasing the pH from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L⁻¹ to 10^{-3} mol L⁻¹. The pK_a of HX is:
 - (A) 3

(B) 4

(C) 5

(D) 2

Ans. (B)

Sol. At pH =
$$7 \Rightarrow$$
 pure water

solubility =
$$S_1 = \sqrt{K_{sp}}$$

At
$$pH = 2$$

$$\Rightarrow \ MX(s) + aq \xleftarrow{K_{SP}} \ M^+(aq) + X^-(aq)$$

$$X^{-}(aq) + H^{+}(aq) \xrightarrow{1/K_a} HX(aq)$$

s-x 10^{-2} x \approx s Approximation : s - x \approx 0 [X⁻ is limiting reagent]

$$\Rightarrow s \approx x$$

$$\Rightarrow s(s-x) = K_{sp}$$

$$\frac{s}{(s-x)(10^{-2})} = \frac{1}{K_a}$$
.....(2)

Multiply (1) × (2)
$$\Rightarrow \frac{s^2}{10^{-2}} = \frac{K_{sp}}{K_a}$$

 $\Rightarrow s = \frac{\sqrt{K_{sp}}}{10\sqrt{K_a}}$

Now given :
$$\frac{s}{s_1} = \frac{10^{-3}}{10^{-4}}$$

$$\Rightarrow \frac{\frac{\sqrt{K_{sp}}}{10\sqrt{K_a}}}{\sqrt{K_{sp}}} = 10 \qquad \Rightarrow \frac{1}{10\sqrt{K_a}} = 10$$
$$\Rightarrow \sqrt{K_a} = 10^{-2}$$
$$\Rightarrow K_a = 10^{-4}$$
$$\Rightarrow pK_a = 4$$

7. In the given reaction scheme, P is a phenyl alkyl ether, Q is an aromatic compound; R and S are the major products.

$$\mathbf{P} \xrightarrow{\text{HI}} \mathbf{Q} \xrightarrow{\text{(ii) NaOH} \atop \text{(iii) CO}_2} \mathbf{R} \xrightarrow{\text{(i)(CH}_3\text{CO)}_2\text{O}} \mathbf{S}$$

The correct statement about **S** is

- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.

Ans. (B)

Sol. P is phenyl alkyl ether

Q is aromatic compound

R and S are the major product

i e

Correct ans is (B)

Aspirin inhibits the synthesis of chemicals known as prostaglandin's.

SECTION-3: (Maximum Marks: 24)

- This section contains **SIX** (06) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 **ONLY** If the correct integer is entered;

Zero Marks : 0 In all other cases.

8. The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product **X** in 75% yield. The weight (in g) of **X** obtained is ____.

[Use, molar mass (g mol^{-1}): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]

Ans. (222)

Sol.
$$4(CH_3)_2SiCl_2 + 4H_2O \xrightarrow{75\%} (CH_3)_8Si_4O_4 + 8HCl_{(X)}$$

$$w = 516g$$

$$n_{\text{(moles)}} = \frac{516}{129}$$

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$% yield = 75$$

The weight of X (in gram) =
$$296 \times \frac{75}{100} = 222 \text{ g}$$

9. A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure **x** atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be **y** dm³ mol⁻¹. The value of **x/y** is ____.

[Use: Gas constant,
$$R = 8 \times 10^{-2} L$$
 atm K^{-1} mol⁻¹]

Ans. (100)

Sol. For gas :
$$Z = 0.5$$
, $V_m = 0.4$ L/mol

$$T = 800 \text{ K}, P = X \text{ atm.}$$

$$\Rightarrow Z = \frac{PV_m}{RT}$$

$$\Rightarrow \frac{X(0.4)}{0.08 \times 800} = 0.5$$

$$\Rightarrow X = 80$$

For ideal gas, $PV_m = RT$

$$\Rightarrow V_{m} = \frac{RT}{P} = \frac{0.08 \times 800}{80} = 0.8 \text{ L mol}^{-1} = y$$

Then,
$$\frac{x}{y} = \frac{80}{0.8} = 100.$$

10. The plot of log k_f versus $\frac{1}{T}$ for a reversible reaction $A(g) \rightleftharpoons P(g)$ is shown.

Pre-exponential factors for the forward and backward reactions are 10^{15} s⁻¹ and 10^{11} s⁻¹, respectively. If the value of log K for the reaction at 500 K is 6, the value of $|\log k_b|$ at 250 K is

[K = equilibrium constant of the reaction

 k_f = rate constant of forward reaction

 k_b = rate constant of backward reaction]

Ans. (5)

Sol. For reaction $A(g) \rightleftharpoons P(g)$

$$\log k_f = \frac{-E_f}{2.303 \, \text{RT}} + \log A_f \, [\text{Arrhenius equation for forward reaction}]$$

From plot when,
$$\frac{1}{T} = 0.002$$
, $\log k_f = 9$

$$\Rightarrow 9 = \frac{-E_f}{2.303 \,\text{R}} (0.002) + \log (A_f)$$

Given :
$$A_f = 10^{15} \text{ s}^{-1}$$

$$\Rightarrow 9 = \frac{-E_f}{2.303 \,\text{R}} (0.002) + 15$$

$$\Rightarrow \frac{E_f}{2.303R} = \frac{6}{0.002} = 3000$$

Now,
$$K = \frac{k_f}{k_b} = \frac{A_f}{A_b} e^{-(E_f - E_b)/RT}$$

$$\log K = -\frac{1}{2.303} \frac{(E_f - E_b)}{RT} + \log \left(\frac{10^{15}}{10^{11}} \right)$$

At 500 K

$$\Rightarrow 6 = \frac{-(E_f - E_b)}{500R (2.303)} + 4$$

$$\Rightarrow$$
 (1000 R) (2.303) = $E_b - E_f$

$$\Rightarrow$$
 (1000 R) (2.303) = E_b - 3000 (2.303 R)

$$\Rightarrow$$
 E_b = 4000 R (2.303)

Now
$$k_b = A_b e^{-E_b/RT}$$

.....(1)

$$\Rightarrow log \; k_b = \frac{-E_b}{2.303\,RT} + log \; A_b$$

At 250 K

$$\Rightarrow \log k_b = -\frac{4000}{250} + \log (10^{11})$$
$$= -16 + 11 = -5$$

[From equation (1)]

$$|\log k_b| = 5$$

11. One mole of an ideal monoatomic gas undergoes two reversible processes $(A \rightarrow B \text{ and } B \rightarrow C)$ as shown in the given figure :

 $A \to B$ is an adiabatic process. If the total heat absorbed in the entire process $(A \to B \text{ and } B \to C)$ is RT_2 ln 10, the value of 2 log V_3 is _____.

[Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2} R$]

Ans. (7)

Sol. For
$$A \rightarrow B$$

$$600 V_1^{\gamma - 1} = 60 V_2^{\gamma - 1} \quad (\gamma = 5/3)$$

(Reversible adiabatic)

$$\Rightarrow$$
 600 $(V_1)^{2/3} = 60 (V_2)^{2/3}$

$$\Rightarrow 10 = \left(\frac{V_2}{V_1}\right)^{2/3}$$

$$\Rightarrow 10 = \left(\frac{V_2}{10}\right)^{2/3}$$

$$\Rightarrow$$
 V₂ = 10(10)^{3/2} = 10^{5/2}

Now, $q_{net} = RT_2 \ln 10 = 60 R \ln 10 = q_{AB} + q_{BC}$

$$\therefore q_{AB} = 0$$

$$\Rightarrow$$
 q_{BC} = 60 R ln 10 = 60 R ln $\frac{V_3}{V_2}$

[:: B \rightarrow C is reversible isothermal]

$$\Rightarrow$$
 60 R ln 10 = 60 R ln $\left(\frac{V_3}{10^{5/2}}\right)$

$$\Rightarrow \log 10 = \log V_3 - \frac{5}{2}$$

$$\Rightarrow \log V_3 = \frac{7}{2} \Rightarrow 2 \log V_3 = 7$$

12. In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure:

If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of x is _____.

[ΔG_1^{Θ} and ΔG_2^{Θ} are standard Gibb's free energy change for the reaction at temperatures T_1 and T_2 , respectively.]

Ans. (8)

Sol. At
$$T_1 K$$
: $A(g) \rightleftharpoons P(g)$

$$t = 0$$

$$t = \infty$$
 6 – x $x = 4$ (from plot)

$$\Rightarrow$$
 At T₁ K : K_{P₁} = $\frac{4}{2}$ = 2

At
$$T_2$$
 K: $A(g) \Longrightarrow P(g)$

$$t = 0$$

$$t = \infty$$
 $6 - y$ $y = 2$ (from plot)

$$\Rightarrow$$
 At T₂ K : K_{P2} = $\frac{2}{4} = \frac{1}{2}$

Now,
$$\Delta G_2^o = -RT_2 \ln K_{P_2} = -RT_2 \ln \frac{1}{2}$$

$$\Rightarrow \Delta G_2^o = RT_2 \ln 2$$

$$\Delta G_1^o = -RT_1 ln K_{P_1} = -RT_1 ln 2 = -2RT_2 ln 2$$

Given:
$$\Delta G_2^o - \Delta G_1^o = RT_2 \ln 2 + 2RT_2 \ln 2 = 3RT_2 \ln 2 = RT_2 \ln x$$

$$\Rightarrow x = 2^3 = 8$$

13. The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is ______.

$$NC \nearrow CN$$
 (i) LiAlH₄ (excess), then H₂O (ii) Acetophenone (excess) \triangleright **P**

Ans. (28)

Sol.

$$N \equiv C$$

$$C \equiv N$$

$$N \equiv C$$

$$C \equiv N$$

$$H_2N - CH_2$$

$$CH_2 - NH_2$$

$$CH_2 - NH_2$$

$$CH_3 - C - Ph$$

$$CH$$

Total number of sp^2 hybridised C-atom in P = 28

SECTION-4: (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has **TWO** lists: **List-I** and **List-II**.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

14. Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

T	•	4	T
	14		
	/ 1.	••	- 1

- (P) $P_2O_3 + 3H_2O \rightarrow$
- (Q) $P_4 + 3NaOH + 3H_2O \rightarrow$
- (R) $PCl_5 + CH_3COOH \rightarrow$
- (S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$
- (A) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$
- (C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$

List-II

- (1) P(O)(OCH₃)Cl₂
- (2) H_3PO_3
- (3) PH₃
- (4) POCl₃
- (5) H_3PO_4
- (B) $P \rightarrow 3$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$
- (D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$

Ans. (D)

Sol. (P) $P_2O_3 + 3H_2O \rightarrow 2H_3PO_3$

(Q) $P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$

(R) $PCl_5 + CH_3COOH \rightarrow CH_3COCl + POCl_3 + HCl$

(S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow 4Ag + 4HNO_3 + H_3PO_4$

15. Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 27]

List-I

- (P) $t_{2g}^{6}e_{g}^{0}$
- (Q) $t_{2g}^3 e_g^2$
- (R) $e^2t_2^3$
- (S) $t_{2g}^4 e_g^2$
- (A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$
- (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$

List-II

- (1) $[Fe(H_2O)_6]^{2+}$
- (2) $[Mn(H_2O)_6]^{2+}$
- (3) $\left[\text{Co}(\text{NH}_3)_6\right]^{3+}$
- (4) [FeCl₄]
- (5) $[CoCl_4]^{2-}$
- (B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$
- (D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$

Ans. (D)

Sol. 1.
$$[Fe(H_2O)_6]^{+2}$$

WFL

configuration
$$3d^{\frac{6}{2g}}e_{g}$$

$$t_{2g}^{\frac{4}{2}}e_{g}^{2}(S)$$

2.
$$[Mn(H_2O)_6]^{+2}$$

WFL

configuration
$$3d^{\frac{5}{2}}$$
 e_g $t_{2g}^{\frac{3}{2}}e_g^{\frac{2}{2}}(Q)$

configuration
$$3d^{\frac{6}{2g^{6}}}e_{g}^{0}(P)$$

4.
$$[\text{Fe Cl}_4]^{\Theta}$$
WFL

configuration
$$3d^{\frac{5}{2}}$$

$$e^{2}t_{2}^{3}(R)$$

configuration
$$3d^{\frac{7}{2}}$$

$$e^{4}t_{2}^{3} \text{ (None)}$$

16. Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

List-II

- $\begin{array}{ccc} \text{(P)} & \text{(-)-1-Bromo-2-ethylpentane} & \underline{\text{aq. NaOH}} \\ & \text{(single enantiomer)} & \overline{S_{N}2 \text{ reaction}} \end{array}$
- (1) Inversion of configuration
- (Q) (-)-2-Bromopentane aq. NaOH (single enantiomer) $\overline{S_N2}$ reaction
- (2) Retention of configuration
- (R) (-)-3-Bromo-3-methylhexane aq. $\frac{\text{NaOH}}{\text{S}_{\text{N}}1}$ reaction
- (3) Mixture of enantiomers

(4) Mixture of structural isomers

- (S)

 Me H Me Br

 (Single enantiomer)

 aq. NaOH

 S_N1 reaction
- (5) Mixture of diastereomers

(A)
$$P \rightarrow 1$$
; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 3$

(B)
$$P \rightarrow 2$$
; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$

(C)
$$P \rightarrow 1$$
; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$

(D)
$$P \rightarrow 2$$
; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 5$

Ans. (B)

Sol. $P \rightarrow 2$, $Q \rightarrow 1$, $R \rightarrow 3$, $S \rightarrow 5$

Retention of configuration

Inversion of configuration

(S) Diastereomeric mixture

Me

Ĥ

OH Me

The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-I List-II (P) Etard reaction (1) Zn-Hg, HCl Acetophenone -(i) KMn O_4 ,KOH, Δ Gattermann reaction (2) Toluene -(ii) SOCl₂ Gattermann-Koch reaction (R) (3) CH₃Cl Benzeneanhyd. AlCl₃ NaNO₂/HCl **(S)** Rosenmund reduction (4) Aniline -273-278 K (5) Zn, Δ Phenol-(A) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$ (B) $P \rightarrow 1$; $Q \rightarrow 3$; $R \rightarrow 5$; $S \rightarrow 2$ (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$ (D) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$ Ans. (D) Sol. $P \rightarrow 3$, $Q \rightarrow 4$, $R \rightarrow 5$, $S \rightarrow 2$ Acetophenone - C1 **CHO** (ii)

