FINAL JEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04 ${ }^{\text {th }}$ June, 2023)

PAPER-1

TEST PAPER WITH SOLUTION
MATHEMATICS
SECTION-1 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks $\quad:+2$ If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks.

1. Let $S=(0,1) \cup(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is(are) true ?
(A) There are infinitely many functions from S to T
(B) There are infinitely many strictly increasing functions from S to T
(C) The number of continuous functions from S to T is at most 120
(D) Every continuous function from S to T is differentiable

Ans. (ACD)

Sol. $\mathrm{S}=(0,1) \cup(1,2) \cup(3,4)$
$\mathrm{T}=\{0,1,2,3\}$
Number of functions:
Each element of S have 4 choice
Let n be the number of element in set S.
Number of function $=4^{\text {n }}$
Here $\mathrm{n} \rightarrow \infty$
\Rightarrow Option (A) is correct.
Option (B) is incorrect (obvious)
(C)

For continuous function
Each interval will have 4 choices.
\Rightarrow Number of continuous functions
$=4 \times 4 \times 4=64$
\Rightarrow Option (C) is correct.
(D) Every continuous function is piecewise constant functions
\Rightarrow Differentiable.
Option (D) is correct.
2. Let T_{1} and T_{2} be two distinct common tangents to the ellipse $E: \frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ and the parabola $P: y^{2}=12 x$. Suppose that the tangent T_{1} touches P and E at the point A_{1} and A_{2}, respectively and the tangent T_{2} touches P and E at the points A_{4} and A_{3}, respectively. Then which of the following statements is(are) true?
(A) The area of the quadrilateral $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$ is 35 square units
(B) The area of the quadrilateral $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$ is 36 square units
(C) The tangents T_{1} and T_{2} meet the x -axis at the point $(-3,0)$
(D) The tangents T_{1} and T_{2} meet the x -axis at the point $(-6,0)$

Ans. (AC)

Sol.

$y=m x+\frac{3}{m}$
$C^{2}=a^{2} m^{2}+b^{2}$
$\frac{9}{\mathrm{~m}^{2}}=6 \mathrm{~m}^{2}+3 \quad \Rightarrow \mathrm{~m}^{2}=1$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$
$y=x+3, y=-x-3$
Cuts x -axis at $(-3,0)$
$\mathrm{A}_{1}(3,6) \quad \mathrm{A}_{4}(3,-6)$
$\mathrm{A}_{2}(-2,1) \quad \mathrm{A}_{3}(-2,-1)$
$\mathrm{A}_{1} \mathrm{~A}_{4}=12, \quad \mathrm{~A}_{2} \mathrm{~A}_{3}=2, \quad \mathrm{MN}=5$
Area $=\frac{1}{2}(12+2) \times 5=35$ sq. unit
Ans. (A, C)
3. Let $\mathrm{f}:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^{3}}{3}-x^{2}+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$. Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S$: $\mathrm{y}<\mathrm{f}(\mathrm{x})\}$ be called the red region. Let $\mathrm{L}_{\mathrm{h}}=\{(\mathrm{x}, \mathrm{h}) \in \mathrm{S}: \mathrm{x} \in[0,1]\}$ be the horizontal line drawn at a height $\mathrm{h} \in[0,1]$. Then which of the following statements is(are) ture?
(A) There exists an $\mathrm{h} \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_{h} equals the area of the green region below the line L_{h}
(B) There exists an $\mathrm{h} \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_{h} equals the area of the red region below the line L_{h}
(C) There exists an $\mathrm{h} \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_{h} equals the area of the red region below the line L_{h}
(D) There exists an $\mathrm{h} \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_{h} equals the area of the green region below the line L_{h}
Ans. (BCD)

Sol. $f(x)=\frac{x^{3}}{3}-x^{2}+\frac{5 x}{9}+\frac{17}{36}$
$f^{\prime}(x)=x^{2}-2 x+\frac{5}{9}$
$\mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}=\frac{1}{3}$ in $[0,1]$
$A_{R}=$ Area of Red region
$\mathrm{A}_{\mathrm{G}}=$ Area of Green region
$A_{R}=\int_{0}^{1} f(x) d x=\frac{1}{2}$
Total area $=1$
$\Rightarrow \mathrm{A}_{\mathrm{G}}=\frac{1}{2}$
$\int_{0}^{1} f(x) d x=\frac{1}{2}$
$\mathrm{A}_{\mathrm{G}}=\mathrm{A}_{\mathrm{R}}$
$\mathrm{f}(0)=\frac{17}{36}$
$f(1)=\frac{13}{36} \approx 0.36$
$\mathrm{f}\left(\frac{1}{3}\right)=\frac{181}{324} \approx 0.558$

(A) Correct when $\mathrm{h}=\frac{3}{4}$ but $\mathrm{h} \in\left[\frac{1}{4}, \frac{2}{3}\right]$
$\Rightarrow(\mathrm{A})$ is incorrect
(B) Correct when $\mathrm{h}=\frac{1}{4}$
$\Rightarrow(\mathrm{B})$ is correct
(C) When $\mathrm{h}=\frac{181}{324}, \mathrm{~A}_{\mathrm{R}}=\frac{1}{2}, \mathrm{~A}_{\mathrm{G}}<\frac{1}{2}$

$$
\mathrm{h}=\frac{13}{36}, \mathrm{~A}_{\mathrm{R}}<\frac{1}{2}, \mathrm{~A}_{\mathrm{G}}=\frac{1}{2}
$$

$\Rightarrow \mathrm{A}_{\mathrm{R}}=\mathrm{A}_{\mathrm{G}}$ for some $\mathrm{h} \in\left(\frac{13}{36}, \frac{181}{324}\right)$
$\Rightarrow(\mathrm{C})$ is correct
(D) Option (D) is remaining coloured part of option (C), hence option (D) is also correct.

SECTION-2 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct option is chosen;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $:-1$ In all other cases.
4. Let $f:(0,1) \rightarrow \mathbb{R}$ be the functions defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in N$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int_{x^{2}}^{x} \sqrt{\frac{1-\mathrm{t}}{\mathrm{t}}} \mathrm{dt}<\mathrm{g}(\mathrm{x})<2 \sqrt{\mathrm{x}}$ for all $\mathrm{x} \in(0,1)$. Then $\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
(A) does NOT exist
(B) is equal to 1
(C) is equal to 2
(D) is equal to 3

Ans. (C)
Sol. $\int_{\mathrm{x}^{2}}^{\mathrm{x}} \sqrt{\frac{1-\mathrm{t}}{\mathrm{t}}} \mathrm{dt} . \sqrt{\mathrm{n}} \leq \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \leq 2 \sqrt{\mathrm{x}} \sqrt{\mathrm{n}}$
$\because \int_{x^{2}}^{\mathrm{x}} \sqrt{\frac{1-\mathrm{t}}{\mathrm{t}}} \mathrm{dt}=\sin ^{-1} \sqrt{\mathrm{x}}+\sqrt{\mathrm{x}} \sqrt{1-\mathrm{x}}-\sin ^{-1} \mathrm{x}-\mathrm{x} \sqrt{1-\mathrm{x}^{2}}$
$\Rightarrow \lim _{x \rightarrow 0}\left(\frac{\sin ^{-1} \sqrt{x}+\sqrt{x} \sqrt{1-x}-\sin ^{-1} x-x \sqrt{1-x^{2}}}{\sqrt{x}} \leq f(x) g(x) \leq \frac{2 \sqrt{x}}{\sqrt{x}}\right)$
$\Rightarrow 2 \leq \lim _{x \rightarrow 0} f(x) g(x) \leq 2$
$\Rightarrow \lim _{x \rightarrow 0} f(x) g(x)=2$
5. Let Q be the cube with the set of vertices $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}, x_{2}, x_{3}\{0,1\}\right\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q . Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices $(0,0,0)$ and $(1,1,1)$ is in S . For lines ℓ_{1} and ℓ_{2}, let $\mathrm{d}\left(\ell_{1}, \ell_{2}\right)$ denote the shortest distance between them. Then the maximum value of $\mathrm{d}\left(\ell_{1}, \ell_{2}\right)$, as ℓ_{1} varies over F and ℓ_{2} varies over S , is
(A) $\frac{1}{\sqrt{6}}$
(B) $\frac{1}{\sqrt{8}}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{\sqrt{12}}$

Ans. (A)

Sol.

DR'S of $\mathrm{OG}=1,1,1$
DR'S of $\mathrm{AF}=-1,1,1$
DR'S of $\mathrm{CE}=1,1,-1$
DR'S of $\mathrm{BD}=1,-1,1$
Equation of $\mathrm{OG} \Rightarrow \frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{1}=\frac{\mathrm{z}}{1}$
Equation of $\mathrm{AB} \Rightarrow \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{0}$
Normal to both the line's
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right|=\hat{i}+\hat{j}-2 \hat{k}$
$\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}$
S.D. $=\frac{|\hat{i} \cdot(\hat{i}+\hat{j}-2 \hat{k})|}{|\hat{i}+\hat{j}-2 \hat{k}|}=\frac{1}{\sqrt{6}}$

Ans. (A)
6. Let $X=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: \frac{x^{2}}{8}+\frac{y^{2}}{20}<1\right.$ and $\left.y^{2}<5 x\right\}$. Three distinct points P, Q and R are randomly chosen from X . Then the probability that P, Q and R form a triangle whose area is a positive integer, is
(A) $\frac{71}{220}$
(B) $\frac{73}{220}$
(C) $\frac{79}{220}$
(D) $\frac{83}{220}$

Ans. (B)

Sol. $\frac{x^{2}}{8}+\frac{y^{2}}{20}<1 \& y^{2}<5 x$
Solving corresponding equations
$\frac{x^{2}}{8}+\frac{y^{2}}{20}=1 \& y^{2}=5 x$
$\Rightarrow\left\{\begin{array}{l}x=2 \\ y= \pm \sqrt{10}\end{array}\right\}$
$\mathrm{X}=\{(1,1),(1,0),(1,-1),(1,2),(1,-2),(2,3),(2,2),(2,1),(2,0),(2,-1),(2,-2),(2,-3)\}$

Let S be the sample space \& E be the event $n(S)={ }^{12} C_{3}$

For E

Selecting 3 points in which 2 points are either or $x=1 \& x=2$ but distance b / w then is even
Triangles with base 2 :
$=3 \times 7+5 \times 5=46$
Triangles with base 4 :
$=1 \times 7+3 \times 5=22$
Triangles with base 6 :
$=1 \times 5=5$
$\mathrm{P}(\mathrm{E})=\frac{46+22+5}{{ }^{12} \mathrm{C}_{3}}=\frac{73}{220}$
Ans. (B)
7. Let P be a point on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, where $\mathrm{a}>0$. The normal to the parabola at P meets the x -axis at a point Q . The area of the triangle PFQ, where F is the focus of the parabola, is 120 . If the slope m of the normal and a are both positive integers, then the pair (a, m) is
(A) $(2,3)$
(B) $(1,3)$
(C) $(2,4)$
(D) $(3,4)$

Ans. (A)

éSaral

Sol. Let point $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$
normal at P is $y=-t x+2 a t+a t^{3}$
$y=0, x=2 a+a t^{2}$ $\mathrm{Q}\left(2 \mathrm{a}+\mathrm{at}^{2}, 0\right)$

Area of $\triangle \mathrm{PFQ}=\left|\frac{1}{2}\left(\mathrm{a}+\mathrm{at}{ }^{2}\right)(2 \mathrm{at})\right|=120$
$\because \mathrm{m}=-\mathrm{t}$
$\because a^{2}\left[1+\mathrm{m}^{2}\right] \mathrm{m}=120$
$(a, m)=(2,3)$ will satisfy

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY If the correct integer is entered;
Zero Marks : 0 In all other cases.
8. Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation
$\sqrt{1+\cos (2 \mathrm{x})}=\sqrt{2} \tan ^{-1}(\tan \mathrm{x})$ in the $\operatorname{set}\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to
Ans. (3)
Sol. $\sqrt{2}|\cos x|=\sqrt{2} \cdot \tan ^{-1}(\tan x)$
$|\cos \mathrm{x}|=\tan ^{-1} \tan \mathrm{x}$

No. of solutions $=3$
9. Let $\mathrm{n} \geq 2$ be a natural number and $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
\mathrm{f}(\mathrm{x})= \begin{cases}\mathrm{n}(1-2 \mathrm{nx}) & \text { if } 0 \leq \mathrm{x} \leq \frac{1}{2 \mathrm{n}} \\ 2 \mathrm{n}(2 \mathrm{nx}-1) & \text { if } \frac{1}{2 \mathrm{n}} \leq \mathrm{x} \leq \frac{3}{4 n} \\ 4 \mathrm{n}(1-\mathrm{nx}) & \text { if } \frac{3}{4 \mathrm{n}} \leq \mathrm{x} \leq \frac{1}{\mathrm{n}} \\ \frac{\mathrm{n}}{\mathrm{n}-1}(\mathrm{nx}-1) & \text { if } \frac{1}{\mathrm{n}} \leq \mathrm{x} \leq 1\end{cases}
$$

If n is such that the area of the region bounded by the curves $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0$ and $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is 4 , then the maximum value of the function f is
Ans. (8)

Sol.

Area $=$ Area of $(\mathrm{I}+\mathrm{II}+\mathrm{III})=4$
$=\frac{1}{2} \times \frac{1}{2 n} \times \mathrm{n}+\frac{1}{2} \times \frac{1}{2 \mathrm{n}} \times \mathrm{n}+\frac{1}{2}\left(1-\frac{1}{\mathrm{n}}\right) \times \mathrm{n}$
$=\frac{1}{4}+\frac{1}{4}+\frac{\mathrm{n}-1}{2}=4$
$\mathrm{n}=8$
\therefore maximum value of $\mathrm{f}(\mathrm{x})=8$
10. Let $75 \ldots 57$ denote the $(r+2)$ digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum $S=77+757+7557+\ldots+75 \ldots 57$. If $S=\frac{75 \ldots . .57+m}{n}$, where m and n are natural numbers less than 3000 , then the value of $\mathrm{m}+\mathrm{n}$ is
Ans. (1219)
Sol. $S=77+757+7557+\ldots+75 \ldots . . .57$
$10 S=\quad 770+7570+\ldots+75 \ldots 570+755 \ldots . .570$

$$
\begin{aligned}
9 \mathrm{~S} & =-77+\underbrace{13+13+\ldots \ldots+13}_{98 \text { times }}+\underset{98}{75 \ldots .570} \\
& =-77+13 \times 98+\underset{99}{75 \ldots .57+13}
\end{aligned}
$$

$\mathrm{S}=\frac{\begin{array}{c}75 \ldots . .57+1210 \\ 99\end{array}}{9}$
$\mathrm{m}=1210$
$\mathrm{n}=9$
$\mathrm{m}+\mathrm{n}=1219$
11. Let $A=\left\{\frac{1967+1686 \mathrm{i} \sin \theta}{7-3 \mathrm{i} \cos \theta}: \theta \in \mathbb{R}\right\}$. If A contains exactly one positive integer n, then the value of n is
Ans. (281)
Sol. $\mathrm{A}=\frac{1967+1686 \mathrm{i} \sin \theta}{7-3 \mathrm{i} \cos \theta}$

$$
\begin{aligned}
& =\frac{281(7+6 i \sin \theta)}{7-3 i \cos \theta} \times \frac{7+3 i \cos \theta}{7+3 i \cos \theta} \\
& =\frac{281(49-18 \sin \theta \cos \theta+i(21 \cos \theta+42 \sin \theta))}{49+9 \cos ^{2} \theta}
\end{aligned}
$$

for positive integer
$\operatorname{Im}(\mathrm{A})=0$
$21 \cos \theta+42 \sin \theta=0$
$\tan \theta=\frac{-1}{2} ; \sin 2 \theta=\frac{-4}{5}, \cos ^{2} \theta=\frac{4}{5}$
$\operatorname{Re}(\mathrm{A})=\frac{281(49-9 \sin 2 \theta)}{49+9 \cos ^{2} \theta}$
$=\frac{281\left(49-9 \times \frac{-4}{5}\right)}{49+9 \times \frac{4}{5}}=281$ (+ve integer)
12. Let P be the plane $\sqrt{3} x+2 y+3 z=16$ and let
$\mathrm{S}=\left\{\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}: \alpha^{2}+\beta^{2}+\gamma^{2}=1\right.$ and the distance of (α, β, γ) from the plane Pis $\left.\frac{7}{2}\right\}$.
Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ be three distinct vectors in S such that $|\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}|=|\overrightarrow{\mathrm{w}}-\overrightarrow{\mathrm{u}}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u}, \vec{v} and \vec{w}. Then the value of $\frac{80}{\sqrt{3}} V$ is
Ans. (45)
Sol.

Given $|\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}|=|\overrightarrow{\mathrm{w}}-\overrightarrow{\mathrm{u}}|$
$\Rightarrow \Delta \mathrm{UVW}$ is an equilateral Δ

ebSaral

Now distances of $\mathrm{U}, \mathrm{V}, \mathrm{W}$ from $\mathrm{P}=\frac{7}{2}$
$\Rightarrow \mathrm{PQ}=\frac{7}{2}$
Also, Distance of plane P from origin
$\Rightarrow \mathrm{OQ}=4$
$\therefore \mathrm{OP}=\mathrm{OQ}-\mathrm{PQ} \Rightarrow \mathrm{OP}=\frac{1}{2}$
Hence, $\mathrm{PU}=\sqrt{\mathrm{OU}^{2}-\mathrm{OP}^{2}} \Rightarrow \mathrm{PU}=\frac{\sqrt{3}}{2}=\mathrm{R}$
Also, for $\triangle \mathrm{UVW}, \mathrm{P}$ is circumcenter
\therefore for $\triangle \mathrm{UVW}: \mathrm{US}=\mathrm{R} \cos 30^{\circ}$
$\Rightarrow \mathrm{UV}=2 \mathrm{R} \cos 30^{\circ}$
$\Rightarrow \mathrm{UV}=\frac{3}{2}$

$\therefore \operatorname{Ar}(\Delta \mathrm{UVW})=\frac{\sqrt{3}}{4}\left(\frac{3}{2}\right)^{2}=\frac{9 \sqrt{3}}{16}$
\therefore Volume of tetrahedron with coterminous edges $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}$
$=\frac{1}{3}(\mathrm{Ar} . \Delta \mathrm{UVW}) \times \mathrm{OP}=\frac{1}{3} \times \frac{9 \sqrt{3}}{16} \times \frac{1}{2}=\frac{3 \sqrt{3}}{32}$
\therefore parallelopiped with coterminous edges
$\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}=6 \times \frac{3 \sqrt{3}}{32}=\frac{9 \sqrt{3}}{16}=\mathrm{V}$
$\therefore \frac{80}{\sqrt{3}} \mathrm{~V}=45$

ebSaral

13. Let a and b be two nonzero real numbers. If the coefficient of x^{5} in the expansion of $\left(a x^{2}+\frac{70}{27 b x}\right)^{4}$ is equal to the coefficient of x^{-5} is equal to the coefficient of $\left(a x-\frac{1}{b x^{2}}\right)^{7}$, then the value of $2 b$ is
Ans. (3)
Sol. $\mathrm{T}_{\mathrm{r}+1}={ }^{4} \mathrm{C}_{\mathrm{r}}\left(\mathrm{a} \cdot \mathrm{x}^{2}\right)^{4-\mathrm{r}} \cdot\left(\frac{70}{27 \mathrm{bx}}\right)^{\mathrm{r}}$
$={ }^{4} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{a}^{4-\mathrm{r}} \cdot \frac{70^{\mathrm{r}}}{(27 \mathrm{~b})^{\mathrm{r}}} \cdot \mathrm{x}^{8-3 \mathrm{r}}$
here $8-3 r=5$
$8-5=3 r \Rightarrow r=1$
\therefore coeff. $=4 . \mathrm{a}^{3} \cdot \frac{70}{27 \mathrm{~b}}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{7} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{7-\mathrm{r}}\left(\frac{-1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$
$={ }^{7} C_{r} \cdot a^{7-r}\left(\frac{-1}{b}\right)^{r} \cdot x^{7-3 r}$
$7-3 r=-5 \Rightarrow 12=3 r \Rightarrow r=4$
coeff. : ${ }^{7} \mathrm{C}_{4} \cdot \mathrm{a}^{3} \cdot\left(\frac{-1}{\mathrm{~b}}\right)^{4}=\frac{35 \mathrm{a}^{3}}{\mathrm{~b}^{4}}$
now $\frac{35 \mathrm{a}^{3}}{\mathrm{~b}^{4}}=\frac{280 \mathrm{a}^{3}}{27 \mathrm{~b}}$
$\mathrm{b}^{3}=\frac{35 \times 27}{280}=\mathrm{b}=\frac{3}{2} \Rightarrow 2 \mathrm{~b}=3$

SECTION-4 : (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists : List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $:-1$ In all other cases.
14. Let α, β and γ be real numbers. consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List - I to the correct entries in List-II

List-I

(P) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has
(Q) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has
(R) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has
(S) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$,
(4) $x=11, y=-2$ and $z=0$ as a solution then the system has

$$
\text { (5) } x=-15, y=4 \text { and } z=0 \text { as a solution }
$$

The correct option is :
(A) $(\mathrm{P}) \rightarrow(3)(\mathrm{Q}) \rightarrow(2)(\mathrm{R}) \rightarrow(1)(\mathrm{S}) \rightarrow(4)$
$(\mathrm{B})(\mathrm{P}) \rightarrow(3)(\mathrm{Q}) \rightarrow(2)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$
(C) $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(4)(\mathrm{S}) \rightarrow(5)$
$(\mathrm{D})(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(1)(\mathrm{S}) \rightarrow(3)$
Ans. (A)

Sol. Given $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Now, $\Delta=\left|\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta\end{array}\right|=7 \alpha-2 \beta-3$
\therefore if $\beta=\frac{1}{2}(7 \alpha-3)$
$\Rightarrow \Delta=0$
Now, $\Delta_{x}=\left|\begin{array}{ccc}7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta\end{array}\right|$
$=21 \alpha-22 \beta+2 \alpha \gamma-33$
\therefore if $\gamma=28$
$\Rightarrow \Delta_{\mathrm{x}}=0$
$\Delta_{y}=\left|\begin{array}{ccc}1 & 7 & 1 \\ 1 & 11 & \alpha \\ 2 & \gamma & \beta\end{array}\right|$
$\Delta_{y}=4 \beta+14 \alpha-\alpha \gamma+\gamma-22$
\therefore if $\gamma=28$
$\Rightarrow \Delta_{\mathrm{y}}=0$
Now, $\Delta_{z}=\left|\begin{array}{ccc}1 & 2 & 7 \\ 1 & 0 & 11 \\ 2 & -3 & \gamma\end{array}\right|=56-2 \gamma$
If $\gamma=28$
$\Rightarrow \Delta_{\mathrm{z}}=0$
\therefore if $\gamma=28$ and $\beta=\frac{1}{2}(7 \alpha-3)$
\Rightarrow system has infinite solution
and if $\gamma \neq 28$
\Rightarrow system has no solution
$\Rightarrow \mathrm{P} \rightarrow$ (3) ; $\mathrm{Q} \rightarrow$ (2)
Now if $\beta \neq \frac{1}{2}(7 \alpha-3)$
$\Rightarrow \Delta \neq 0$
and for $\alpha=1$ clearly
$\mathrm{y}=-2$ is always be the solution
\therefore if $\gamma \neq 28$
System has a unique solution
if $\gamma=28$
$\Rightarrow \mathrm{x}=11, \mathrm{y}=-2$ and $\mathrm{z}=0$ will be one of the solution
$\therefore \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
\therefore option 'A' is correct
15. Consider the given data with frequency distribution

x_{i}	3	8	11	10	5	4
f_{i}	5	2	3	2	4	4

Match each entry in List-I to the correct entries in List-II.

List-I

(P) The mean of the above data is
(Q) The median of the above data is
(R) The mean deviation about the mean of the above data is
(S) The mean deviation about the median of the above data is

List-II

(1) 2.5
(2) 5
(3) 6
(4) 2.7
(5) 2.4

The correct option is :
$(\mathrm{A})(\mathrm{P}) \rightarrow(3)(\mathrm{Q}) \rightarrow(2)(\mathrm{R}) \rightarrow(4)(\mathrm{S}) \rightarrow(5)$
$(\mathrm{B})(\mathrm{P}) \rightarrow(3)(\mathrm{Q}) \rightarrow(2)(\mathrm{R}) \rightarrow(1)(\mathrm{S}) \rightarrow(5)$
(C) (P) $\rightarrow(2)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(4)(\mathrm{S}) \rightarrow(1)$
(D) $(\mathrm{P}) \rightarrow(3)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(5)$

Ans. (A)
$\begin{array}{llllllll}\text { Sol. } & x_{i} & 3 & 4 & 5 & 8 & 10 & 11\end{array}$

f_{i}	5	4	4	2	2	3

(P) Mean
(Q) Median
(R) Mean deviation about mean
(S) Mean deviation about median

x_{i}	f_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$	C.F.	$\mid \mathrm{x}_{\mathrm{i}}-$ Mean \mid	$\mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Mean \mid	$\mid \mathrm{x}_{\mathrm{i}}-$ Median \mid	$\mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Median \mid
3	5	15	5	3	15	2	10
4	4	16	9	2	8	1	4
5	4	20	13	1	4	0	0
8	2	16	15	2	4	3	6
10	2	20	17	4	8	5	10
11	3	33	20	5	15	6	18
	$\Sigma \mathrm{f}_{\mathrm{i}}=20$	$\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=120$			$\Sigma \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Mean $\mid=54$		$\Sigma \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Median $\mid=48$

(P) Mean $=\frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{120}{20}=6$
(Q) Median $=\left(\frac{20}{2}\right)^{\text {th }}$ observation $=10^{\text {th }}$ observation $=5$
(R) Mean deviation about mean $=\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-\text { Mean } \mid}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{54}{20}=2.70$
(S) mean deviation about median $=\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-\text { Median } \mid}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{48}{20}=2.40$
16. Let ℓ_{1} and ℓ_{2} be the lines $\vec{r}_{1}=\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}_{2}=(\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+\hat{\mathrm{k}})$, respectively. Let X be the set of all the planes H that contain the line ℓ_{1}. For a plane H, let $d(H)$ denote the smallest possible distance between the points of ℓ_{2} and H. Let H_{0} be plane in X for which $d\left(H_{0}\right)$ is the maximum value of $d(H)$ as H varies over all planes in X .
Match each entry in List-I to the correct entries in List-II.

List-I

(P) The value of $d\left(\mathrm{H}_{0}\right)$ is
(Q) The distance of the point $(0,1,2)$ from H_{0} is
(R) The distance of origin from H_{0} is
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and H_{0} is

List-II

(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 0
(4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is :
(A) (P) $\rightarrow(2)(\mathrm{Q}) \rightarrow(4)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(1)$
(B) $(\mathrm{P}) \rightarrow(5)(\mathrm{Q}) \rightarrow(4)(\mathrm{R}) \rightarrow(3)(\mathrm{S}) \rightarrow(1)$
(C) $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(3)(\mathrm{S}) \rightarrow(2)$
(D) $(\mathrm{P}) \rightarrow(5)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(4)(\mathrm{S}) \rightarrow(2)$

Ans. (B)
Ans. ()
Sol. $L_{1}: \vec{r}_{1}=\lambda(\hat{i}+\hat{j}+\hat{k})$
$L_{2}: \vec{r}_{2}=\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mu(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
Let system of planes are
$a x+b y+c z=0$
\because It contain L_{1}
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
For largest possible distance between plane (1) and L_{2} the line L_{2} must be parallel to plane (1)
$\therefore \mathrm{a}+\mathrm{c}=0$
$\Rightarrow \mathrm{b}=0$
\therefore Plane $\mathrm{H}_{0}: \mathrm{x}-\mathrm{z}=0$

Now $\mathrm{d}\left(\mathrm{H}_{0}\right)=\perp$ distance from point $(0,1,-1)$ on L_{2} to plane.
$\Rightarrow \mathrm{d}\left(\mathrm{H}_{0}\right)=\left|\frac{0+1}{\sqrt{2}}\right|=\frac{1}{\sqrt{2}}$
$\therefore \mathrm{P} \rightarrow 5$
for 'Q' distance $=\left|\frac{2}{\sqrt{2}}\right|=\sqrt{2}$
$\therefore \mathrm{Q} \rightarrow 4$
$\therefore(0,0,0)$ lies on plane
$\therefore \mathrm{R} \rightarrow 3$
for ' $\mathrm{S}^{\prime} \mathrm{x}=\mathrm{z} ; \mathrm{y}=\mathrm{z} ; \mathrm{x}=1$
\therefore point of intersection $\mathrm{p}(1,1,1)$.
$\therefore \mathrm{OP}=\sqrt{1+1+1}=\sqrt{3}$
$\therefore \mathrm{S} \rightarrow 2$
\therefore option [B] is correct
17. Let z be complex number satisfying $|z|^{3}+2 z^{2}+4 \bar{z}-8=0$, where \bar{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero.
Match each entry in List-I to the correct entries in List-II.

List-I

(P) $|z|^{2}$ is equal to
(Q) $|z-\bar{z}|^{2}$ is equal to
(R) $|z|^{2}+|z+\bar{z}|^{2}$ is equal to
(S) $|\mathrm{z}+1|^{2}$ is equal to
(4) 10
(5) 7

The correct option is :
(A) (P) $\rightarrow(1)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$
$(\mathrm{B})(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(3)(\mathrm{S}) \rightarrow(5)$
(C) $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(4)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(1)$
$(\mathrm{D})(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$

Ans. (B)

Sol. $\because|z|^{3}+2 z^{2}+4 \bar{z}-8=0$
Take conjugate both sides
$\Rightarrow|z|^{3}+2 \bar{z}^{2}+4 z-8=0$
By (1) - (2)
$\Rightarrow 2\left(\mathrm{z}^{2}-\overline{\mathrm{z}}^{2}\right)+4(\overline{\mathrm{z}}-\mathrm{z})=0$
$\Rightarrow \mathrm{z}+\overline{\mathrm{z}}=2$
$\Rightarrow|z+\bar{z}|=2$
Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\therefore \mathrm{x}=1$
$\therefore \mathrm{z}=1+\mathrm{iy}$

Put in (1)
$\Rightarrow\left(1+y^{2}\right)^{3 / 2}+2\left(1-y^{2}+2 \mathrm{iy}\right)+4(1-\mathrm{iy})-8=0$
$\Rightarrow\left(1+y^{2}\right)^{3 / 2}=2\left(1+y^{2}\right)$
$\Rightarrow \sqrt{1+\mathrm{y}^{2}}=2=|\mathrm{z}|$
Also $y= \pm \sqrt{3}$
$\therefore \mathrm{z}=1 \pm \mathrm{i} \sqrt{3}$
$\Rightarrow \mathrm{z}-\overline{\mathrm{z}}= \pm 2 \mathrm{i} \sqrt{3}$
$\Rightarrow|z-\bar{z}|=2 \sqrt{3}$
$\Rightarrow|\mathrm{z}-\overline{\mathrm{z}}|^{2}=12$
Now $z+1=2+i \sqrt{3}$
$|z+1|^{2}=4+3=7$
$\therefore \mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
\therefore Option [B] is correct.

