FINAL JEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04 ${ }^{\text {th }}$ June, 2023)

PAPER-1

TEST PAPER WITH SOLUTION
PHYSICS

SECTION-1 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : + 3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks $\quad:+1$ If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks.

1. A slide with a frictionless curved surface, which becomes horizontal at its lower end,, is fixed on the terrace of a building of height $3 h$ from the ground, as shown in the figure. A spherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_{0}=u_{0} \hat{x}$ and falls on the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity $\overrightarrow{\mathrm{v}}$ and reaches a maximum height h_{1}. The acceleration due to gravity is g and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement(s) is(are) correct?

(A) $\vec{u}_{0}=\sqrt{2 g h} \hat{x}$
(B) $\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$
(C) $\theta=60^{\circ}$
(D) $d / h_{1}=2 \sqrt{3}$

Ans. (A,C,D)

$\overrightarrow{\mathrm{v}}_{1}=\sqrt{2 \mathrm{gh}} \hat{\mathrm{i}}-\sqrt{2 \mathrm{~g} 3 \mathrm{~h}} \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{v}}=\sqrt{2 \mathrm{gh}} \hat{\mathrm{i}}+\sqrt{2 \mathrm{~g} 3 \mathrm{~h}} \times \frac{1}{\sqrt{3}} \hat{\mathrm{k}}$
$=\sqrt{2 \mathrm{gh}} \hat{\mathrm{i}}+\sqrt{2 \mathrm{gh}} \hat{\mathrm{k}}$
$\tan \theta=\frac{\sqrt{2 \mathrm{~g} 3 \mathrm{~h}}}{\sqrt{2 \mathrm{gh}}}=\sqrt{3} \quad \theta=60^{\circ}$
$\mathrm{h}_{1}=\frac{\mathrm{v}_{1 \mathrm{y}}^{2}}{2 \mathrm{~g}}=\frac{2 \mathrm{gh}}{2 \mathrm{~g}}=\mathrm{h}$
$\mathrm{d}=\mathrm{v}_{\mathrm{x}} \mathrm{t}=\sqrt{2 \mathrm{gh}} \times \sqrt{\frac{2 \times 3 \mathrm{~h}}{\mathrm{~g}}}$
$=\sqrt{2 \mathrm{gh}} \sqrt{\frac{6 \mathrm{~h}}{\mathrm{~g}}}=2 \sqrt{3 \mathrm{~h}}$
$=\frac{\mathrm{d}}{\mathrm{h}_{1}}=2 \sqrt{3}$
2. A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta=60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{\text {min }}=30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?

Figure-1

Figure-2
(A) The blue light is polarized in the plane of incidence.
(B) The angle of the prism is 45°.
(C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
(D) The angle of refraction for blue light in air at the exit plane of the prism is 60°.

Ans. (A,C,D)

Sol.

$\tan \theta_{\mathrm{B}}=\mu_{\mathrm{B}}=\sqrt{3}$
$i=\theta_{B}=60^{\circ}$
$1 \sin 60^{\circ}=\sqrt{3} \sin r_{1}$
$\mathrm{r}_{1}=30^{\circ}$
$\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{A}$
$\delta=(\mathrm{i}+\mathrm{e})-\mathrm{A}$
$60^{\circ}=60^{\circ}+\mathrm{e}-\mathrm{A}$
$\mathrm{e}=\mathrm{A}$
$\sqrt{3} \sin \mathrm{r}_{2}=1 \sin \mathrm{e}$
$\sqrt{3} \sin (\mathrm{~A}-30)=\sin \mathrm{A}$
Solving
$\mathrm{A}=60^{\circ}$
$\therefore \mathrm{e}=60^{\circ}$
For red light
$\mu=\frac{\sin \left(\frac{A+\delta_{\text {min }}}{2}\right)}{\sin \frac{A}{2}}=\sqrt{2}$
3. In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1Ω resistor. The key is closed at time $t=t_{0}$. Which of the following statement(s) is(are) correct?
[Given: $\left.\mathrm{e}^{-1}=0.36\right]$

(A) The value of the resistance R is 3Ω.
(B) For $t<t_{0}$, the value of current I_{1} is 2 A .
(C) At $t=t_{0}+7.2 \mu \mathrm{~s}$, the current in the capacitor is 0.6 A .
(D) For $t \rightarrow \infty$, the charge on the capacitor is $12 \mu C$.

Ans. (A,B,C,D)

Sol.

By writing voltage drop across 1Ω
$\Rightarrow 0+5+1 \times 1=\mathrm{V}$

$$
V=6
$$

\Rightarrow Similarly across R
$0+15-\mathrm{I} \times \mathrm{R}=6$
$\mathrm{IR}=9$
$\Rightarrow \operatorname{across} 3 \Omega$

$$
\begin{aligned}
& 6-3 \mathrm{I}_{1}=0 \\
& \mathrm{I}_{1}=2 \mathrm{~A}
\end{aligned}
$$

Hence option (B) is correct
$\Rightarrow \mathrm{I}=1+2 \quad$ (by KCL)

$$
\mathrm{I}=3
$$

$$
\mathrm{IR}=9
$$

$$
\mathrm{R}=3 \Omega
$$

Option (A) is correct

$\varepsilon=\frac{\frac{15}{3}+\frac{5}{1}+\frac{0}{3}}{\frac{1}{3}+\frac{1}{1}+\frac{1}{3}}=10 \times \frac{3}{5}=6 \mathrm{~V}$
$\mathrm{q}_{\max }=2 \times 6=12 \mu \mathrm{C}$
$i=\frac{6}{3.6} e^{-\frac{t}{\tau}}$
$=\frac{5}{3} \mathrm{e}-\frac{7.2}{7.2}=\frac{5}{3} \mathrm{e}^{-1} \approx 0.6 \mathrm{~A}$

SECTION-2 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct option is chosen;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.
4. A bar of mas $M=1.00 \mathrm{~kg}$ and length $L=0.20 \mathrm{~m}$ is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass $m=0.10 \mathrm{~kg}$ is moving on the same horizontal surface with $5.00 \mathrm{~m} \mathrm{~s}^{-1}$ speed on a path perpendicular to the bar. It hits the bar at a distance $L / 2$ from the pivoted end and returns back on the same path with speed v . After this elastic collision, the bar rotates with an angular velocity ω. Which of the following statement is correct?
(A) $\omega=6.98 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(B) $\omega=3.75 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(C) $\omega=3.75 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=10.0 \mathrm{~m} \mathrm{~s}^{-1}$
(D) $\omega=6.80 \mathrm{rad} \mathrm{s}^{-1}$ and $\mathrm{v}=4.10 \mathrm{~m} \mathrm{~s}^{-1}$

Ans. (A)

Applying angular momentum conservation about hinge

$$
\begin{equation*}
\operatorname{mv} \frac{\mathrm{L}}{2}+0=-\operatorname{mv} \frac{\mathrm{L}}{2}+\frac{\mathrm{ML}^{2}}{3} \omega \tag{i}
\end{equation*}
$$

Also from eq. of restitution

$$
\begin{equation*}
e=1=\frac{\omega \frac{\mathrm{L}}{2}+V}{u} \Rightarrow u=\omega \frac{\mathrm{L}}{2}+V \tag{ii}
\end{equation*}
$$

Solving (i) \& (ii)
$\omega \approx 6.98 \mathrm{rad} / \mathrm{sec} \& \mathrm{v}=4.30 \mathrm{~m} / \mathrm{s}$
Hence option (A)
5. A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height 50 cm , as shown in the figure. It has two parallel electrically conducting walls each of area $50 \mathrm{~cm} \times 50 \mathrm{~cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of $250 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after 10 seconds? [Given: Permittivity of free space $\epsilon_{0}=9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

(A) 27 pF
(B) 63 pF
(C) 81 pF
(D) 135 pF

Ans. (B)
Sol. In $t=10 \mathrm{sec}$ volume of liquid is
$\mathrm{V}=2500 \mathrm{cc}$
$\mathrm{h}=\frac{2500}{50 \times 5}=10 \mathrm{~cm}$
$\mathrm{C}_{\mathrm{d}}=\frac{\mathrm{A}_{\mathrm{d}} \varepsilon_{0} \mathrm{k}}{\mathrm{d}}$
$=\frac{50 \times 10^{-2} \times 10 \times 10^{-2} \varepsilon_{0} \times 3}{5 \times 10^{-2}}=3 \varepsilon_{0}$
$\mathrm{C}_{\mathrm{a}}=\frac{\mathrm{A}_{\mathrm{a}} \varepsilon_{0}}{\mathrm{~d}}=\frac{50 \times 10^{-2} \times 40 \times 10^{-2} \varepsilon_{0}}{5 \times 10^{-2}}=4 \varepsilon_{0}$
$\mathrm{C}=\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{d}}=7 \varepsilon_{0}$
$=7 \times 9 \times 10^{-12}=63 \mathrm{Pf}$
6. One mole of an ideal gas expands adiabatically from an initial state $\left(T_{\mathrm{A}}, V_{0}\right)$ to final state $\left(T_{\mathrm{f}}, 5 V_{0}\right)$. Another mole of the same gas expands isothermally from a different initial state $\left(T_{\mathrm{B}}, \mathrm{V}_{0}\right)$ to the same final state $\left(T_{\mathrm{f}}, 5 V_{0}\right)$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is γ. What is the ratio $T_{\mathrm{A}} / T_{\mathrm{B}}$?
(A) $5^{\gamma-1}$
(B) $5^{1-\gamma}$
(C) 5^{γ}
(D) $5^{1+\gamma}$

Ans. (A)

Sol.

$\mathrm{T}_{\mathrm{A}} \mathrm{V}_{0}^{\gamma-1}=\mathrm{T}_{\mathrm{f}}\left(5 \mathrm{~V}_{0}\right)^{\gamma-1}$
$\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{f}}}=5^{\gamma-1}=\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}$
7. Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are h_{P} and h_{Q}, respectively, where $h_{\mathrm{p}}=\mathrm{R} / 3$. The accelerations of P and Q due to Earth's gravity are g_{P} and g_{Q}, respectively. If $g_{\mathrm{P}} / g_{\mathrm{Q}}=36 / 25$, what is the value of h_{Q} ?
(A) $3 R / 5$
(B) $R / 6$
(C) $6 R / 5$
(D) $5 R / 6$

Ans. (A)

Sol.

$\frac{\mathrm{g}_{\mathrm{P}}}{\mathrm{g}_{\mathrm{Q}}}=\frac{\frac{\mathrm{GM}}{\mathrm{r}_{\mathrm{p}}^{2}}}{\frac{\mathrm{GM}}{\mathrm{r}_{\mathrm{Q}}^{2}}}=\left(\frac{\mathrm{r}_{\mathrm{Q}}}{\mathrm{r}_{\mathrm{p}}}\right)^{2}$
$\frac{36}{25}=\left(\frac{\mathrm{r}_{\mathrm{Q}}}{\mathrm{r}_{\mathrm{P}}}\right)^{2}$
$\frac{\mathrm{r}_{\mathrm{Q}}}{\mathrm{r}_{\mathrm{p}}}=\frac{6}{5}$
$r_{Q}=\frac{6}{5} r_{P}$
$\mathrm{R}+\mathrm{h}_{\mathrm{Q}}=\frac{6}{5}\left(\mathrm{R}+\frac{\mathrm{R}}{3}\right)$
$\mathrm{h}_{\mathrm{Q}}=\frac{24}{15} \mathrm{R}-\mathrm{R}=\frac{9}{15} \mathrm{R}=\frac{3}{5} \mathrm{R}$

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
8. A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level $n=4$ to level $n=3$ in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV . If the photoelectric threshold wavelength for the target metal is 310 nm , the value of Z is \qquad .
[Given: $h c=1240 \mathrm{eV}-\mathrm{nm}$ and $R h c=13.6 \mathrm{eV}$, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum]
Ans. (3)
Sol. $\mathrm{n}=4$

$$
\mathrm{n}=3
$$

$-1.51 \mathrm{Z}^{2} \mathrm{eV} \quad-0.85 \mathrm{Z}^{2} \mathrm{eV}$
$\mathrm{E}=\mathrm{E}_{4}-\mathrm{E}_{3}=0.66 \mathrm{Z}^{2} \mathrm{eV}$
$\mathrm{K}_{\text {max }}=\mathrm{E}-\mathrm{W}$
$0.66 \mathrm{Z}^{2} 1.95+4=5.95$
$\mathrm{W}=0.66 \mathrm{Z}^{2}-1.95=\frac{\mathrm{hc}}{\lambda}=\frac{1240}{310}$
$\therefore \mathrm{Z}=3$
9. An optical arrangement consists of two concave mirrors M_{1} and M_{2}, and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm . The radii of curvature of M_{1} and M_{2} are 20 cm and 24 cm , respectively. The distance between L and M_{2} is 20 cm . A point object S is placed at the mid-point between L and M_{2} on the axis. When the distance between L and M_{1} is $n / 7 \mathrm{~cm}$, one of the images coincides with S . The value of n is \qquad .

Ans. (80 or 150 or 220)

Sol.

Two cases are possible if $I^{\text {st }}$ refraction on lens :
Since object is at focus \Rightarrow light will become parallel.
$\mathrm{I}^{\text {st }}$ reflection at M_{1} :-
Light is parallel \Rightarrow Image will be at focus.
$\mathrm{II}^{\mathrm{nd}}$ refraction from L :-
$\mathrm{u}=-(\mathrm{d}-10)$
$\mathrm{f}=10 \mathrm{~cm}$
$\frac{1}{v}-\frac{1}{\mu}=\frac{1}{\mathrm{f}}$
$\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{~d}-10}=\frac{1}{10}$
$\frac{1}{\mathrm{v}}=\frac{1}{10}-\frac{1}{(\mathrm{~d}-10)}$
This v will be object for M_{2}, and image should be at 10 cm
$\frac{1}{\mu}+\frac{1}{\mathrm{v}_{1}}=\frac{1}{\mathrm{f}}$
$-\frac{1}{(20-\mathrm{v})}-\frac{1}{10}=-\frac{1}{12}$
$\frac{1}{12}-\frac{1}{10}=\frac{1}{20-\mathrm{v}}$
$-\frac{2}{120}=\frac{1}{20-\mathrm{v}}$
$20-\mathrm{v}=-60$
$\mathrm{v}=80 \mathrm{~cm}$
From equation (i)
$\frac{1}{80}=\frac{1}{10}-\frac{1}{d-10}$
$\frac{1}{d-10}=\frac{1}{10}-\frac{1}{80}$
$\frac{1}{d-10}=\frac{80-10}{800}=\frac{70}{800}$
$\mathrm{d}-10=\frac{80}{7} \Rightarrow \mathrm{~d}=10+\frac{80}{7}=\frac{150}{7}$
$\mathrm{n}=150$

Case-2: If ${ }^{1 \text { st }}$ reflection on mirror \mathbf{m}_{2}

For m_{2}
$\frac{1}{\mathrm{~V}_{1}}+\frac{1}{-10}=\frac{1}{-12}$
$\mathrm{V}_{1}=60 \mathrm{~cm}$
Then refraction on lens L
$\mathrm{u}_{2}=80 \mathrm{~cm}$
$\frac{1}{\mathrm{~V}_{2}}-\frac{1}{-60}=\frac{1}{10}$
$\mathrm{V}_{2}=\frac{80}{7}$
Then reflection on m_{2}
Either V_{2} is at centre (normal incidence)
$\mathrm{d}-\frac{80}{7}=20$
$\mathrm{d}=\frac{220}{7}$
$\frac{\mathrm{n}}{7}=\frac{220}{7}$,
$\mathrm{n}=220$
V_{2} is at pole of m_{2}
$\mathrm{d}-\frac{80}{7}=0$
$\mathrm{d}=\frac{80}{7}$
$\frac{\mathrm{n}}{7}=\frac{80}{7}$
$\mathrm{n}=80$
10. In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is $10 \pm 0.1 \mathrm{~cm}$ and the distance of its real image from the lens is $20 \pm 0.2 \mathrm{~cm}$. The error in the determination of focal length of the lens is $n \%$. The value of n is \qquad .

Ans. (1)
Sol. $u=10 \pm 0.1 \mathrm{~cm}, \quad \mathrm{v}=20 \pm 0.2 \mathrm{~cm}$
$\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{\mathrm{v}^{2}} \mathrm{dv}+\frac{1}{\mathrm{u}^{2}} \mathrm{du}=-\frac{1}{\mathrm{f}^{2}} \mathrm{df}$
$\frac{1}{20}+\frac{1}{10}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{\mathrm{f}}=\frac{3}{20} \Rightarrow \mathrm{f}=\frac{20}{3} \mathrm{~cm}$
$\Rightarrow \frac{1}{(20)^{2}}(0.2)+\frac{1}{(10)^{2}}(0.1)=\frac{9}{400} \mathrm{df}$
$\mathrm{df}=\frac{1}{9}\left(\frac{400}{400} \times 0.2+\frac{400}{100} \times 0.1\right)$
$\mathrm{df}=\frac{1}{9}(0.2+0.4) \Rightarrow \mathrm{df}=\frac{0.6}{9}$
$\frac{\mathrm{df}}{\mathrm{f}}=\frac{0.6}{9} \times \frac{3}{20}=\frac{1}{100}$
$\%$ error $=1 \%$
Sol. $\frac{1}{\mathrm{~V}}-\frac{1}{\mathrm{U}}=\frac{1}{\mathrm{f}} ; \quad+\frac{1}{20}+\frac{1}{10}=\frac{1}{\mathrm{f}}$

$$
-\frac{1}{\mathrm{~V}^{2}} \mathrm{dv}+\frac{\mathrm{dU}}{\mathrm{u}^{2}}=-\frac{\mathrm{df}}{\mathrm{f}^{2}} \quad \frac{1+2}{20}=\frac{1}{\mathrm{f}} ; \mathrm{f}=\frac{20}{3}
$$

$\frac{0.1}{100}+\frac{0.2}{400}=\frac{f \%}{f}$
$\frac{0.4+0.2}{400}=\frac{\Delta \mathrm{f}}{\mathrm{f}\left(\frac{20}{3}\right)}$
$\frac{0.6 \times 20}{400 \times 3}=\frac{\Delta f}{f}$
$\frac{1}{100}=\frac{\Delta f}{f}$
$\%$ change in f is 1%
11. A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas $(\gamma=5 / 3)$ and one mole of an ideal diatomic gas $(\gamma=7 / 5)$. Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is \qquad Joule.
Ans. (121)
Sol. At constant pressure
$\mathrm{W}=\mathrm{nR} \underline{\Delta} \mathrm{T}=66$
$\Delta \mathrm{U}=\mathrm{n}\left(\mathrm{C}_{\mathrm{V}}\right)_{\text {mix }} \Delta \mathrm{T}$
$\left(\mathrm{C}_{\mathrm{V}}\right)_{\text {mix }}=\frac{\mathrm{n}_{1} \mathrm{C}_{\mathrm{V}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{V}_{2}}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\left(\mathrm{C}_{\mathrm{V}}\right)_{\text {mix }}=\frac{2 \times \frac{3}{2} \mathrm{R}+1 \times \frac{5}{2} \mathrm{R}}{3}$
$\left(\mathrm{C}_{\mathrm{V}}\right)_{\text {mix }}=\frac{11}{6} \mathrm{R}$
$\Delta \mathrm{U}=\frac{11}{6}(\mathrm{nR} \Delta \mathrm{T})$
$\Delta \mathrm{U}=\frac{11}{6} \times 66=121 \mathrm{~J}$
12. A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is $60 \mathrm{~cm} \mathrm{~s}^{-1}$, the speed of the tip of the person's shadow on the ground with respect to the person is \qquad $\mathrm{cm} \mathrm{s}^{-1}$.
Ans. (40)

Sol.

$\frac{4}{y}=\frac{1.6}{y-x}$
$4 y-4 x=1.6 y$
$2.4 y=4 x$
$X=0.6 y$
$\frac{\mathrm{dx}}{\mathrm{dt}}=0.6 \times \frac{\mathrm{dy}}{\mathrm{dt}}$
$60=0.6 \times \frac{\mathrm{dy}}{\mathrm{dt}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dt}}=100 \mathrm{~cm} / \mathrm{s}$
Speed of tip of person's
Shadow w.r.t person $=100-60=40 \mathrm{~cm} / \mathrm{s}$
13. Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm . This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is $1.2 \times 10^{-8} \mathrm{~N} \mathrm{~m} \mathrm{rad}^{-1}$. The angular frequency of the oscillations in $n \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$. The value of n is \qquad .

Ans. (10)

Sol.

$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{C}}}$
$\Rightarrow \omega=\sqrt{\frac{\mathrm{C}}{\mathrm{I}}}$
Where $\mathrm{I}=$ moment of inertia
$\mathrm{I}=(30)(4)^{2}+(20)(6)^{2}$
$=1200 \mathrm{gm}-\mathrm{cm}^{2}$
$=1.2 \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{2}$
$\Rightarrow \omega=\sqrt{\frac{1.2 \times 10^{-8}}{1.2 \times 10^{-4}}}$
$\Rightarrow \omega=\sqrt{10^{-4}}$
$\omega=\left(10^{-2}\right)$
$\mathrm{n} \times 10^{-3}=10^{-2} \Rightarrow \mathrm{n}=10$

SECTION-4 : (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists : List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $\quad:-1$ In all other cases.
14. List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

List-I

(P) ${ }_{92}^{238} U \rightarrow{ }_{91}^{234} P a$
(Q) ${ }_{82}^{214} \mathrm{~Pb} \rightarrow{ }_{82}^{210} \mathrm{~Pb}$
(R) ${ }_{81}^{210} T l \rightarrow{ }_{82}^{206} \mathrm{~Pb}$
(S) ${ }_{91}^{228} P a \rightarrow{ }_{88}^{224} R a$

List-II

(1) one α particle and one β^{+}particle
(2) three β^{-}particles and one α particle
(3) two β^{-}particles and one α particle
(4) one α particle and one β^{-}particle
(5) one α particle and two β^{+}particles
(A) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1$
(B) $P \rightarrow 4, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$
(C) $P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4$
(D) $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 3, S \rightarrow 2$

Ans. (A)
Sol. $\quad Z_{1} Z^{A_{1}} \rightarrow_{Z_{2}} Y^{A_{2}}+N_{12} H e^{4}+N_{2} e^{0}+N_{3-1} e^{0}$
Conservation of charge
$\mathrm{Z}_{1}=\mathrm{Z}_{2}+2 \mathrm{~N}_{1}+\mathrm{N}_{2}-\mathrm{N}_{3}$
Conservation of nucleons.
$\mathrm{A}_{1}=\mathrm{A}_{2}+4 \mathrm{~N}_{1}$
$\mathrm{N}_{1}=\frac{\mathrm{A}_{1}-\mathrm{A}_{2}}{4}$
From (i) and (ii)
$\mathrm{N}_{2}-\mathrm{N}_{3}=\mathrm{Z}_{1}-\mathrm{Z}_{2}-\left(\frac{\mathrm{A}_{1}-\mathrm{A}_{2}}{2}\right)$
(P) ${ }_{92} \mathrm{U}^{238} \rightarrow_{91} \mathrm{~Pa}^{234}$

$$
\mathrm{N}_{1}=\frac{238-234}{4}=1 \rightarrow 1 \alpha
$$

$$
\mathrm{N}_{2}-\mathrm{N}_{3}=(92-91)-\left(\frac{4}{2}\right)=-1 \rightarrow 1 \beta^{-}
$$

(Q) ${ }_{82} \mathrm{~Pb}^{214} \rightarrow_{82} \mathrm{~Pb}^{210}$
$\mathrm{N}_{1}=\frac{214-210}{4}=1 \rightarrow 1 \alpha$
$\mathrm{N}_{2}-\mathrm{N}_{3}=(82-82)-\left(\frac{4}{2}\right)=-2 \rightarrow 2 \beta^{-}$
$(\mathrm{R})_{81} \mathrm{~T}^{210} \rightarrow_{82} \mathrm{~Pb}^{206}$
$\mathrm{N}_{1}=\frac{210-206}{4}=1 \rightarrow 1 \alpha$
$\mathrm{N}_{2}-\mathrm{N}_{3}=(81-83)-\frac{4}{2}=-3 \rightarrow 3 \beta^{-}$
(S) ${ }_{91} \mathrm{~Pa}^{228} \rightarrow_{88} \mathrm{Ra}^{224}$
$\mathrm{N}_{1}=\frac{228-224}{4}=1 \alpha$
$N_{2}-N_{3}=(91-88)-\frac{4}{2}=1 \beta^{+}$
15. Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.
[Given: Wien's constant as $2.9 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ and $\frac{\mathrm{hc}}{\mathrm{e}}=1.24 \times 10^{-6} \mathrm{~V}-\mathrm{m}$]

List-I

(P) $\quad 2000 \mathrm{~K}$
(Q) 3000 K
(R) 5000 K
(S) 10000 K
(4) The power emitted per unit area is $1 / 16$ of that emitted by a blackbody at temperature 6000 K .
(5) The radiation at peak emission wavelength can be used to image human bones.
(A) $P \rightarrow 3, Q \rightarrow 5, R \rightarrow 2, S \rightarrow 3$
(B) $P \rightarrow 3, Q \rightarrow 2, R \rightarrow 4, S \rightarrow 1$
(C) $P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 1$
(D) $P \rightarrow 1, Q \rightarrow 2, R \rightarrow 5, S \rightarrow 3$

Ans. (C)

Sol. \Rightarrow For option (P) temperature is minimum hence $\lambda \mathrm{m}$ will be maximum $\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}} \Rightarrow \beta$ will also be maximum
\Rightarrow For option (Q) T $=3000$

$$
\begin{aligned}
& \lambda \mathrm{m}=\frac{\mathrm{b}}{\mathrm{~T}}=\frac{2.9 \times 10^{-3}}{30000} \\
& \lambda \mathrm{~m}=\frac{2.9}{3} \times 10^{-6} \\
& =0.96 \times 10^{-6} \\
& =966.6 \mathrm{~nm}
\end{aligned}
$$

$$
P_{3000}=6 \mathrm{~A}(3000)^{4}
$$

$$
\mathrm{P}_{6000}=6 \mathrm{~A}(6000)^{4}
$$

$$
\frac{\mathrm{P}_{3000}}{\mathrm{P}_{6000}}=\left(\frac{1}{2}\right)^{4}=\frac{1}{16}
$$

$$
\mathrm{P}_{3000}=\frac{1}{16} \mathrm{P}_{6000}
$$

$$
\mathrm{Q}-4
$$

\Rightarrow For (R) T=5000 K

$$
\lambda \mathrm{m}=\frac{2.9 \times 10^{-3}}{5 \times 10^{3}}=0.58 \times 10^{-6}
$$

$$
=580 \mathrm{~nm}
$$

Visible to human eyes
R-2
\Rightarrow For $(\mathrm{S}) \mathrm{T}=10,000 \rightarrow$ maximum
Hence (3) is wrong as it has minimum ($\lambda \mathrm{m}$)
16. A series LCR circuit is connected to a $45 \sin (\omega t)$ Volt source. The resonant angular frequency of the circuit is $10^{5} \mathrm{rad} \mathrm{s}^{-1}$ and current amplitude at resonance is I_{0}. When the angular frequency of the source is $\omega=8 \times 10^{4} \mathrm{rad} \mathrm{s}^{-1}$, the current amplitude in the circuit is $0.05 I_{0}$. If $L=50 \mathrm{mH}$, match each entry in List-I with an appropriate value from List-II and choose the correct option.

List-I

(P) $\quad I_{o}$ in mA
(Q) The quality factor of the circuit
(R) The bandwidth of the circuit in rad^{-1}
(S) The peak power dissipated at resonance in Watt

List-II

(1) 44.4
(2) 18
(3) 400
(4) 2250
(5) 500
(A) $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 5, S \rightarrow 1$
(B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 2$
(C) $P \rightarrow 4, Q \rightarrow 5, R \rightarrow 3, S \rightarrow 1$
(D) $P \rightarrow 4, Q \rightarrow 2, R \rightarrow 1, S \rightarrow 5$

Ans. (B)

Sol. $V=45 \sin \omega t$,

$$
\mathrm{L}=50 \mathrm{mH}
$$

$\omega_{0}=10^{5} \mathrm{rad} / \mathrm{s}=\frac{1}{\sqrt{\mathrm{LC}}} \Rightarrow \mathrm{C}=\frac{1}{\mathrm{~L} \omega_{0}^{2}}=\frac{1}{5 \times 10^{-2} \times 10^{10}}$
$=2 \times 10^{-9} \mathrm{~F}$
$I_{0}=\frac{45}{R}$
$\omega=8 \times 10^{4} \mathrm{rad} / \mathrm{s}=0.8 \omega_{0}$
$\mathrm{I}=0.05 \mathrm{I}_{0}=\frac{\mathrm{I}_{0}}{20} \Rightarrow \mathrm{Z}=20 \mathrm{R}$
$\mathrm{X}_{\mathrm{L}}=8 \times 10^{4} \times 5 \times 10^{-2} \Omega=4 \mathrm{k} \Omega$
$X_{C}=\frac{1}{8 \times 10^{4} \times 2 \times 10^{-9}}=\frac{1}{16} \times 10^{5} \Omega=\frac{25}{4} \mathrm{k} \Omega$
$\mathrm{Z}^{2}=\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}$
$400 \mathrm{R}^{2}=\mathrm{R}^{2}+\left(\frac{9}{4} \mathrm{k} \Omega\right)^{2}$
$R=\frac{\frac{9}{4} \mathrm{k} \Omega}{\sqrt{399}} \approx \frac{9}{80} \mathrm{k} \Omega=\frac{900}{8} \Omega$
$\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{R}}=\frac{45 \times 8}{900}=\frac{8}{20} \mathrm{~A} \approx 0.4 \mathrm{~A}=400 \mathrm{~mA}$
$\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}=\frac{8}{900} \sqrt{\frac{5 \times 10^{-2}}{2 \times 10^{-9}}}=\frac{8}{900} \sqrt{25 \times 10^{6}}$
$Q=\frac{8}{900} \times 5000=44.4$
$\mathrm{Q}=\frac{\omega_{0}}{\Delta \omega} \Rightarrow \Delta \omega=\frac{\omega_{0}}{\mathrm{Q}}=\frac{10^{5}}{44.4}=2250.0$
$\mathrm{P}_{\text {max }}=\mathrm{I}_{0}^{2} \mathrm{R}=\frac{45^{2}}{\mathrm{R}^{2}} \times \mathrm{R}=\frac{45^{2}}{\mathrm{R}}=\frac{45^{2}}{900} \times 8=18.4 \mathrm{~W}$

éSaral

17. A thin conducting rod MN of mass 20 gm , length 25 cm and resistance 10Ω is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $\mathrm{B}_{0}=4 \mathrm{~T}$ directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time $t=0$ and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.
[Given: The acceleration due to gravity $g=10 \mathrm{~ms}^{-2}$ and $e^{-1}=0.4$]

List-I

List-II

(P) At $t=0.2 \mathrm{~s}$, the magnitude of the induced emf in Volt
(1) 0.07
(Q) At $t=0.2 \mathrm{~s}$, the magnitude of the magnetic force in Newton
(2) 0.14
(R) At $t=0.2 \mathrm{~s}$, the power dissipated as heat in Watt
(3) 1.20
(S) The magnitude of terminal velocity of the rod in $\mathrm{m} \mathrm{s}^{-1}$
(4) 0.12
(5) 2.00
(A) $P \rightarrow 5, Q \rightarrow 2, R \rightarrow 3, S \rightarrow 1$
(B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 5$
(C) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 2$
(D) $P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 5$

Ans. (D)

Sol. From force equation

$$
\mathrm{mg}-\mathrm{Bi} \ell=\frac{\mathrm{mdv}}{\mathrm{dt}}
$$

$\mathrm{mg}-\frac{\mathrm{BBi} \ell}{\mathrm{R}} \times \ell=\frac{\mathrm{mdv}}{\mathrm{dt}}$
$\frac{\mathrm{mgR}}{\mathrm{B}^{2} \ell^{2}}-\mathrm{v}=\frac{\mathrm{mR}}{\mathrm{B}^{2} \ell^{2}} \frac{\mathrm{dv}}{\mathrm{dt}}$
$\frac{\mathrm{B}^{2} \ell^{2}}{\mathrm{mR}} \int_{\mathrm{t}=0}^{\mathrm{t}} \mathrm{dt}=\int_{0}^{\mathrm{v}} \frac{\mathrm{dv}}{\left(\frac{\mathrm{mgR}}{\mathrm{B}^{2} \ell^{2}}-\mathrm{v}\right)}$

ebSaral

Now $\frac{\mathrm{mgR}}{\mathrm{B}^{2} \ell^{2}}=\frac{20 \times 10^{-3} \times 10 \times 10}{16 \times \frac{1}{16}}=2$
And $\frac{\mathrm{B}^{2} \ell^{2}}{\mathrm{mR}}=\frac{16 \times \frac{1}{16}}{20 \times 10^{-3} \times 10}=\frac{1}{0.2}=5$
$\therefore 5 \mathrm{t}=[-\ell \mathrm{n}(2-\mathrm{v})]_{0}^{\mathrm{v}}$
$-5 \mathrm{t}=\ln \left[\frac{2-\mathrm{v}}{\mathrm{v}}\right]$
$\therefore \mathrm{v}=2\left(1-\mathrm{e}^{-5 \mathrm{t}}\right)$
At $t=0.2 \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{v}=2\left(1-\mathrm{e}^{-5 \times 0.2}\right) \\
& \mathrm{v}=2(1-0.4) \\
& \mathrm{v}=1.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(P) Now at $\mathrm{t}=0.2 \mathrm{sec}$

The magnitude of the induced emf $=\mathrm{E}=\mathrm{Bv} \ell$
$=4 \times 1.2 \times \frac{1}{4}=1.2 \mathrm{Volt}$
(Q) At $t=0.2 \mathrm{sec}$, the magnitude of magnetic force $=\mathrm{BI} \ell \sin \theta$
$=\mathrm{B} \times \frac{\mathrm{B} \ell \mathrm{v}}{\mathrm{R}} \times \ell \times \sin 90^{\circ}$
$=\frac{4 \times 4 \times \frac{1}{4} \times 1.3 \times \frac{1}{4}}{10}=0.12$ Newton
(R) At $t=0.2 \mathrm{sec}$, the power dissipated as heat
$\mathrm{P}=\mathrm{i}^{2} \mathrm{R}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{1.2 \times 1.2}{10}$
$\mathrm{P}=0.144$ watt
(S) Magnitude of terminal velocity

At terminal velocity, the net force become zero
$\therefore \mathrm{mg}=\mathrm{Bi} \ell$
$\mathrm{mg}=\mathrm{B} \times \frac{\mathrm{B} \ell \mathrm{v}_{\mathrm{t}}}{\mathrm{R}} \times \ell$
$\therefore \mathrm{v}_{\mathrm{T}}=\frac{\mathrm{mgR}}{\mathrm{B}^{2} \ell^{2}}=\frac{20 \times 10^{-3} \times 10 \times 10}{16 \times \frac{1}{16}}$
$\mathrm{v}_{\mathrm{T}}=2 \mathrm{~m} / \mathrm{s}$
Hence, Answer is (D)

