FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28 ${ }^{\text {th }}$ AUGUST, 2022)

PAPER-2 TEST PAPER WIIH SOLUIION

CHEMISTRY

SECTION-1 : (Maximum Marks : 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 TO 9, BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct integer is entered;
Zero Marks : 0 If the question is unanswered;
Negative Marks : - 1 In all other cases.

1. Concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a solution is 1 M and $1.8 \times 10^{-2} \mathrm{M}$, respectively. Molar solubility of PbSO_{4} in the same solution is $\mathrm{X} \times 10^{-\mathrm{Y}} \mathrm{M}$ (expressed in scientific notation). The value of Y is \qquad .
[Given: Solubility product of $\mathrm{PbSO}_{4}\left(K_{s p}\right)=1.6 \times 10^{-8}$. For $\mathrm{H}_{2} \mathrm{SO}_{4}, K_{a l}$ is very large and $\left.K_{a 2}=1.2 \times 10^{-2}\right]$
Ans. (6)
Sol. $\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{HSO}_{4}^{-}+\mathrm{H}^{+}$
1 M
$-\quad 1 \mathrm{M} \quad 1 \mathrm{M}$
$\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}$
$1.8 \times 10^{-2} \mathrm{M}$

$$
3.6 \times 10^{-2} \mathrm{M} \quad 1.8 \times 10^{-2} \mathrm{M}
$$

$1+\mathrm{x} \quad 1-\mathrm{x} \quad 1.8 \times 10^{-2}-\mathrm{x}$
$\mathrm{K}_{\mathrm{a}_{2}}=1.2 \times 10^{-2}=\frac{(1-\mathrm{x})\left(1.8 \times 10^{-2}-\mathrm{x}\right)}{(1+\mathrm{x})}$

光Saral

Since x is very $\operatorname{small}(1+\mathrm{x}) \simeq \mathbf{1}$ and $(\mathbf{1}-\mathbf{x}) \simeq 1$

$$
\begin{aligned}
& \mathrm{x}=\left(1.8 \times 10^{-2}-1.2 \times 10^{-2}\right) \mathrm{M} \\
& {\left[\begin{array}{l}
\left.\mathrm{SO}_{4}^{2-}\right]=\left(1.8 \times 10^{-2}-0.6 \times 10^{-2}\right) \mathrm{M} \\
\quad=1.2 \times 10^{-2} \mathrm{M}
\end{array}\right.}
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{PbSO}_{4} & \longrightarrow & \mathrm{~Pb}^{2+}+ & \mathrm{SO}_{4}^{2-} \\
\mathrm{s} & & - & \\
- & & \mathrm{s} & \left(\mathrm{~s}+1.2 \times 10^{-2} \mathrm{M}\right. \\
- & & \left.10^{-2}\right)
\end{array}
$$

$$
\mathrm{K}_{\mathrm{sp}}=\mathrm{s}\left(\mathrm{~s}+1.2 \times 10^{-2}\right)=1.6 \times 10^{-8}
$$

$$
\left(\mathrm{PbSO}_{4}\right)
$$

Here, $\left(\mathrm{s}+1.2 \times 10^{-2}\right) \simeq 1.2 \times 10^{-2}$ (since ' s ' is very small)
$\mathrm{s}\left(1.2 \times 10^{-2}\right)=1.6 \times 10^{-8}$
$\Rightarrow \mathrm{s}=\frac{1.6}{1.2} \times 10^{-6} \mathrm{M}=\mathrm{X} \times 10^{-\mathrm{Y}} \mathrm{M}$
$\Rightarrow \mathrm{Y}=6$
2. An aqueous solution is prepared by dissolving 0.1 mol of an ionic salt in 1.8 kg of water at $35^{\circ} \mathrm{C}$. The salt remains 90% dissociated in the solution. The vapour pressure of the solution is 59.724 mm of Hg . Vapor pressure of water at $35{ }^{\circ} \mathrm{C}$ is 60.000 mm of Hg . The number of ions present per formula unit of the ionic salt is \qquad .

Ans. (5)
Sol. 0.1 mole ionic salt in 1.8 kg water at $35^{\circ} \mathrm{C}$
Vapour pressure of solution $=59.724 \mathrm{~mm}$ of Hg
Vapour pressure of pure $\mathrm{H}_{2} \mathrm{O}=60.000 \mathrm{~mm}$ of Hg
Let the number of ions present per formula unit of the ionic salt be ' x '

$\underset{\text { A }}{\mathrm{A}_{\mathrm{x}}} \quad \longrightarrow$	xA
(Salt)	
0.1	-
$0.1(1-0.9)$	$(0.1 \times 0.9) \mathrm{x}$

Total moles of non-volatile particles $=0.01+0.09 \mathrm{x}$
in 1.8 kg water
Moles of water $=\frac{1.8 \times 10^{3}}{18}=100$ moles
Relative lowering of vapour pressure $\frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}^{\circ}}=$ Mole fraction of non - volatile particles

éSaral

$$
\begin{aligned}
& \frac{P^{\circ}-P_{s}}{P_{s}}=\frac{\text { moles of non }- \text { volatileparticles }}{\text { moles of water }} \\
& \frac{60.000-59.724}{59.724}=\frac{0.01+0.09 \mathrm{x}}{100} \\
& (0.276) \times 100=0.59274+(0.59274 \times 9) \mathrm{x} \\
& 27.6-0.59274=(0.59274 \times 9) \mathrm{x} \\
& \Rightarrow \mathrm{x} \simeq \frac{27}{0.6 \times 9}=5
\end{aligned}
$$

3. Consider the strong electrolytes $Z_{m} X_{n}, U_{m} Y_{p}$ and $V_{m} X_{n}$. Limiting molar conductivity (Λ^{0}) of $U_{m} Y_{p}$ and $V_{m} X_{n}$ are 250 and $440 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively. The value of ($m+n+p$) is \qquad .
Given:

Ion	$\mathrm{Z}^{\mathrm{n}+}$	$\mathrm{U}^{\mathrm{p}+}$	$\mathrm{V}^{\mathrm{n}+}$	$\mathrm{X}^{\mathrm{m}-}$	$\mathrm{Y}^{\mathrm{m}-}$
$\lambda^{0}\left(\mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$	50.0	25.0	100.0	80.0	100.0

λ^{0} is the limiting molar conductivity of ions
The plot of molar conductivity (Λ) of $Z_{m} X_{n} v s c^{1 / 2}$ is given below.

Ans. (7)
Sol. $\quad \Lambda^{\circ}\left(\mathrm{U}_{\mathrm{m}} \mathrm{Y}_{\mathrm{p}}\right)=\mathrm{m} \times \lambda_{\mathrm{U}^{p^{+}}}^{\circ}+\mathrm{p} \times \lambda_{\mathrm{Y}^{\mathrm{m}-}}^{\circ}=250$

$$
\begin{align*}
& 25 \mathrm{~m}+100 \mathrm{p}=250 \\
& \mathrm{~m}+4 \mathrm{p}=10 \tag{1}\\
& \Lambda^{\circ}\left(\mathrm{V}_{\mathrm{m}} \mathrm{X}_{\mathrm{n}}\right)=\mathrm{m} \times \lambda_{\mathrm{v}^{n+}}+\mathrm{n} \times \lambda_{\mathrm{X}^{m-}}^{\circ}=440 \\
& 100 \mathrm{~m}+80 \mathrm{n}=440 \\
& 5 \mathrm{~m}+4 \mathrm{n}=22 \tag{2}
\end{align*}
$$

From the extrapolation of curve

$$
\begin{align*}
& \Lambda^{\circ}\left(\mathrm{Z}_{\mathrm{m}} \mathrm{X}_{\mathrm{n}}\right)=340 \\
& \mathrm{~m} \times \lambda_{\mathrm{Z}^{n+}}^{\circ}+\mathrm{n} \lambda_{\mathrm{X}^{m-}}^{\circ}=340 \\
& 50 \mathrm{~m}+80 \mathrm{n}=340 \\
& 5 \mathrm{~m}+8 \mathrm{n}=34 \tag{3}
\end{align*}
$$

(3) - (2) $\Rightarrow \quad 4 \mathrm{n}=12 \Rightarrow \mathrm{n}=3$

Putting in (2) we get $\mathrm{m}=2$
Putting in (1) we get $\mathrm{p}=2$
$\mathrm{m}+\mathrm{n}+\mathrm{p}=2+3+2=7$
4. The reaction of Xe and $\mathrm{O}_{2} \mathrm{~F}_{2}$ gives a Xe compound \mathbf{P}. The number of moles of HF produced by the complete hydrolysis of 1 mol of \mathbf{P} is \qquad .
Ans. (4)
Sol. $\mathrm{Xe}+2 \mathrm{O}_{2} \mathrm{~F}_{2} \rightarrow \mathrm{XeF}_{4}+2 \mathrm{O}_{2}$
$3 \mathrm{XeF}_{4}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Xe}+\mathrm{XeO}_{3}+\frac{3}{2} \mathrm{O}_{2}+12 \mathrm{HF}$
\therefore One mole of XeF_{4} gives 4 moles of HF on hydrolysis.
5. Thermal decomposition of AgNO_{3} produces two paramagnetic gases. The total number of electrons present in the antibonding molecular orbitals of the gas that has the higher number of unpaired electrons is \qquad .

Ans. (6)
Sol. $\mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$

- Both $\mathrm{NO}_{2} \& \mathrm{O}_{2}$ are paramagnetic
$-\mathrm{NO}_{2}$ is odd electron molecule with one unpaired electron
$-\mathrm{O}_{2}$ has two unpaired electrons

Total number of antibonding electrons $=6$
6. The number of isomeric tetraenes (NOT containing $s p$-hybridized carbon atoms) that can be formed from the following reaction sequence is \qquad .

Ans. (2)

Sol.

逍Saral

7. The number of $-\mathrm{CH}_{2^{-}}$(methylene) groups in the product formed from the following reaction sequence is \qquad .

Ans. (0)

Sol.

8. The total number of chiral molecules formed from one molecule of \mathbf{P} on complete ozonolysis $\left(\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}\right)$ is \qquad .

Ans. (2)

Sol.

SECTION-2 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks :-2 In all other cases.
9. To check the principle of multiple proportions, a series of pure binary compounds $\left(\mathrm{P}_{\mathrm{m}} \mathrm{Q}_{\mathrm{n}}\right)$ were analyzed and their composition is tabulated below. The correct option(s) is(are)

Compound	Weight $\%$ of P	Weight $\%$ of Q
$\mathbf{1}$	50	50
$\mathbf{2}$	44.4	55.6
$\mathbf{3}$	40	60

(A) If empirical formula of compound $\mathbf{3}$ is $\mathrm{P}_{3} \mathrm{Q}_{4}$, then the empirical formula of compound $\mathbf{2}$ is $\mathrm{P}_{3} \mathrm{Q}_{5}$.
(B) If empirical formula of compound $\mathbf{3}$ is $\mathrm{P}_{3} \mathrm{Q}_{2}$ and atomic weight of element P is 20 , then the atomic weight of Q is 45 .
(C) If empirical formula of compound $\mathbf{2}$ is PQ , then the empirical formula of the compound $\mathbf{1}$ is $\mathrm{P}_{5} \mathrm{Q}_{4}$.
(D) If atomic weight of P and Q are 70 and 35 , respectively, then the empirical formula of compound $\mathbf{1}$ is $\mathrm{P}_{2} \mathrm{Q}$.
Ans. (B,C)
Sol.

Compound	Weight $\%$ of P	Weight $\%$ of Q
1	50	50
2	44.4	55.6
3	40	60

For option (A)
Let atomic mass of P be M_{P} and atomic mass of Q be M_{Q}
Molar ratio of atoms $\mathrm{P}: \mathrm{Q}$ in compound 3 is

$$
\begin{aligned}
& \frac{40}{\mathrm{M}_{\mathrm{p}}}: \frac{60}{\mathrm{M}_{\mathrm{Q}}}=3: 4 \\
& \frac{2 \mathrm{M}_{\mathrm{Q}}}{3 \mathrm{M}_{\mathrm{p}}}=\frac{3}{4} \Rightarrow 9 \mathrm{M}_{\mathrm{P}}=8 \mathrm{M}_{\mathrm{Q}}
\end{aligned}
$$

Molar ratio of atoms P : Q in compound 2 is

$$
\begin{aligned}
& \frac{44.4}{\mathrm{M}_{\mathrm{P}}}: \frac{55.6}{\mathrm{M}_{\mathrm{Q}}} \\
& =44.4 \mathrm{M}_{\mathrm{Q}}: 55.6 \mathrm{M}_{\mathrm{P}} \\
& =44.4 \mathrm{M}_{\mathrm{Q}}: 55.6 \times \frac{8 \mathrm{M}_{\mathrm{Q}}}{9} \\
& =44.4: 55.6 \times \frac{8}{9} \\
& =9: 10
\end{aligned}
$$

\Rightarrow Empirical formula of compound 2 is therefore $\mathrm{P}_{9} \mathrm{Q}_{10}$
Option (A) in incorrect
For option (B)

光Saral

Molar Ratio of atoms $\mathrm{P}: \mathrm{Q}$ in compound 3 is $\frac{40}{\mathrm{M}_{\mathrm{P}}}: \frac{60}{\mathrm{M}_{\mathrm{Q}}}=3: 2$

$$
\frac{2 \mathrm{M}_{\mathrm{Q}}}{3 \mathrm{M}_{\mathrm{P}}}=\frac{3}{2} \Rightarrow 9 \mathrm{M}_{\mathrm{P}}=4 \mathrm{M}_{\mathrm{Q}}
$$

If $M_{P}=20 \quad \Rightarrow M_{Q}=\frac{9 \times 20}{4}=45$
Option (B) is correct
For option (C)
Molar ratio of atoms P : Q in compound 2 is

$$
\begin{aligned}
& \frac{44.4}{\mathrm{M}_{\mathrm{P}}}: \frac{55.6}{\mathrm{M}_{\mathrm{Q}}}=44.4 \mathrm{M}_{\mathrm{Q}}: 55.6 \mathrm{M}_{\mathrm{P}}=1: 1 \\
& \Rightarrow \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{M}_{\mathrm{Q}}}=\frac{44.4}{55.6}
\end{aligned}
$$

Molar ratio of atoms $\mathrm{P}: \mathrm{Q}$ in compound 1 is

$$
\begin{aligned}
\frac{50}{M_{P}}: & \frac{50}{M_{Q}}=M_{Q}: M_{P} \\
& =55.6: 44.4 \\
& \simeq 5: 4
\end{aligned}
$$

Hence, empirical formula of compound 1 is $\mathrm{P}_{5} \mathrm{Q}_{4}$
Hence, option (C) is correct
For option (D)
Molar ratio of atoms $\mathrm{P}: \mathrm{Q}$ in compound 1 is

$$
\begin{aligned}
\frac{50}{\mathrm{M}_{\mathrm{P}}}: \frac{50}{\mathrm{M}_{\mathrm{Q}}} & =\mathrm{M}_{\mathrm{Q}}: \mathrm{M}_{\mathrm{P}} \\
& =35: 70=1: 2
\end{aligned}
$$

Hence, empirical formula of compound 1 is PQ_{2}
Hence, option (D) is incorrect
10. The correct option(s) about entropy (S) is(are)
[$\mathrm{R}=$ gas constant, $\mathrm{F}=$ Faraday constant, $\mathrm{T}=$ Temperature $]$
(A) For the reaction, $\mathrm{M}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{M}^{2+}(a q)$, if $\frac{\mathrm{dE}_{\text {cell }}}{\mathrm{dT}}=\frac{\mathrm{R}}{\mathrm{F}}$, then the entropy change of the reaction is R (assume that entropy and internal energy changes are temperature independent).
(B) The cell reaction, $\operatorname{Pt}(s) \mid \mathrm{H}_{2}(g, 1$ bar $)\left|\mathrm{H}^{+}(a q, 0.01 \mathrm{M}) \| \mathrm{H}^{+}(a q, 0.1 \mathrm{M})\right| \mathrm{H}_{2}(g, 1 \mathrm{bar}) \mid \operatorname{Pt}(s)$, is an entropy driven process.
(C) For racemization of an optically active compound, $\Delta \mathrm{S}>0$.
(D) $\Delta \mathrm{S}>0$, for $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{en} \rightarrow\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$ (where en $=$ ethylenediamine).

Ans. (B,C,D)

光Saral

Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

$$
\left.\begin{array}{l}
\Delta \mathrm{G}=\Delta \mathrm{H}+\mathrm{T}\left(\frac{\mathrm{~d} \Delta \mathrm{G}}{\mathrm{dT}}\right)_{\mathrm{p}} \\
-\mathrm{nF}\left(\frac{\mathrm{dE}}{\mathrm{cell}}\right. \\
\mathrm{dT}
\end{array}\right)=\Delta \mathrm{S} \text {. } \frac{\mathrm{dE}_{\text {cell }}}{\mathrm{dT}}=\frac{\Delta \mathrm{S}}{\mathrm{nF}}=\frac{\mathrm{R}}{\mathrm{~F}} \text { (given) } \begin{aligned}
& \quad \Rightarrow \Delta \mathrm{S}=\mathrm{nR}
\end{aligned}
$$

For the reaction, $\mathrm{M}(\mathrm{g})+2 \mathrm{H}^{\oplus}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{M}^{2 \oplus}(\mathrm{aq})$

$$
\begin{aligned}
& n=2 \\
\Rightarrow \quad & \Delta \mathrm{~S}=2 \mathrm{R}
\end{aligned}
$$

Hence, option (A) is incorrect
For the reaction, $\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2(\mathrm{~g})}, 1 \mathrm{bar}\right| \mathrm{H}_{\mathrm{aq}}^{\oplus}(0.01 \mathrm{M})| | \mathrm{H}^{\oplus}(\mathrm{aq}, 0.1 \mathrm{M})\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{bar})\right| \mathrm{Pt}_{(\mathrm{s})}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.0591}{1} \log \frac{0.01}{0.1}=0.0591 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}$ is positive $\Rightarrow \Delta \mathrm{G}<0$ and $\Delta \mathrm{S}>0(\Delta \mathrm{H}=0$ for concentration cells $)$
Hence, option (B) is correct
Racemization of an optically active compound is a spontaneous process.
Here, $\Delta \mathrm{H}=0$ (similar type of bonds are present in enantiomers)
$\Rightarrow \Delta \mathrm{S}>0$
Hence, option (C) is correct.
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{en} \rightarrow\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$ is a spontaneous process
more stable complex is formed
$\Rightarrow \Delta \mathrm{S}>0$
Hence, option (D) is correct.
11. The compound(s) which react(s) with NH_{3} to give boron nitride (BN) is(are)
(A) B
(B) $\mathrm{B}_{2} \mathrm{H}_{6}$
(C) $\mathrm{B}_{2} \mathrm{O}_{3}$
(D) HBF_{4}

Ans. (B,C)
Sol. (A) $2 \mathrm{~B}+2 \mathrm{NH}_{3} \rightarrow 2 \mathrm{BN}+3 \mathrm{H}_{2}$
Boron produced BN with ammonia but Boron is element not compound. So that this option not involve in answer.
(B)
 $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6} \xrightarrow{\mathrm{~T}>200^{\circ} \mathrm{C}}(\mathrm{BN})_{\mathrm{x}}$
(C) $\mathrm{B}_{2} \mathrm{O}_{3}(\ell)+2 \mathrm{NH}_{3} \xrightarrow{1200^{\circ} \mathrm{C}} 2 \mathrm{BN}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(D) $\mathrm{HBF}_{4}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}\left[\mathrm{BF}_{4}\right]$
12. The correct option(s) related to the extraction of iron from its ore in the blast furnace operating in the temperature range $900-1500 \mathrm{~K}$ is(are)
(A) Limestone is used to remove silicate impurity.
(B) Pig iron obtained from blast furnace contains about 4\% carbon.
(C) Coke (C) converts CO_{2} to CO
(D) Exhaust gases consist of NO_{2} and CO .

Ans. (A,B,C)

Sol. (A) $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$ (in the temperature range $900-1500 \mathrm{~K}$)
(B) In fusion zone molten iron becomes heavy by absorbing elemental impurities and produces Pig iron. (in the temperature range $900-1500 \mathrm{~K}$)
(C) $\mathrm{C}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}$ (in the temperature range $900-1500 \mathrm{~K}$)
(D) Exhaust gases does not contain NO_{2}.
13. Considering the following reaction sequence, the correct statement(s) is(are)

(A) Compounds \mathbf{P} and \mathbf{Q} are carboxylic acids.
(B) Compound \mathbf{S} decolorizes bromine water.
(C) Compounds \mathbf{P} and \mathbf{S} react with hydroxylamine to give the corresponding oximes.
(D) Compound \mathbf{R} reacts with dialkylcadmium to give the corresponding tertiary alcohol.

Ans. (A,C)

Sol.

14. Among the following, the correct statement(s) about polymers is(are)
(A) The polymerization of chloroprene gives natural rubber.
(B) Teflon is prepared from tetrafluoroethene by heating it with persulphate catalyst at high pressures.
(C) PVC are thermoplastic polymers.
(D) Ethene at $350-570 \mathrm{~K}$ temperature and $1000-2000 \mathrm{~atm}$ pressure in the presence of a peroxide initiator yields high density polythene.

Ans. (B,C)
Sol. (a) The polymerisation of neoprene gives natural rubber.
(b) is correct statement
(c) is correct statement
(d) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the pressure of a peroxide initiator yields low density polythene.

SECTION-3 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.
15. Atom X occupies the fcc lattice sites as well as alternate tetrahedral voids of the same lattice. The packing efficiency (in \%) of the resultant solid is closest to
(A) 25
(B) 35
(C) 55
(D) 75

Ans. (B)
Atom 'X' occupies FCC lattice points as well as alternate tetrahedral voids of the same lattice
$\Rightarrow \frac{1}{4}$ th distance of body diagonal

$$
=\frac{\sqrt{3} \mathrm{a}}{4}=2 \mathrm{r}_{\mathrm{x}}
$$

$\Rightarrow \mathrm{a}=\frac{8 \mathrm{r}_{\mathrm{x}}}{\sqrt{3}}$
Number of atoms of X per unit cell

$$
\begin{array}{llll}
=4 & + & 4 & =8
\end{array}
$$

(FCC lattice points)
(Alternate tetrahedral voids)
$\%$ packing efficiency $=\frac{\text { Volume occupied by X }}{\text { Volume of cubic unit cell }} \times 100$

$$
\begin{aligned}
& =\frac{8 \times \frac{4}{3} \pi\left(r_{x}\right)^{3}}{a^{3}} \times 100 \\
& =\frac{8 \times \frac{4}{3} \pi\left(r_{x}\right)^{3}}{\left(\frac{8 r_{x}}{\sqrt{3}}\right)^{3}} \times 100 \\
& =\left(8 \times \frac{4}{3} \times \pi \times \frac{1}{8^{3}} \times 3 \sqrt{3}\right) \times 100 \\
& =\frac{\sqrt{3} \pi}{16} \times 100 \\
& =34 \%
\end{aligned}
$$

Hence, option (B) is the most appropriate option
16. The reaction of HClO_{3} with HCl gives a paramagnetic gas, which upon reaction with O_{3} produces
(A) $\mathrm{Cl}_{2} \mathrm{O}$
(B) ClO_{2}
(C) $\mathrm{Cl}_{2} \mathrm{O}_{6}$
(D) $\mathrm{Cl}_{2} \mathrm{O}_{7}$

Ans. (C)
Sol. $\mathrm{HClO}_{3}+\mathrm{HCl} \rightarrow \underset{\text { (Paramagnetic) }}{\mathrm{ClO}_{2}}+\frac{1}{2} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{ClO}_{2}+2 \mathrm{O}_{3} \rightarrow \mathrm{Cl}_{2} \mathrm{O}_{6}+2 \mathrm{O}_{2}$
17. The reaction $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and NaCl in water produces a precipitate that dissolves upon the addition of HCl of appropriate concentration. The dissolution of the precipitate is due to the formation of
(A) PbCl_{2}
(B) PbCl_{4}
(C) $\left[\mathrm{PbCl}_{4}\right]^{2-}$
(D) $\left[\mathrm{PbCl}_{6}\right]^{2-}$

Ans. (C)

Sol.

18. Treatment of D - glucose with aqueous NaOH results in a mixture of monosaccharides, which are
(A)

and

(B)

and

(C)

(D)

and

Ans. (C)
Sol. Basic catalyse tautomerism through enediol intermediate

