FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28th AUGUST, 2022)

PAPER-2

TEST PAPER WITH SOLUTION

CHEMISTRY

SECTION-1 : (Maximum Marks : 24)

- This section contains **EIGHT (08)** questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 TO 9, BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks	: +3	If ONLY the correct integer is entered;
Zero Marks	: 0	If the question is unanswered;
Negative Marks	: -1	In all other cases.

1. Concentration of H_2SO_4 and Na_2SO_4 in a solution is 1 M and 1.8×10^{-2} M, respectively. Molar solubility of PbSO₄ in the same solution is $X \times 10^{-Y}$ M (expressed in scientific notation). The value of Y is _____.

[Given: Solubility product of PbSO₄ (K_{sp}) = 1.6 × 10⁻⁸. For H₂SO₄, K_{a1} is very large and $K_{a2} = 1.2 \times 10^{-2}$]

Ans. (6)

Sara

Sol	$H_2SO_4 HSO_4^- + H^+$
501.	
	1M
	- 1M 1M
	$Na_2SO_4 \longrightarrow 2Na^+ + SO_4^{2-}$
	$1.8 \times 10^{-2} \mathrm{M}$ -
	$3.6 \times 10^{-2} \text{ M}$ $1.8 \times 10^{-2} \text{ M}$
	$HSO_4^- \longrightarrow H^+ + SO_4^{2-}$; $K_{a_2} = 1.2 \times 10^{-2} M$
	$1M$ $1M$ $1.8 \times 10^{-2} M$
	Since $Q_C > K_C$ it will move in backward direction.
	$1 + x$ $1 - x$ $1.8 \times 10^{-2} - x$
	$K_{a_2} = 1.2 \times 10^{-2} = \frac{(1-x)(1.8 \times 10^{-2} - x)}{(1+x)}$

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

Since x is very small $(1 + x) \simeq 1$ and $(1 - x) \simeq 1$ $x = (1.8 \times 10^{-2} - 1.2 \times 10^{-2})M$ $\begin{bmatrix} SO_4^{2-} \end{bmatrix} = (1.8 \times 10^{-2} - 0.6 \times 10^{-2})M$ $= 1.2 \times 10^{-2} M$ PbSO₄ \longrightarrow Pb²⁺ + SO₄²⁻ s - 1.2 \times 10^{-2} M - s $(s + 1.2 \times 10^{-2}) = 1.6 \times 10^{-8}$ ($s + 1.2 \times 10^{-2}$) $= 1.6 \times 10^{-8}$ (PbSO₄) Here, $(s + 1.2 \times 10^{-2}) \simeq 1.2 \times 10^{-2}$ (since 's' is very small) $s(1.2 \times 10^{-2}) = 1.6 \times 10^{-8}$ $\Rightarrow s = \frac{1.6}{1.2} \times 10^{-6} M = X \times 10^{-9} M$

2. An aqueous solution is prepared by dissolving 0.1 mol of an ionic salt in 1.8 kg of water at 35 °C. The salt remains 90% dissociated in the solution. The vapour pressure of the solution is 59.724 mm of Hg. Vapor pressure of water at 35 °C is 60.000 mm of Hg. The number of ions present per formula unit of the ionic salt is _____.

Ans. (5)

Sol. 0.1 mole ionic salt in 1.8 kg water at 35° C

Vapour pressure of solution = 59.724 mm of Hg Vapour pressure of pure H₂O = 60.000 mm of Hg Let the number of ions present per formula unit of the ionic salt be 'x' $A_x \longrightarrow xA$ (Salt) (Ions) 0.1 - 0.1 (1 - 0.9) (0.1×0.9) x Total moles of non-volatile particles = 0.01 + 0.09 x in 1.8 kg water Moles of water = $\frac{1.8 \times 10^3}{18} = 100$ moles Relative lowering of vapour pressure $\frac{P^\circ - P_s}{P^\circ}$ = Mole fraction of non – volatile particles

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

$$\frac{P^{\circ} - P_{s}}{P_{s}} = \frac{\text{moles of non-volatile particles}}{\text{moles of water}}$$
$$\frac{60.000 - 59.724}{59.724} = \frac{0.01 + 0.09x}{100}$$
$$(0.276) \times 100 = 0.59274 + (0.59274 \times 9)x$$
$$27.6 - 0.59274 = (0.59274 \times 9)x$$
$$\Rightarrow x \approx \frac{27}{0.6 \times 9} = 5$$

3. Consider the strong electrolytes Z_mX_n , U_mY_p and V_mX_n . Limiting molar conductivity (Λ^0) of U_mY_p and V_mX_n are 250 and 440 S cm² mol⁻¹, respectively. The value of (m + n + p) is _____. Given:

Ion		U^{p+}		X ^{m-}	•
λ^0 (S cm ² mol ⁻¹)	50.0	25.0	100.0	80.0	100.0

 λ^0 is the limiting molar conductivity of ions

The plot of molar conductivity (A) of $Z_m X_n vs c^{1/2}$ is given below.

Ans. (7)

Sol. $\Lambda^{\circ}(U_m Y_p) = m \times \lambda^{\circ}_{U^{p^+}} + p \times \lambda^{\circ}_{Y^{m^-}} = 250$

$$\begin{split} & 25m + 100p = 250 \\ & m + 4p = 10 \\ & \dots \dots (1) \\ & \Lambda^{\circ} (V_m X_n) = m \times \lambda_{V^{n+}} + n \times \lambda_{X^{m-}}^{\circ} = 440 \\ & 100m + 80n = 440 \\ & 5m + 4n = 22 \\ & \dots \dots (2) \end{split}$$

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

5m + 8n = 34(3) (3) - (2) \Rightarrow $4n = 12 \Rightarrow n = 3$ Putting in (2) we get m = 2Putting in (1) we get n = 2

Putting in (1) we get
$$p = 2$$

m + n + p = 2 + 3 + 2 = 7

50m + 80n = 340

4. The reaction of Xe and O₂F₂ gives a Xe compound **P**. The number of moles of HF produced by the complete hydrolysis of 1 mol of **P** is _____.

Ans. (4)

Sol. $Xe + 2O_2F_2 \rightarrow XeF_4 + 2O_2$

 $3\text{XeF}_4 + 6\text{H}_2\text{O} \rightarrow 2\text{Xe} + \text{XeO}_3 + \frac{3}{2}\text{O}_2 + 12\text{HF}$

- \therefore One mole of XeF₄ gives 4 moles of HF on hydrolysis.
- 5. Thermal decomposition of AgNO₃ produces two paramagnetic gases. The total number of electrons present in the antibonding molecular orbitals of the gas that has the higher number of unpaired electrons is _____.

Ans. (6)

- **Sol.** AgNO₃ \rightarrow 2Ag + 2NO₂ + $\frac{1}{2}O_2$
 - Both NO₂ & O₂ are paramagnetic
 - NO2 is odd electron molecule with one unpaired electron
 - -O₂ has two unpaired electrons

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

Total number of antibonding electrons = 6

6. The number of isomeric tetraenes (NOT containing *sp*-hybridized carbon atoms) that can be formed from the following reaction sequence is _____.

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

7. The number of $-CH_2$ - (methylene) groups in the product formed from the following reaction sequence is _____.

8. The total number of chiral molecules formed from one molecule of **P** on complete ozonolysis (O₃, Zn/H₂O) is _____.

Ans. (2)

SECTION-2: (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks	+4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks	+3 If all the four options are correct but ONLY three options are chosen;
Partial Marks	+2 If three or more options are correct but ONLY two options are chosen,
	both of which are correct;
Partial Marks	+1 If two or more options are correct but ONLY one option is chosen and it
	is a correct option;
Zero Marks	0 If unanswered;
Negative Marks	-2 In all other cases.

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

<u>Saral</u>

9. To check the principle of multiple proportions, a series of pure binary compounds (P_mQ_n) were analyzed and their composition is tabulated below. The correct option(s) is(are)

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

- (A) If empirical formula of compound **3** is P_3Q_4 , then the empirical formula of compound **2** is P_3Q_5 .
- (B) If empirical formula of compound **3** is P_3Q_2 and atomic weight of element P is 20, then the atomic weight of Q is 45.
- (C) If empirical formula of compound **2** is PQ, then the empirical formula of the compound **1** is P_5Q_4 .
- (D) If atomic weight of P and Q are 70 and 35, respectively, then the empirical formula of compound 1 is P₂Q.

Ans. (B,C)

Sol.

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

For option (A)

Let atomic mass of P be M_P and atomic mass of Q be M_Q

Molar ratio of atoms P : Q in compound 3 is

$$\frac{40}{M_{p}}:\frac{60}{M_{Q}}=3:4$$
$$\frac{2M_{Q}}{3M_{p}}=\frac{3}{4}\Longrightarrow 9M_{p}=8M$$

Molar ratio of atoms P : Q in compound 2 is

$$\frac{44.4}{M_{P}} : \frac{55.6}{M_{Q}}$$
= 44.4 M_Q : 55.6 M_P
= 44.4 M_Q : 55.6 × $\frac{8M_{Q}}{9}$
= 44.4 : 55.6 × $\frac{8}{9}$
= 9 : 10

 \Rightarrow Empirical formula of compound 2 is therefore P₉Q₁₀ Option (A) in incorrect

For option (B)

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

Molar Ratio of atoms P : Q in compound 3 is $\frac{40}{M_P} : \frac{60}{M_Q} = 3:2$

$$\frac{2M_{Q}}{3M_{P}} = \frac{3}{2} \Longrightarrow 9M_{P} = 4M_{Q}$$

If
$$M_P = 20$$
 $\Rightarrow M_Q = \frac{9 \times 20}{4} = 45$

Option (B) is correct

For option (C)

Molar ratio of atoms P : Q in compound 2 is

$$\frac{44.4}{M_{p}}:\frac{55.6}{M_{Q}}=44.4M_{Q}:55.6\ M_{p}=1:1$$
$$\Rightarrow\frac{M_{p}}{M_{Q}}=\frac{44.4}{55.6}$$

Molar ratio of atoms P : Q in compound 1 is

$$\frac{50}{M_{P}}: \frac{50}{M_{Q}} = M_{Q}: M_{P}$$

= 55.6 : 44.4
 \simeq 5 : 4

Hence, empirical formula of compound 1 is P₅Q₄

Hence, option (C) is correct

For option (D)

Molar ratio of atoms P : Q in compound 1 is

$$\frac{50}{M_{\rm p}}:\frac{50}{M_{\rm Q}}=M_{\rm Q}:M_{\rm p}$$

$$= 35:70 = 1:2$$

Hence, empirical formula of compound 1 is PQ_2

Hence, option (D) is incorrect

10. The correct option(s) about entropy (S) is(are)

[R = gas constant, F = Faraday constant, T = Temperature]

(A) For the reaction, $M(s) + 2H^+(aq) \rightarrow H_2(g) + M^{2+}(aq)$, if $\frac{dE_{cell}}{dT} = \frac{R}{F}$, then the entropy change of

the reaction is R (assume that entropy and internal energy changes are temperature independent).

- (B) The cell reaction, $Pt(s) | H_2(g, 1bar) | H^+(aq, 0.01M) || H^+(aq, 0.1M) | H_2(g, 1bar) | Pt(s)$, is an entropy driven process.
- (C) For racemization of an optically active compound, $\Delta S > 0$.

(D) $\Delta S > 0$, for $[Ni(H_2O)_6]^{2+} + 3$ en $\rightarrow [Ni(en)_3]^{2+} + 6H_2O$ (where en = ethylenediamine).

Ans. (B,C,D)

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

1.
$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = \Delta H + T\left(\frac{d\Delta G}{dT}\right)_{p}$$

$$-nF\left(\frac{dE_{cell}}{dT} = \frac{\Delta S}{nF} = \frac{R}{F}(given)$$

$$\Rightarrow \Delta S = nR$$
For the reaction, M(g) + 2H[⊕](aq) $\longrightarrow H_{2}(g) + M^{2\oplus}(aq)$

$$n = 2$$

$$\Rightarrow \quad \Delta S = 2R$$
Hence, option (A) is incorrect
For the reaction, Pt_(s) |H_{2(g)}, 1 bar| H[⊕]_{aq}(0.01M)|| H[⊕](aq, 0.1M) | H₂(g, 1 bar)| Pt_(s)

$$E_{cell} = E_{cell}^{*} - \frac{0.0591}{1} \log \frac{0.01}{0.1} = 0.0591V$$

$$E_{cell} \text{ is positive } \Rightarrow \Delta G < 0 \text{ and } \Delta S > 0 (\Delta H = 0 \text{ for concentration cells})$$
Hence, option (B) is correct
Racemization of an optically active compound is a spontaneous process.
Here, $\Delta H = 0$ (similar type of bonds are present in enantiomers)
$$\Rightarrow \Delta S > 0$$
Hence, option (C) is correct.
$$\left[Ni(H_{2}O)_{6}\right]^{2^{4}} + 3 \text{ en } \rightarrow \left[Ni(en)_{3}\right]^{2^{4}} + 6H_{2}O \text{ is a spontaneous process}$$
more stable complex is formed
$$\Rightarrow \Delta S > 0$$
Hence, option (D) is correct.
(A) B (B) B₂H₆ (C) B₂O₃ (D) HBF₄

Ans. (B,C)

11

Sol. (A) $2B + 2NH_3 \rightarrow 2BN + 3H_2$

Boron produced BN with ammonia but **Boron is element not compound.** So that this option not involve in answer.

(B)
$$3B_2H_6 + 6NH_3 \rightarrow 3[BH_2(NH_3)_2]^+[BH_4^-] \xrightarrow{T = 200^\circ C} 2B_3N_3H_6 + 12H_2$$

 $B_3N_3H_6 \xrightarrow{T > 200^\circ C} (BN)_x$

(C)
$$B_2O_3(\ell) + 2NH_3 \xrightarrow{1200^{\circ}C} 2BN_{(s)} + 3H_2O_{(g)}$$

(D)
$$HBF_4 + NH_3 \rightarrow NH_4[BF_4]$$

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

- 12. The correct option(s) related to the extraction of iron from its ore in the blast furnace operating in the temperature range 900 1500 K is(are)
 - (A) Limestone is used to remove silicate impurity.
 - (B) Pig iron obtained from blast furnace contains about 4% carbon.
 - (C) Coke (C) converts CO_2 to CO.
 - (D) Exhaust gases consist of NO_2 and CO.

Ans. (A,B,C)

Sol. (A) CaO + SiO₂ \rightarrow CaSiO₃ (in the temperature range 900 – 1500 K)

(B) In fusion zone molten iron becomes heavy by absorbing elemental impurities and produces Pig

iron. (in the temperature range 900 - 1500 K)

- (C) C + CO₂ \rightarrow 2CO (in the temperature range 900 1500 K)
- (D) Exhaust gases does not contain NO₂.
- 13. Considering the following reaction sequence, the correct statement(s) is(are)

- (A) Compounds **P** and **Q** are carboxylic acids.
- (B) Compound S decolorizes bromine water.
- (C) Compounds \mathbf{P} and \mathbf{S} react with hydroxylamine to give the corresponding oximes.

(D) Compound **R** reacts with dialkylcadmium to give the corresponding tertiary alcohol. **Ans. (A,C)**

<u> *Saral</u>

- 14. Among the following, the correct statement(s) about polymers is(are)
 - (A) The polymerization of chloroprene gives natural rubber.
 - (B) Teflon is prepared from tetrafluoroethene by heating it with persulphate catalyst at high pressures.
 - (C) PVC are thermoplastic polymers.
 - (D) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the presence of a peroxide initiator yields high density polythene.

Ans. (B,C)

- Sol. (a) The polymerisation of neoprene gives natural rubber.
 - (b) is correct statement
 - (c) is correct statement

(d) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the pressure of a peroxide initiator yields low density polythene.

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

13

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं. तो सब सरल है।

- 16. The reaction of HClO₃ with HCl gives a paramagnetic gas, which upon reaction with O₃ produces (A) Cl₂O (B) ClO₂ (C) Cl₂O₆ (D) Cl₂O₇
 Ans. (C)
 Sol HClO₂ + HCl → ClO₂ + ¹/₂Cl₂ + H₂O
- Sol. $HClO_3 + HCl \rightarrow ClO_2 + \frac{1}{2}Cl_2 + H_2O$ $2ClO_2 + 2O_3 \rightarrow Cl_2O_6 + 2O_2$
- The reaction Pb(NO₃)₂ and NaCl in water produces a precipitate that dissolves upon the addition of HCl of appropriate concentration. The dissolution of the precipitate is due to the formation of
 - (A) $PbCl_2$ (B) $PbCl_4$ (C) $[PbCl_4]^{2-}$ (D) $[PbCl_6]^{2-}$

Ans. (C)

Sol. $Pb(NO_3)_2 + 2NaCI \rightarrow PbCl_2 + 2NaNO_3$ excess HCl $[PbCl_4]^{2^-}$

18. Treatment of D- glucose with aqueous NaOH results in a mixture of monosaccharides, which are

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं. तो सब सरल है।

JEE(Advanced) 2022/Paper-2

Sol. Basic catalyse tautomerism through enediol intermediate

JEE(Advanced) 2022/Paper-2/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।